Skip to main content

2011 | OriginalPaper | Buchkapitel

Radiative Transfer in Two-Phase Dispersed Materials

verfasst von : Jaona Randrianalisoa, Rémi Coquard, Dominique Baillis

Erschienen in: Heat Transfer in Multi-Phase Materials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents the treatment of radiative transfer in two-phase dispersed media in the framework of radiative transfer theory. With this aim, two modeling approaches, under the geometric optic hypothesis, are described and then compared. The first one is the traditional treatment of dispersed media as continuous and homogeneous systems, referred to here as the Homogeneous Phase Approach (HPA). The radiation propagation is characterized by effective radiative properties and modeled by the conventional Radiative Transfer Equation (RTE). The second approach is based on a separate treatment of radiative transfer in the continuous and dispersed phases, referred as the Multi-Phase Approach (MPA). In this approach, each constituting phase has its own effective radiative properties and temperatures. For each approach, the methods for predicting the radiative properties are reviewed. The radiative transfers through typical two-phase dispersed media, such as glass containing bubbles, packed bed of opaque spheres, and packed-bed of semitransparent spheres, are analyzed. The results of transmittances and reflectances from these predictive approaches are compared with available experimental data or Monte Carlo (MC) simulation.
Through this contribution, it is shown that the HPA is satisfactory for analyzing radiative transfer in two-phase dispersed media provided that the effective radiative properties are correctly predicted. For practical purpose, it is recommended to use first the well-known independent scattering theory when dispersed contents (or scatterers) are largely spaced or when their volume fraction is small. An example of these media is the glass containing bubbles studied herein. Then, the correlated scattering theory proposed by Brewster or Singh and Kaviany is the simplest model when the continuous phase is non-absorbing and the dispersed phase is constituted of opaque spheres. Finally, the ray-tracing (RT) based method can be used for arbitrary dispersed materials fulfilling the geometric optic regime.
Concerning the MPA, it is generally a suitable approach, as exemplified with glass containing bubbles and packed bed of opaque particles. It is however inaccurate for a few cases for which the scattering pattern presents strong peaks (known as rainbow peaks) due to the correlation between the rays incident on a scatterer and those transmitted through it after undergoing several internal reflections. This problem may occur only when (1) the continuum is less refracting than the scatterers; (2) the scatterers are weakly absorbing; and (3) the scatterer boundaries are specular and regular in shape. It is, for example, the case with a packed-bed of semitransparent specularly reflecting spheres.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mujeebu, M.A., Abdullah, M.Z., Bakar, M.Z.A., Mohamad, A.A., Abdullah, M.K.: Applications of porous media combustion technology – a review. Appl. Energy 86, 1365–1375 (2009)CrossRef Mujeebu, M.A., Abdullah, M.Z., Bakar, M.Z.A., Mohamad, A.A., Abdullah, M.K.: Applications of porous media combustion technology – a review. Appl. Energy 86, 1365–1375 (2009)CrossRef
2.
Zurück zum Zitat Sathe, S.B., Peck, R.E., Tong, T.W.: A numerical analysis of heat transfer and combustion in porous radiant burners. Int. J. Heat Mass Transf. 33, 1331–1338 (1990)CrossRef Sathe, S.B., Peck, R.E., Tong, T.W.: A numerical analysis of heat transfer and combustion in porous radiant burners. Int. J. Heat Mass Transf. 33, 1331–1338 (1990)CrossRef
3.
Zurück zum Zitat Damm, D.L., Fedorov, A.G.: Radiation heat transfer in SOFC materials and components. J. Power Sources 143, 158–165 (2005)CrossRef Damm, D.L., Fedorov, A.G.: Radiation heat transfer in SOFC materials and components. J. Power Sources 143, 158–165 (2005)CrossRef
4.
Zurück zum Zitat Steinfeld, A.: Solar thermochemical production of hydrogen – a review. Sol. Energy 78, 603–615 (2005)CrossRef Steinfeld, A.: Solar thermochemical production of hydrogen – a review. Sol. Energy 78, 603–615 (2005)CrossRef
5.
Zurück zum Zitat Glicksmann, L.R., Arduini-Schuetz, M.C., Sinofsky, M.: Radiation heat transfer in foam Insulation. Int. J. Heat Mass Transf. 109, 809–812 (1987) Glicksmann, L.R., Arduini-Schuetz, M.C., Sinofsky, M.: Radiation heat transfer in foam Insulation. Int. J. Heat Mass Transf. 109, 809–812 (1987)
6.
Zurück zum Zitat Kuhn, J., Ebert, H.P., Arduini-Schuster, M.C., Buttner, D., Fricke, J.: Thermal transport in polystyrene and polyurethanes foam insulations. Int. J. Heat Mass Transf. 35, 1795–1801 (1992)CrossRef Kuhn, J., Ebert, H.P., Arduini-Schuster, M.C., Buttner, D., Fricke, J.: Thermal transport in polystyrene and polyurethanes foam insulations. Int. J. Heat Mass Transf. 35, 1795–1801 (1992)CrossRef
7.
Zurück zum Zitat Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995) Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)
8.
Zurück zum Zitat Quintard, M., Whitaker, S.: Fundamentals of transport equation formulation for two-phase flow in homogeneous and heterogeneous porous media. In: Parlange, M.B., Hopmans, J.W. (eds.) Vadose Zone Hydrology: Cutting Across Disciplines, pp. 3–57. Oxford University Press, New York (1999). Chapter 1 Quintard, M., Whitaker, S.: Fundamentals of transport equation formulation for two-phase flow in homogeneous and heterogeneous porous media. In: Parlange, M.B., Hopmans, J.W. (eds.) Vadose Zone Hydrology: Cutting Across Disciplines, pp. 3–57. Oxford University Press, New York (1999). Chapter 1
9.
Zurück zum Zitat Howell, J.R.: Radiative transfer in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 663–698. Marcel Dekker, New York (2000). Chapter 15CrossRef Howell, J.R.: Radiative transfer in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 663–698. Marcel Dekker, New York (2000). Chapter 15CrossRef
10.
Zurück zum Zitat Kaviany, M., Singh, B.P.: Radiative heat transfer in porous media. In: Hartnett, J.P., Irvine, T. (eds.) Advances in Heat Transfer, vol 23, pp. 133–186. Academic, San Diego (1993)CrossRef Kaviany, M., Singh, B.P.: Radiative heat transfer in porous media. In: Hartnett, J.P., Irvine, T. (eds.) Advances in Heat Transfer, vol 23, pp. 133–186. Academic, San Diego (1993)CrossRef
11.
Zurück zum Zitat Adzerikho, K.S., Nogotov, E.F., Trofimov, V.P.: Radiation Heat Transfer in Two-Phase Media, 1st edn. CRC, Boca Raton (1993) Adzerikho, K.S., Nogotov, E.F., Trofimov, V.P.: Radiation Heat Transfer in Two-Phase Media, 1st edn. CRC, Boca Raton (1993)
12.
Zurück zum Zitat Foldy, L.L.: The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67, 107–119 (1945)CrossRef Foldy, L.L.: The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67, 107–119 (1945)CrossRef
13.
Zurück zum Zitat Goldberg, M.L., Watson, K.M.: Collision Theory. Wiley, New York (1964) Goldberg, M.L., Watson, K.M.: Collision Theory. Wiley, New York (1964)
14.
Zurück zum Zitat Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic, New York (1978) Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic, New York (1978)
15.
Zurück zum Zitat Apresyan, L.A., Kravtsov, Y.A.: Radiative Transfer Theory. Nauka, Moscow (1983) Apresyan, L.A., Kravtsov, Y.A.: Radiative Transfer Theory. Nauka, Moscow (1983)
16.
Zurück zum Zitat Papanicolaou, G.C., Burridge, R.: Transport equations for the Stokes parameters from Maxwell equations in a random media. J. Math. Phys. 16, 2074–2082 (1975)CrossRef Papanicolaou, G.C., Burridge, R.: Transport equations for the Stokes parameters from Maxwell equations in a random media. J. Math. Phys. 16, 2074–2082 (1975)CrossRef
17.
Zurück zum Zitat Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006) Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006)
18.
Zurück zum Zitat Chandrasekhar, S.: Radiative Transfer. Oxford University Press, Oxford (1950) Chandrasekhar, S.: Radiative Transfer. Oxford University Press, Oxford (1950)
19.
Zurück zum Zitat Lenoble, J.: Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Deepak, Hampton (1985) Lenoble, J.: Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Deepak, Hampton (1985)
20.
Zurück zum Zitat Brewster, M.Q.: Thermal Radiative Transfer and Properties. Wiley, New York (1992) Brewster, M.Q.: Thermal Radiative Transfer and Properties. Wiley, New York (1992)
21.
Zurück zum Zitat Modest, M.F.: Radiative Heat Transfer. Academic, New York (2003) Modest, M.F.: Radiative Heat Transfer. Academic, New York (2003)
22.
Zurück zum Zitat Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. Taylor & Francis, New York (2002) Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. Taylor & Francis, New York (2002)
23.
Zurück zum Zitat Mishchenko, M.I.: Far-field approximation in electromagnetic scattering. J. Quant. Spectrosc. Radiat. Transf. 100, 268–276 (2006)CrossRef Mishchenko, M.I.: Far-field approximation in electromagnetic scattering. J. Quant. Spectrosc. Radiat. Transf. 100, 268–276 (2006)CrossRef
24.
Zurück zum Zitat Kerker, M.: The Scattering of Light and Other Electromagnetic Radiation. Academic, New York (1966) Kerker, M.: The Scattering of Light and Other Electromagnetic Radiation. Academic, New York (1966)
25.
Zurück zum Zitat Van de Hulst, H.C.: Light Scattering by Small Particles. Dover, New York (1981) Van de Hulst, H.C.: Light Scattering by Small Particles. Dover, New York (1981)
26.
Zurück zum Zitat Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983) Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)
27.
Zurück zum Zitat Durant, S., Calvo-Perez, O., Vukadinovic, N., Greffet, J.J.: Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient. J. Opt. Soc. Am. A 24, 2953–2962 (2007)CrossRef Durant, S., Calvo-Perez, O., Vukadinovic, N., Greffet, J.J.: Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient. J. Opt. Soc. Am. A 24, 2953–2962 (2007)CrossRef
28.
Zurück zum Zitat Waterman, P.C., Truell, R.: Multiple scattering of waves. J. Math. Phys. 2, 512–537 (1961)CrossRef Waterman, P.C., Truell, R.: Multiple scattering of waves. J. Math. Phys. 2, 512–537 (1961)CrossRef
29.
Zurück zum Zitat Twersky, V.: On scattering of waves by random distributions. I. Free-space scatterer formalism. J. Math. Phys. 3, 700–715 (1962)CrossRef Twersky, V.: On scattering of waves by random distributions. I. Free-space scatterer formalism. J. Math. Phys. 3, 700–715 (1962)CrossRef
30.
Zurück zum Zitat Lax, M.: Multiple scattering of waves. II. The effective field in dense systems. Phys. Rev. 85, 621–629 (1952)CrossRef Lax, M.: Multiple scattering of waves. II. The effective field in dense systems. Phys. Rev. 85, 621–629 (1952)CrossRef
31.
Zurück zum Zitat Cartigny, J.D., Yamada, Y., Tien, C.L.: Radiative transfer with dependent scattering by particles: Part I – Theoretical investigation. J. Heat Transf. 108, 608–613 (1986)CrossRef Cartigny, J.D., Yamada, Y., Tien, C.L.: Radiative transfer with dependent scattering by particles: Part I – Theoretical investigation. J. Heat Transf. 108, 608–613 (1986)CrossRef
32.
Zurück zum Zitat Yamada, Y., Cartigny, J.D., Tien, C.L.: Radiative transfer with dependent scattering by particles: Part II – Experimental investigation. J. Heat Transf. 108, 614–618 (1986)CrossRef Yamada, Y., Cartigny, J.D., Tien, C.L.: Radiative transfer with dependent scattering by particles: Part II – Experimental investigation. J. Heat Transf. 108, 614–618 (1986)CrossRef
33.
Zurück zum Zitat Drolen, B.L., Tien, C.L.: Independent and dependent scattering in packed-sphere systems. J. Thermophys. Heat Transf. 1, 63–68 (1987)CrossRef Drolen, B.L., Tien, C.L.: Independent and dependent scattering in packed-sphere systems. J. Thermophys. Heat Transf. 1, 63–68 (1987)CrossRef
34.
Zurück zum Zitat Kumar, S., Tien, C.L.: Dependent absorption and extinction of radiation by small particles. J. Heat Transf. 112, 178–185 (1990)CrossRef Kumar, S., Tien, C.L.: Dependent absorption and extinction of radiation by small particles. J. Heat Transf. 112, 178–185 (1990)CrossRef
35.
Zurück zum Zitat Kamiuto, K.: Correlated radiative transfer in packed-sphere systems. J. Quant. Spectrosc. Radiat. Transf. 43, 39–43 (1990)CrossRef Kamiuto, K.: Correlated radiative transfer in packed-sphere systems. J. Quant. Spectrosc. Radiat. Transf. 43, 39–43 (1990)CrossRef
36.
Zurück zum Zitat Singh, B.P., Kaviany, M.: Modelling radiative heat transfer in packed beds. Int. J. Heat Mass Transf. 35, 1397–1405 (1992)CrossRef Singh, B.P., Kaviany, M.: Modelling radiative heat transfer in packed beds. Int. J. Heat Mass Transf. 35, 1397–1405 (1992)CrossRef
37.
Zurück zum Zitat Dombrovsky, L.: Thermal radiation from nonisothermal spherical particles of a semitransparent material. Int. J. Heat Mass Transf. 43, 1661–1672 (2000)CrossRef Dombrovsky, L.: Thermal radiation from nonisothermal spherical particles of a semitransparent material. Int. J. Heat Mass Transf. 43, 1661–1672 (2000)CrossRef
38.
Zurück zum Zitat Dombrovsky, L.: Large-cell model of radiation heat transfer in multiphase flows typical for fuel–coolant interaction. Int. J. Heat Mass Transf. 50, 3401–3410 (2007)CrossRef Dombrovsky, L.: Large-cell model of radiation heat transfer in multiphase flows typical for fuel–coolant interaction. Int. J. Heat Mass Transf. 50, 3401–3410 (2007)CrossRef
39.
Zurück zum Zitat Zeghondy, B., Estelle, Y., Taine, J.: Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI). Int. J. Heat Mass Transf. 49, 2810–2819 (2006)CrossRef Zeghondy, B., Estelle, Y., Taine, J.: Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI). Int. J. Heat Mass Transf. 49, 2810–2819 (2006)CrossRef
40.
Zurück zum Zitat Gusarov, A.V.: Homogenization of radiation transfer in two-phase media with irregular phase boundaries. Phys. Rev. B 77, 144201 (2008)CrossRef Gusarov, A.V.: Homogenization of radiation transfer in two-phase media with irregular phase boundaries. Phys. Rev. B 77, 144201 (2008)CrossRef
41.
Zurück zum Zitat Randrianalisoa, J., Baillis, D.: Radiative transfer in dispersed media: comparison between homogeneous phase and multiphase approaches. J. Heat Transf. 132, 023405 (2010)CrossRef Randrianalisoa, J., Baillis, D.: Radiative transfer in dispersed media: comparison between homogeneous phase and multiphase approaches. J. Heat Transf. 132, 023405 (2010)CrossRef
42.
Zurück zum Zitat Brewster, M.Q.: Volume scattering of radiation in packed beds of large, opaque spheres. J. Heat Transf. 126, 1048–1050 (2004)CrossRef Brewster, M.Q.: Volume scattering of radiation in packed beds of large, opaque spheres. J. Heat Transf. 126, 1048–1050 (2004)CrossRef
43.
Zurück zum Zitat Coquard, R., Baillis, D.: Radiative properties of dense fibrous medium containing fibers in the geometric limit. J. Heat Transf. 128, 1022–1030 (2006)CrossRef Coquard, R., Baillis, D.: Radiative properties of dense fibrous medium containing fibers in the geometric limit. J. Heat Transf. 128, 1022–1030 (2006)CrossRef
44.
Zurück zum Zitat Coquard, C., Baillis, D.: Radiative characteristics of opaque spherical particle beds: a new method of prediction. J. Thermophys. Heat Transf. 18, 178–186 (2004)CrossRef Coquard, C., Baillis, D.: Radiative characteristics of opaque spherical particle beds: a new method of prediction. J. Thermophys. Heat Transf. 18, 178–186 (2004)CrossRef
45.
Zurück zum Zitat Tancrez, M., Taine, J.: Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique. Int. J. Heat Mass Transf. 47, 373–383 (2004)CrossRef Tancrez, M., Taine, J.: Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique. Int. J. Heat Mass Transf. 47, 373–383 (2004)CrossRef
46.
Zurück zum Zitat Randrianalisoa, J., Baillis, D.: Radiative properties of densely packed spheres in semitransparent media: a new geometric optics approach. J. Quant. Spectrosc. Rad. Transf. 111, 1372–1388 Randrianalisoa, J., Baillis, D.: Radiative properties of densely packed spheres in semitransparent media: a new geometric optics approach. J. Quant. Spectrosc. Rad. Transf. 111, 1372–1388
47.
Zurück zum Zitat Jones, P.D., McLeod, D.G., Dorai-Raj, D.E.: Correlation of measured and computed radiation intensity exiting a packed bed. J. Heat Transf. 118, 94–102 (1996)CrossRef Jones, P.D., McLeod, D.G., Dorai-Raj, D.E.: Correlation of measured and computed radiation intensity exiting a packed bed. J. Heat Transf. 118, 94–102 (1996)CrossRef
48.
Zurück zum Zitat Randrianalisoa, J., Baillis, D., Pilon, L.: Improved inverse method for radiative characteristics of closed-cell absorbing porous media. J. Thermophys. Heat Transf. 20, 871–883 (2006)CrossRef Randrianalisoa, J., Baillis, D., Pilon, L.: Improved inverse method for radiative characteristics of closed-cell absorbing porous media. J. Thermophys. Heat Transf. 20, 871–883 (2006)CrossRef
49.
Zurück zum Zitat Dombrovsky, L.: The propagation of infrared radiation in a semitransparent liquid containing gas bubbles. High Temp. 42, 133–139 (2004) Dombrovsky, L.: The propagation of infrared radiation in a semitransparent liquid containing gas bubbles. High Temp. 42, 133–139 (2004)
50.
Zurück zum Zitat Mischler, D., Steinfeld, A.: Nonisothermal nongray absorbing–emitting–scattering suspension of Fe3O4 particles under concentrated solar irradiation. J. Heat Transf. 117, 346–354 (1995)CrossRef Mischler, D., Steinfeld, A.: Nonisothermal nongray absorbing–emitting–scattering suspension of Fe3O4 particles under concentrated solar irradiation. J. Heat Transf. 117, 346–354 (1995)CrossRef
51.
Zurück zum Zitat Qiu, T.Q., Longtin, J.P., Tien, C.L.: Characteristics of radiation absorption in metallic particles. J. Heat Transf. 117, 340–345 (1995)CrossRef Qiu, T.Q., Longtin, J.P., Tien, C.L.: Characteristics of radiation absorption in metallic particles. J. Heat Transf. 117, 340–345 (1995)CrossRef
52.
Zurück zum Zitat Dembele, S., Delmas, A., Sacadura, J.F.: A method for modeling the mitigation of hazardous fire thermal radiation by water spray curtains. J. Heat Transf. 119, 746–753 (1997)CrossRef Dembele, S., Delmas, A., Sacadura, J.F.: A method for modeling the mitigation of hazardous fire thermal radiation by water spray curtains. J. Heat Transf. 119, 746–753 (1997)CrossRef
53.
Zurück zum Zitat Fedorov, A.G., Viskanta, R.: Radiation characteristics of glass foams. J. Am. Ceram. Soc. 83, 2769–2776 (2000)CrossRef Fedorov, A.G., Viskanta, R.: Radiation characteristics of glass foams. J. Am. Ceram. Soc. 83, 2769–2776 (2000)CrossRef
54.
Zurück zum Zitat Hottel, H.C., Sarofim, A.F., Dalzell, W.H., Vasalos, I.A.: Optical properties of coatings, effect of pigment concentration. J. Thermophys. Heat Transf. 9, 1895–1898 (1971) Hottel, H.C., Sarofim, A.F., Dalzell, W.H., Vasalos, I.A.: Optical properties of coatings, effect of pigment concentration. J. Thermophys. Heat Transf. 9, 1895–1898 (1971)
55.
Zurück zum Zitat Ishimaru, Kuga, Y.: Attenuation constant of a coherent field in a dense distribution of particles. J. Optic. Soc. Am. 72, 1317–1320 (1982)CrossRef Ishimaru, Kuga, Y.: Attenuation constant of a coherent field in a dense distribution of particles. J. Optic. Soc. Am. 72, 1317–1320 (1982)CrossRef
56.
Zurück zum Zitat Brewster, M.Q., Tien, C.L.: Radiative transfer in packed fluidized beds: dependent versus independent scattering. J. Heat Transf. 104, 573–579 (1982)CrossRef Brewster, M.Q., Tien, C.L.: Radiative transfer in packed fluidized beds: dependent versus independent scattering. J. Heat Transf. 104, 573–579 (1982)CrossRef
57.
Zurück zum Zitat Ivezic, Z., Menguc, P.: An investigation of dependent/independent scattering regimes using a discrete dipole approximation. Int. J. Heat Mass Transf. 39, 811–822 (1996)CrossRef Ivezic, Z., Menguc, P.: An investigation of dependent/independent scattering regimes using a discrete dipole approximation. Int. J. Heat Mass Transf. 39, 811–822 (1996)CrossRef
58.
Zurück zum Zitat Kaviany, M., Singh, B.P.: Radiative heat transfer in packed beds. In: Quintard, M., Todorovic, M. (eds.) Heat and Mass Transfer in Porous Media, pp. 191–202. Elsevier, Amsterdam (1992) Kaviany, M., Singh, B.P.: Radiative heat transfer in packed beds. In: Quintard, M., Todorovic, M. (eds.) Heat and Mass Transfer in Porous Media, pp. 191–202. Elsevier, Amsterdam (1992)
59.
Zurück zum Zitat Zeghondy, B., Iacona, E., Taine, J.: Experimental and RDFI calculated radiative properties of a mullite foam. Int. J. Heat Mass Transf. 49, 3702–3707 (2006)CrossRef Zeghondy, B., Iacona, E., Taine, J.: Experimental and RDFI calculated radiative properties of a mullite foam. Int. J. Heat Mass Transf. 49, 3702–3707 (2006)CrossRef
60.
Zurück zum Zitat Petrasch, J., Wyss, P., Steinfeld, A.: Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectrosc. Radiat. Transf. 105, 180–197 (2007)CrossRef Petrasch, J., Wyss, P., Steinfeld, A.: Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectrosc. Radiat. Transf. 105, 180–197 (2007)CrossRef
61.
Zurück zum Zitat Baillis, D., Sacadura, J.F.: Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. J. Quant. Spectrosc. Radiat. Transf. 67, 327–363 (2000)CrossRef Baillis, D., Sacadura, J.F.: Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. J. Quant. Spectrosc. Radiat. Transf. 67, 327–363 (2000)CrossRef
62.
Zurück zum Zitat Dombrovsky, L., Randrianalisoa, J., Baillis, D., Pilon, L.: Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles. Appl. Opt. 44, 7021–7031 (2005)CrossRef Dombrovsky, L., Randrianalisoa, J., Baillis, D., Pilon, L.: Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles. Appl. Opt. 44, 7021–7031 (2005)CrossRef
63.
Zurück zum Zitat Baillis, D., Sacadura, J.F.: Directional spectral emittance of a packed bed: influence of the temperature gradient in the medium. J. Heat Transf. 124, 904–911 (2002)CrossRef Baillis, D., Sacadura, J.F.: Directional spectral emittance of a packed bed: influence of the temperature gradient in the medium. J. Heat Transf. 124, 904–911 (2002)CrossRef
64.
Zurück zum Zitat Fedorov, A.G., Viskanta, R.: Radiative transfer in a semitransparent glass foam blanket. Phys. Chem. Glasses 41, 127–135 (2000) Fedorov, A.G., Viskanta, R.: Radiative transfer in a semitransparent glass foam blanket. Phys. Chem. Glasses 41, 127–135 (2000)
65.
Zurück zum Zitat Fedorov, A.G., Pilon, L.: Glass foams: formation, transport properties, and heat, mass, and radiation transfer. J. Non-Cryst. Solids 311, 154–173 (2002) Fedorov, A.G., Pilon, L.: Glass foams: formation, transport properties, and heat, mass, and radiation transfer. J. Non-Cryst. Solids 311, 154–173 (2002)
66.
Zurück zum Zitat Malitson, I.H.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965)CrossRef Malitson, I.H.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965)CrossRef
67.
Zurück zum Zitat Beder, E.C., Bass, C.D., Shackleford, W.L.: Transmissivity and absorption of fused quartz between 0.2 μm and 3.5 μm from room temperature to 1500 degree C. Appl. Opt. 10, 2263–2268 (1971)CrossRef Beder, E.C., Bass, C.D., Shackleford, W.L.: Transmissivity and absorption of fused quartz between 0.2 μm and 3.5 μm from room temperature to 1500 degree C. Appl. Opt. 10, 2263–2268 (1971)CrossRef
68.
Zurück zum Zitat Touloukian, Y.S., DeWitt, D.P.: Thermal radiative properties: nonmetallic solids. In: Touloukian, Y.S., DeWitt, D.P. (eds.) Thermophysical Properties of Matter, vol 8. Plenum, New York (1972) Touloukian, Y.S., DeWitt, D.P.: Thermal radiative properties: nonmetallic solids. In: Touloukian, Y.S., DeWitt, D.P. (eds.) Thermophysical Properties of Matter, vol 8. Plenum, New York (1972)
69.
Zurück zum Zitat Khashan, M.A., Nassif, A.Y.: Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3 μm. Opt. Commun. 188, 129–139 (2001)CrossRef Khashan, M.A., Nassif, A.Y.: Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3 μm. Opt. Commun. 188, 129–139 (2001)CrossRef
70.
Zurück zum Zitat Randrianalisoa, J., Baillis, D., Pilon, L.: Modeling radiation characteristics of semitransparent media containing bubbles or particles. J. Opt. Soc. Am. A 23, 1645–1656 (2006)CrossRef Randrianalisoa, J., Baillis, D., Pilon, L.: Modeling radiation characteristics of semitransparent media containing bubbles or particles. J. Opt. Soc. Am. A 23, 1645–1656 (2006)CrossRef
71.
Zurück zum Zitat Dombrovsky, L., Randrianalisoa, J., Baillis, D.: Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional–hemispherical measurements. J. Opt. Soc. Am. A 23, 91–98 (2006)CrossRef Dombrovsky, L., Randrianalisoa, J., Baillis, D.: Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional–hemispherical measurements. J. Opt. Soc. Am. A 23, 91–98 (2006)CrossRef
72.
Zurück zum Zitat Dombrovsky, L., Randrianalisoa, J., Baillis, D.: Infrared radiative properties of polymer coatings containing hollow microspheres. Int. J. Heat Mass Transf. 50, 1516–1527 (2007)CrossRef Dombrovsky, L., Randrianalisoa, J., Baillis, D.: Infrared radiative properties of polymer coatings containing hollow microspheres. Int. J. Heat Mass Transf. 50, 1516–1527 (2007)CrossRef
73.
Zurück zum Zitat Mundy, W.C., Roux, J.A., Smith, A.M.: Mie scattering by spheres in an absorbing medium. J. Opt. Soc. Am. 64, 1593–1597 (1974)CrossRef Mundy, W.C., Roux, J.A., Smith, A.M.: Mie scattering by spheres in an absorbing medium. J. Opt. Soc. Am. 64, 1593–1597 (1974)CrossRef
74.
Zurück zum Zitat Mills, A.F.: Heat Transfer, 2nd edn. Prentice Hall, New Jersey (1999) Mills, A.F.: Heat Transfer, 2nd edn. Prentice Hall, New Jersey (1999)
75.
Zurück zum Zitat Jäger, K., Lipiński, W., Katzgraber, H.G., Steinfeld, A.: Determination of thermal radiative properties of packed-bed media containing a mixture of polydispersed particles. Int. J. Therm. Sci. 150, 502–508 (2009) Jäger, K., Lipiński, W., Katzgraber, H.G., Steinfeld, A.: Determination of thermal radiative properties of packed-bed media containing a mixture of polydispersed particles. Int. J. Therm. Sci. 150, 502–508 (2009)
76.
Zurück zum Zitat Haussener, S., Lipiński, W., Petrasch, J., Wyss, P., Steinfeld, A.: Tomographic characterization of a semitransparent-particle packed bed and determination of its thermal radiative properties. J. Heat Transf. 131, 072701 (2009)CrossRef Haussener, S., Lipiński, W., Petrasch, J., Wyss, P., Steinfeld, A.: Tomographic characterization of a semitransparent-particle packed bed and determination of its thermal radiative properties. J. Heat Transf. 131, 072701 (2009)CrossRef
77.
Zurück zum Zitat Keller, J.B.: Stochastic equation and wave propagation in random media. Proc. Symp. Appl. Math. 13, 145–170 (1964) Keller, J.B.: Stochastic equation and wave propagation in random media. Proc. Symp. Appl. Math. 13, 145–170 (1964)
78.
Zurück zum Zitat Yang, Y.S., Howell, J.R., Klein, D.E.: Radiative heat transfer through a randomly packed bed of spheres by the Monte Carlo method. J. Heat Transf. 105, 325–332 (1983)CrossRef Yang, Y.S., Howell, J.R., Klein, D.E.: Radiative heat transfer through a randomly packed bed of spheres by the Monte Carlo method. J. Heat Transf. 105, 325–332 (1983)CrossRef
79.
Zurück zum Zitat Rousseau, B., De Sousa Meneses, D., Echegut, P., Di Michiel, M., Thovert, J.F.: Prediction of the thermal radiative properties of an X-ray µ-tomographied porous silica glass. Appl. Opt. 46, 4266–4276 (2007)CrossRef Rousseau, B., De Sousa Meneses, D., Echegut, P., Di Michiel, M., Thovert, J.F.: Prediction of the thermal radiative properties of an X-ray µ-tomographied porous silica glass. Appl. Opt. 46, 4266–4276 (2007)CrossRef
Metadaten
Titel
Radiative Transfer in Two-Phase Dispersed Materials
verfasst von
Jaona Randrianalisoa
Rémi Coquard
Dominique Baillis
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8611_2010_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.