Skip to main content
Erschienen in: Fire Technology 1/2020

28.06.2019

Radiation from Flames in a Microgravity Environment: Experimental and Numerical Investigations

verfasst von: L. Carmignani, K. Dong, S. Bhattacharjee

Erschienen in: Fire Technology | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fire safety in microgravity is extremely important due to the potential threat of fire for astronauts and spacecraft. One of the main effects of reduced gravity on combustion processes is the suppression of buoyancy. When the flow field around a flame is very mild, radiative exchanges between flame, solid fuel, and environment can determine the flame strength and growth. During the recent Burning and Suppression of Solid Fuels (BASS) investigation, several thin flat acrylic samples were burned in opposed-flow configuration with flow velocity varying between 0 cm/s and 42 cm/s, thicknesses from 100 µm to 400 µm, and oxygen concentration between 17% and 22%. Total radiation recorded by a radiometer positioned at a fixed location with a complete view of the spreading flame is presented as a function of different parameters. The radiometer signal is found to vary strongly with flow velocity, all other conditions unchanged. By processing the experiment videos with a MATLAB image processing code, data on flame length, projected flame area, sooty area (represented by the yellow color as opposed to blue), and burning rate (through evaluation of instantaneous flame spread rate) are obtained to explore if the radiation signature can be correlated with sooty or overall flame areas, or the burning rate. A comprehensive numerical model that includes gas and surface radiation, including radiation feedback from the gas to the solid, but not soot, is used to explore the same parametric study of the BASS flames’ total radiation signature. The detailed information obtained from the numerical solutions are used to interpret the radiation measurements in the microgravity experiments, which can be used for testing and refining further modeling efforts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wichman I (1992) Theory of opposed-flow flame spread. Prog Energy Combust Sci 18:646–651CrossRef Wichman I (1992) Theory of opposed-flow flame spread. Prog Energy Combust Sci 18:646–651CrossRef
2.
Zurück zum Zitat Williams F (1977) Mechanisms of fire spread. In: Symposium (international) combustion, vol 16. pp 1281–1294CrossRef Williams F (1977) Mechanisms of fire spread. In: Symposium (international) combustion, vol 16. pp 1281–1294CrossRef
3.
Zurück zum Zitat Bhattacharjee S, Laue M, Carmignani L, Ferkul P, Olson S (2016) Opposed-flow flame spread: a comparison of microgravity and normal gravity experiments to establish the thermal regime. Fire Saf J 79:111–118CrossRef Bhattacharjee S, Laue M, Carmignani L, Ferkul P, Olson S (2016) Opposed-flow flame spread: a comparison of microgravity and normal gravity experiments to establish the thermal regime. Fire Saf J 79:111–118CrossRef
4.
Zurück zum Zitat Fernandez-Pello A, Hirano T (1983) Controlling mechanisms of flame spread. Combust Sci Technol 32:1–31CrossRef Fernandez-Pello A, Hirano T (1983) Controlling mechanisms of flame spread. Combust Sci Technol 32:1–31CrossRef
5.
Zurück zum Zitat Bhattacharjee S, Altenkirch RA (1990) Radiation-controlled, opposed-flow flame spread in a microgravity environment. In: Symposium (international) combustion vol 23. pp 1627–1633 Bhattacharjee S, Altenkirch RA (1990) Radiation-controlled, opposed-flow flame spread in a microgravity environment. In: Symposium (international) combustion vol 23. pp 1627–1633
6.
Zurück zum Zitat Fernandez-Pello A, Ray S, Glassman I (1981) Flame spread in an opposed forced flow: the effect of ambient oxygen concentration. In: Symposium (international) combustion, vol 18. pp 579–589.CrossRef Fernandez-Pello A, Ray S, Glassman I (1981) Flame spread in an opposed forced flow: the effect of ambient oxygen concentration. In: Symposium (international) combustion, vol 18. pp 579–589.CrossRef
7.
Zurück zum Zitat Zhao K, Zhou X, Liu X, Tang W, Gollner M, Peng F, Yang L (2018) Experimental and theoretical study on downward flame spread over uninhibited PMMA slabs under different pressure environments. Appl Therm Eng 136:1–8CrossRef Zhao K, Zhou X, Liu X, Tang W, Gollner M, Peng F, Yang L (2018) Experimental and theoretical study on downward flame spread over uninhibited PMMA slabs under different pressure environments. Appl Therm Eng 136:1–8CrossRef
8.
Zurück zum Zitat Bhattacharjee S, Altenkirch R (1992) A comparison of theoretical and experimental results in flame spread over thin condensed fuels in quiescent, microgravity environment. In: Symposium (international) combustion vol 24. pp 1669–1676 Bhattacharjee S, Altenkirch R (1992) A comparison of theoretical and experimental results in flame spread over thin condensed fuels in quiescent, microgravity environment. In: Symposium (international) combustion vol 24. pp 1669–1676
9.
Zurück zum Zitat Ramachandra P, Altenkirch R, Bhattacharjee S, Tang L, Sacksteder K, Wolverton M (1995) The behavior of flames spreading over thin solids in microgravity. Combust Flame 100:71–84CrossRef Ramachandra P, Altenkirch R, Bhattacharjee S, Tang L, Sacksteder K, Wolverton M (1995) The behavior of flames spreading over thin solids in microgravity. Combust Flame 100:71–84CrossRef
10.
Zurück zum Zitat Altenkirch RA, Bundy MF, Tang L, Bhattacharjee S, Sacksteder K, Delichatsios MA (1999) Reflight of the solid surface combustion experiment: flame radiation near extinction. In: 5th International microgravity combusting workshop, Cleveland. Altenkirch RA, Bundy MF, Tang L, Bhattacharjee S, Sacksteder K, Delichatsios MA (1999) Reflight of the solid surface combustion experiment: flame radiation near extinction. In: 5th International microgravity combusting workshop, Cleveland.
11.
Zurück zum Zitat West J, Tang L, Altenkirch R, Bhattacharjee S, Sacksteder K, Delichatsios M (1996) Quiescent flame spread over thick fuels in microgravity. In: Symposium (international) combustion vol 26. pp 1335–1343. West J, Tang L, Altenkirch R, Bhattacharjee S, Sacksteder K, Delichatsios M (1996) Quiescent flame spread over thick fuels in microgravity. In: Symposium (international) combustion vol 26. pp 1335–1343.
12.
Zurück zum Zitat Haynes B, Wagner H (1981) Soot formation. Prog Energy Combust Sci 7:229–273CrossRef Haynes B, Wagner H (1981) Soot formation. Prog Energy Combust Sci 7:229–273CrossRef
13.
Zurück zum Zitat Glassman I (1988) Soot formation in combustion process. In: Symposium (international) combustion, vol 22. pp 295–311 Glassman I (1988) Soot formation in combustion process. In: Symposium (international) combustion, vol 22. pp 295–311
14.
Zurück zum Zitat Bhattacharjee S, Simsek A, Miller F, Olson S, Ferkul P (2017) Radiative, thermal, and kinetic regimes of opposed-flow flame spread: a comparison between experiment and theory. Proc Combust Inst 36:2963–2969CrossRef Bhattacharjee S, Simsek A, Miller F, Olson S, Ferkul P (2017) Radiative, thermal, and kinetic regimes of opposed-flow flame spread: a comparison between experiment and theory. Proc Combust Inst 36:2963–2969CrossRef
15.
Zurück zum Zitat Bhattacharjee S, Simsek A, Olson S, Ferkul P (2016) The critical flow velocity for radiative extinction in opposed-flow flame spread in a microgravity environment: a comparison of experimental, computational, and theoretical results. Combust Flame 163:472–477CrossRef Bhattacharjee S, Simsek A, Olson S, Ferkul P (2016) The critical flow velocity for radiative extinction in opposed-flow flame spread in a microgravity environment: a comparison of experimental, computational, and theoretical results. Combust Flame 163:472–477CrossRef
16.
Zurück zum Zitat Carmignani L, Bhattacharjee S, Olson SL, Ferkul PV (2018) Boundary layer effect on opposed-flow flame spread and flame length over thin PMMA in microgravity. Combust Sci Technol 190:534–548.CrossRef Carmignani L, Bhattacharjee S, Olson SL, Ferkul PV (2018) Boundary layer effect on opposed-flow flame spread and flame length over thin PMMA in microgravity. Combust Sci Technol 190:534–548.CrossRef
17.
Zurück zum Zitat Urban D, Ferkul P, Olson S, Ruff G, Easton J, T’ien J, Liao Y-T, Li C, Fernandez-Pello C, Torero J, Legros G, Eigenbrod C, Smirnov N, Fujita O, Rouvreau S, Toth B, Jomaas G (2019) Flame spread: effects of microgravity and scale. Combust Flame 199:168–182CrossRef Urban D, Ferkul P, Olson S, Ruff G, Easton J, T’ien J, Liao Y-T, Li C, Fernandez-Pello C, Torero J, Legros G, Eigenbrod C, Smirnov N, Fujita O, Rouvreau S, Toth B, Jomaas G (2019) Flame spread: effects of microgravity and scale. Combust Flame 199:168–182CrossRef
18.
Zurück zum Zitat Olson S, Ferkul P (2017) Microgravity flammability boundary for PMMA rods in axial stagnation flow: Experimental results and energy balance analyses. Combust Flame 180:217–229CrossRef Olson S, Ferkul P (2017) Microgravity flammability boundary for PMMA rods in axial stagnation flow: Experimental results and energy balance analyses. Combust Flame 180:217–229CrossRef
19.
Zurück zum Zitat Olson S, Ferkul P, Bhattacharjee S, Miller F, Fernandez-Pello A, Link S, T’ien J, Wichman I (2015) Results from on-board CSA-CP and CDM sensor readings during the burning and suppression of solids – II (BASS-II) experiment in the microgravity science glovebox (MSG). In: 45th ICES, Bellevue, Washington Olson S, Ferkul P, Bhattacharjee S, Miller F, Fernandez-Pello A, Link S, T’ien J, Wichman I (2015) Results from on-board CSA-CP and CDM sensor readings during the burning and suppression of solids – II (BASS-II) experiment in the microgravity science glovebox (MSG). In: 45th ICES, Bellevue, Washington
20.
Zurück zum Zitat Bhattacharjee S, Carmignani L, Celniker G, Rhoades B (2017) Measurement of instantaneous flame spread rate over solid fuels using image analysis. Fire Saf J 91:123–129.CrossRef Bhattacharjee S, Carmignani L, Celniker G, Rhoades B (2017) Measurement of instantaneous flame spread rate over solid fuels using image analysis. Fire Saf J 91:123–129.CrossRef
21.
Zurück zum Zitat Bhattacharjee S, Nagarkar R, Nakamura Y (2014) A correlation for an effective flow velocity for capturing the boundary layer effect in opposed-flow flame spread over thin fuels. Combust Sci Technol 186:975–987CrossRef Bhattacharjee S, Nagarkar R, Nakamura Y (2014) A correlation for an effective flow velocity for capturing the boundary layer effect in opposed-flow flame spread over thin fuels. Combust Sci Technol 186:975–987CrossRef
22.
Zurück zum Zitat Grosshandler W (1993) A narrow-band model for radiation calculations in a combustion environment. NIST Technical Note 1402 Grosshandler W (1993) A narrow-band model for radiation calculations in a combustion environment. NIST Technical Note 1402
23.
Zurück zum Zitat Bhattacharjee S, Paolini C, Miller F, Nagarkar R (2012) Radiation signature in opposed-flow flame spread. Prog Comput Fluid Dyn 12:293–301CrossRef Bhattacharjee S, Paolini C, Miller F, Nagarkar R (2012) Radiation signature in opposed-flow flame spread. Prog Comput Fluid Dyn 12:293–301CrossRef
Metadaten
Titel
Radiation from Flames in a Microgravity Environment: Experimental and Numerical Investigations
verfasst von
L. Carmignani
K. Dong
S. Bhattacharjee
Publikationsdatum
28.06.2019
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2020
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-019-00884-y

Weitere Artikel der Ausgabe 1/2020

Fire Technology 1/2020 Zur Ausgabe