Skip to main content
Erschienen in: Neural Computing and Applications 9/2017

08.04.2016 | IBPRIA 2015

Random clustering ferns for multimodal object recognition

verfasst von: M. Villamizar, A. Garrell, A. Sanfeliu, F. Moreno-Noguer

Erschienen in: Neural Computing and Applications | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose an efficient and robust method for the recognition of objects exhibiting multiple intra-class modes, where each one is associated with a particular object appearance. The proposed method, called random clustering ferns, combines synergically a single and real-time classifier, based on the boosted assembling of extremely randomized trees (ferns), with an unsupervised and probabilistic approach in order to recognize efficiently object instances in images and discover simultaneously the most prominent appearance modes of the object through tree-structured visual words. In particular, we use boosted random ferns and probabilistic latent semantic analysis to obtain a discriminative and multimodal classifier that automatically clusters the response of its randomized trees in function of the visual object appearance. The proposed method is validated extensively in synthetic and real experiments, showing that the method is capable of detecting objects with diverse and complex appearance distributions in real-time performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We use interchangeably the terms cluster and mode to refer to a dense part of the object appearance distribution.
 
2
The indicator function \({\mathbb {I}}(e)=1\) if e is true, and 0 otherwise.
 
3
The EER is the point in the precision-recall curve where precision = recall.
 
4
The score distribution (Gaussian function) is calculated using the confidences of the BRFs for all class samples.
 
5
The squared Hellinger distance for two distributions P and Q is defined as: \(H^2(P,Q) = 1 -\sqrt{k_1/k_2}\exp (-0.25k_3/k_2)\), with \(k_1 = 2 \sigma _P \sigma _Q\), \(k_2=\sigma _P^2 + \sigma _Q^2\), and \(k_3 =(\mu _P - \mu _Q)^2\).
 
6
However, it is possible to use human assistance during the learning to improve the visual skills of the classifier [40].
 
8
For this problem, only 300 visual words are activated out of 38,400 words, each one corresponding to a fern output.
 
9
Since the pLSA clustering is automatic, the confusion matrix is not necessarily diagonal. However, here the labels provided by pLSA have been sorted for display purposes.
 
Literatur
1.
Zurück zum Zitat Ali K, Saenko K (2014) Confidence-rated multiple instance boosting for object detection. In: CVPR Ali K, Saenko K (2014) Confidence-rated multiple instance boosting for object detection. In: CVPR
2.
Zurück zum Zitat Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: ICML, pp 55–63 Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: ICML, pp 55–63
3.
Zurück zum Zitat Bosch A, Zisserman A, Muñoz X (2006) Scene classification via pLSA. In: ECCV Bosch A, Zisserman A, Muñoz X (2006) Scene classification via pLSA. In: ECCV
4.
Zurück zum Zitat Bosch A, Zisserman A, Munoz X (2007) Image classification using random forests and ferns. In: ICCV, pp 1–8 Bosch A, Zisserman A, Munoz X (2007) Image classification using random forests and ferns. In: ICCV, pp 1–8
6.
Zurück zum Zitat Criminisi A, Shotton J, Konukoglu E (2012) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis 7(2–3):81–227MATH Criminisi A, Shotton J, Konukoglu E (2012) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis 7(2–3):81–227MATH
7.
Zurück zum Zitat Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Proceedings ECCV workshop statistical learning in computer vision, pp 59–74 Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Proceedings ECCV workshop statistical learning in computer vision, pp 59–74
8.
Zurück zum Zitat Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In : CVPR, pp 886–893 Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In : CVPR, pp 886–893
9.
Zurück zum Zitat Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. In: CVPR Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. In: CVPR
10.
Zurück zum Zitat Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. PAMI 32(9):1627–1645CrossRef Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. PAMI 32(9):1627–1645CrossRef
11.
Zurück zum Zitat Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: CVPR Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: CVPR
12.
Zurück zum Zitat Gall J, Yao A, Razavi N, Van Gool L, Lempitsky V (2011) Hough forests for object detection, tracking, and action recognition. PAMI 33(11):2188–2202CrossRef Gall J, Yao A, Razavi N, Van Gool L, Lempitsky V (2011) Hough forests for object detection, tracking, and action recognition. PAMI 33(11):2188–2202CrossRef
13.
Zurück zum Zitat Garrell A, Villamizar M, Moreno-Noguer F, Sanfeliu A (2013) Proactive behavior of an autonomous mobile robot for human-assisted learning. In: RO-MAN Garrell A, Villamizar M, Moreno-Noguer F, Sanfeliu A (2013) Proactive behavior of an autonomous mobile robot for human-assisted learning. In: RO-MAN
14.
Zurück zum Zitat Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp 580–587 Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp 580–587
15.
Zurück zum Zitat Hall D, Perona P (2014) From categories to individuals in real time: a unified boosting approach. In: CVPR Hall D, Perona P (2014) From categories to individuals in real time: a unified boosting approach. In: CVPR
16.
Zurück zum Zitat Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1–2):177–196CrossRefMATH Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1–2):177–196CrossRefMATH
17.
Zurück zum Zitat Jurie F, Triggs B (2005) Creating efficient codebooks for visual recognition. In: ICCV, pp 604–610 Jurie F, Triggs B (2005) Creating efficient codebooks for visual recognition. In: ICCV, pp 604–610
18.
Zurück zum Zitat Kalal Z, Mikolajczyk K, Matas J (2012) Tracking–learning–detection. PAMI 34(7):1409–1422CrossRef Kalal Z, Mikolajczyk K, Matas J (2012) Tracking–learning–detection. PAMI 34(7):1409–1422CrossRef
19.
Zurück zum Zitat Kim TK, Cipolla R (2009) Mcboost: multiple classifier boosting for perceptual co-clustering of images and visual features. In: NIPS, pp 841–848 Kim TK, Cipolla R (2009) Mcboost: multiple classifier boosting for perceptual co-clustering of images and visual features. In: NIPS, pp 841–848
20.
Zurück zum Zitat Klein DA, Schulz D, Frintrop S, Cremers AB (2010) Adaptive real-time video-tracking for arbitrary objects. In: IROS Klein DA, Schulz D, Frintrop S, Cremers AB (2010) Adaptive real-time video-tracking for arbitrary objects. In: IROS
21.
Zurück zum Zitat Krupka E, Vinnikov A, Klein B, Hillel AB, Freedman D, Stachniak S (2014) Discriminative ferns ensemble for hand pose recognition. In: CVPR, pp 3670–3677 Krupka E, Vinnikov A, Klein B, Hillel AB, Freedman D, Stachniak S (2014) Discriminative ferns ensemble for hand pose recognition. In: CVPR, pp 3670–3677
22.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
23.
Zurück zum Zitat Liu B, Xia Y, Yu PS (2000) Clustering through decision tree construction. In: Proceedings of the ninth ACM international conferenced information and knowledge management, pp 20–29 Liu B, Xia Y, Yu PS (2000) Clustering through decision tree construction. In: Proceedings of the ninth ACM international conferenced information and knowledge management, pp 20–29
24.
Zurück zum Zitat Lowe DG (2004) Distinctive image features from scale-invariant keypoints. IJCV 60(2):91–110CrossRef Lowe DG (2004) Distinctive image features from scale-invariant keypoints. IJCV 60(2):91–110CrossRef
25.
Zurück zum Zitat Malisiewicz T, Gupta A, Efros AA (2011) Ensemble of exemplar-svms for object detection and beyond. In: ICCV, pp 89–96 Malisiewicz T, Gupta A, Efros AA (2011) Ensemble of exemplar-svms for object detection and beyond. In: ICCV, pp 89–96
26.
Zurück zum Zitat Marée R, Geurts P, Piater J, Wehenkel L (2005) Random subwindows for robust image classification. In: CVPR, pp 34–40 Marée R, Geurts P, Piater J, Wehenkel L (2005) Random subwindows for robust image classification. In: CVPR, pp 34–40
27.
Zurück zum Zitat Moosmann F, Nowak E, Jurie F (2008) Randomized clustering forests for image classification. PAMI 30(9):1632–1646CrossRef Moosmann F, Nowak E, Jurie F (2008) Randomized clustering forests for image classification. PAMI 30(9):1632–1646CrossRef
28.
Zurück zum Zitat Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge
29.
Zurück zum Zitat Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: CVPR, pp 2161–2168 Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: CVPR, pp 2161–2168
30.
Zurück zum Zitat Ozuysal M, Calonder M, Lepetit V, Fua P (2010) Fast keypoint recognition using random ferns. PAMI 32(3):448–461CrossRef Ozuysal M, Calonder M, Lepetit V, Fua P (2010) Fast keypoint recognition using random ferns. PAMI 32(3):448–461CrossRef
31.
Zurück zum Zitat Ozuysal M, Lepetit V, Fua P (2009) Pose estimation for category specific multiview object localization. In: CVPR, pp 778–785 Ozuysal M, Lepetit V, Fua P (2009) Pose estimation for category specific multiview object localization. In: CVPR, pp 778–785
32.
Zurück zum Zitat Perbet F, Stenger B, Maki A (2009) Random forest clustering and application to video segmentation. In: BMVC, pp 1–10 Perbet F, Stenger B, Maki A (2009) Random forest clustering and application to video segmentation. In: BMVC, pp 1–10
33.
Zurück zum Zitat Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn 37(3):297–336CrossRefMATH Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn 37(3):297–336CrossRefMATH
34.
Zurück zum Zitat Sharma P, Nevatia R (2014) Multi class boosted random ferns for adapting a generic object detector to a specific video. In: WACV, pp 745–752 Sharma P, Nevatia R (2014) Multi class boosted random ferns for adapting a generic object detector to a specific video. In: WACV, pp 745–752
35.
Zurück zum Zitat Shotton J, Johnson M, Cipolla R (2008) Semantic texton forests for image categorization and segmentation. In: CVPR, pp 1–8 Shotton J, Johnson M, Cipolla R (2008) Semantic texton forests for image categorization and segmentation. In: CVPR, pp 1–8
36.
Zurück zum Zitat Sivic J, Russell B, Efros A, Zisserman A, Freeman WT (2005) Discovering objects and their location in images. In: ICCV Sivic J, Russell B, Efros A, Zisserman A, Freeman WT (2005) Discovering objects and their location in images. In: ICCV
37.
Zurück zum Zitat Torralba A, Murphy KP, Freeman WT (2007) Sharing visual features for multiclass and multiview object detection. PAMI 29(5):854–869CrossRef Torralba A, Murphy KP, Freeman WT (2007) Sharing visual features for multiclass and multiview object detection. PAMI 29(5):854–869CrossRef
38.
Zurück zum Zitat Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(85):2579–2605MATH Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(85):2579–2605MATH
39.
Zurück zum Zitat Villamizar M, Andrade-Cetto J, Sanfeliu A, Moreno-Noguer F (2012) Bootstrapping boosted random ferns for discriminative and efficient object classification. Pattern Recognit 45(9):3141–3153CrossRef Villamizar M, Andrade-Cetto J, Sanfeliu A, Moreno-Noguer F (2012) Bootstrapping boosted random ferns for discriminative and efficient object classification. Pattern Recognit 45(9):3141–3153CrossRef
40.
Zurück zum Zitat Villamizar M, Garrell A, Sanfeliu A, Moreno-Noguer F (2012) Online human-assisted learning using random ferns. In: ICPR, pp 2821–2824 Villamizar M, Garrell A, Sanfeliu A, Moreno-Noguer F (2012) Online human-assisted learning using random ferns. In: ICPR, pp 2821–2824
41.
Zurück zum Zitat Villamizar M, Garrell A, Sanfeliu A, Moreno-Noguer F (2015) Modeling robot’s world with minimal effort. In: ICRA Villamizar M, Garrell A, Sanfeliu A, Moreno-Noguer F (2015) Modeling robot’s world with minimal effort. In: ICRA
42.
Zurück zum Zitat Villamizar M, Garrell A, Sanfeliu A, Moreno-Noguer F (2015) Multimodal object recognition using random clustering trees. In: IBPRIA Villamizar M, Garrell A, Sanfeliu A, Moreno-Noguer F (2015) Multimodal object recognition using random clustering trees. In: IBPRIA
43.
Zurück zum Zitat Villamizar M, Grabner H, Andrade-Cetto J, Sanfeliu A, Van Gool L, Moreno-Noguer F (2011) Efficient 3d object detection using multiple pose-specific classifiers. In: BMVC Villamizar M, Grabner H, Andrade-Cetto J, Sanfeliu A, Van Gool L, Moreno-Noguer F (2011) Efficient 3d object detection using multiple pose-specific classifiers. In: BMVC
44.
Zurück zum Zitat Villamizar M, Moreno-Noguer F, Andrade-Cetto J, Sanfeliu A (2010) Efficient rotation invariant object detection using boosted random ferns. In: CVPR, pp 1038–1045 Villamizar M, Moreno-Noguer F, Andrade-Cetto J, Sanfeliu A (2010) Efficient rotation invariant object detection using boosted random ferns. In: CVPR, pp 1038–1045
45.
Zurück zum Zitat Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR, pp l–511 Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR, pp l–511
46.
Zurück zum Zitat Wu B, Nevatia R (2007) Cluster boosted tree classifier for multi-view, multi-pose object detection. In: ICCV, pp 1–8 Wu B, Nevatia R (2007) Cluster boosted tree classifier for multi-view, multi-pose object detection. In: ICCV, pp 1–8
47.
Zurück zum Zitat Yan J, Lei Z, Wen L, Li SZ (2014) The fastest deformable part model for object detection. In: CVPR, pp 2497–2504 Yan J, Lei Z, Wen L, Li SZ (2014) The fastest deformable part model for object detection. In: CVPR, pp 2497–2504
Metadaten
Titel
Random clustering ferns for multimodal object recognition
verfasst von
M. Villamizar
A. Garrell
A. Sanfeliu
F. Moreno-Noguer
Publikationsdatum
08.04.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2284-x

Weitere Artikel der Ausgabe 9/2017

Neural Computing and Applications 9/2017 Zur Ausgabe

Premium Partner