Skip to main content
Erschienen in: Cognitive Computation 5/2019

18.07.2019

Rank-Based Gravitational Search Algorithm: a Novel Nature-Inspired Optimization Algorithm for Wireless Sensor Networks Clustering

verfasst von: Sepehr Ebrahimi Mood, Mohammad Masoud Javidi

Erschienen in: Cognitive Computation | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, wireless sensor networks (WSNs) have had many real-world applications; they have thus become one of the most interesting areas of research. The network lifetime is a major challenge researched on this topic with clustering protocols being the most popular method used to deal with this problem. Determination of the cluster heads is the main issue in this method. Cognitively inspired swarm intelligence algorithms have attracted wide attention in the researh area of clustering since it can give machines the ability to self-learn and achieve better performance. This paper presents a novel nature-inspired optimization algorithm based on the gravitational search algorithm (GSA) and uses this algorithm to determine the best cluster heads. First, the authors propose a rank-based definition for mass calculation in GSA. They also introduce a fuzzy logic controller (FLC) to compute the parameter of this method automatically. Accordingly, this algorithm is user independent. Then, the proposed algorithm is used in an energy efficient clustering protocol for WSNs. The proposed search algorithm is evaluated in terms of some standard test functions. The results suggest that this method has a better performance than other state-of-the-art optimization algorithms. In addition, simulation results indicate that the proposed clustering method outperforms other popular clustering method for WSNs. The proposed method is a novel way to control the exploration and exploitation abilities of the algorithm with simplicity in implementation; therefore, it has a good performance in some real-world applications such as energy efficient clustering in WSNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tang W, Wu Q. Biologically inspired optimization: a review. Trans Inst Meas Control. 2009;31(6):495–515.CrossRef Tang W, Wu Q. Biologically inspired optimization: a review. Trans Inst Meas Control. 2009;31(6):495–515.CrossRef
2.
Zurück zum Zitat Molina D, LaTorre A, Herrera F. An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cogn Comput. 2018;10:517–44.CrossRef Molina D, LaTorre A, Herrera F. An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cogn Comput. 2018;10:517–44.CrossRef
3.
Zurück zum Zitat Al-Rifaie MM, Bishop JM, Caines S. Creativity and autonomy in swarm intelligence systems. Cogn Comput. 2012;4(3):320–31.CrossRef Al-Rifaie MM, Bishop JM, Caines S. Creativity and autonomy in swarm intelligence systems. Cogn Comput. 2012;4(3):320–31.CrossRef
4.
Zurück zum Zitat Bishop JM, Erden YJ. Computational creativity, intelligence and autonomy. Cogn Comput. 2012;4(3):209–11.CrossRef Bishop JM, Erden YJ. Computational creativity, intelligence and autonomy. Cogn Comput. 2012;4(3):209–11.CrossRef
5.
Zurück zum Zitat Song B, Wang Z, Zou L. On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cogn Comput. 2017;9(1):5–17.CrossRef Song B, Wang Z, Zou L. On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cogn Comput. 2017;9(1):5–17.CrossRef
6.
Zurück zum Zitat Kim S-S, McLoone S, Byeon JH, Lee S, Liu H. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017;9(2):207–24.CrossRef Kim S-S, McLoone S, Byeon JH, Lee S, Liu H. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017;9(2):207–24.CrossRef
7.
Zurück zum Zitat Tang Q, Shen Y, Hu C, Zeng J, Gong W. Swarm intelligence: based cooperation optimization of multi-modal functions. Cogn Comput. 2013;5(1):48–55.CrossRef Tang Q, Shen Y, Hu C, Zeng J, Gong W. Swarm intelligence: based cooperation optimization of multi-modal functions. Cogn Comput. 2013;5(1):48–55.CrossRef
8.
Zurück zum Zitat Siddique N, Adeli H. Nature-inspired chemical reaction optimisation algorithms. Cogn Comput. 2017;9(4):411–22.CrossRef Siddique N, Adeli H. Nature-inspired chemical reaction optimisation algorithms. Cogn Comput. 2017;9(4):411–22.CrossRef
9.
Zurück zum Zitat Chakraborty S, Dey N, Samanta S, Ashour AS, Barna C, Balas MM. Optimization of non-rigid demons registration using cuckoo search algorithm. Cogn Comput. 2017;9(6):817–26.CrossRef Chakraborty S, Dey N, Samanta S, Ashour AS, Barna C, Balas MM. Optimization of non-rigid demons registration using cuckoo search algorithm. Cogn Comput. 2017;9(6):817–26.CrossRef
10.
Zurück zum Zitat Zhang A et al. Clustering of remote sensing imagery using a social recognition-based multi-objective gravitational search algorithm. Cogn Comput, 2018: 1–10. Zhang A et al. Clustering of remote sensing imagery using a social recognition-based multi-objective gravitational search algorithm. Cogn Comput, 2018: 1–10.
11.
Zurück zum Zitat Nisar S et al. Cognitively inspired feature extraction and speech recognition for automated hearing loss testing. Cogn Comput, 2019: 1–14. Nisar S et al. Cognitively inspired feature extraction and speech recognition for automated hearing loss testing. Cogn Comput, 2019: 1–14.
12.
Zurück zum Zitat Ghanem WA, Jantan A. A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptrons. Cogn Comput. 2018;10(6):1096–134.CrossRef Ghanem WA, Jantan A. A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptrons. Cogn Comput. 2018;10(6):1096–134.CrossRef
13.
Zurück zum Zitat Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.CrossRef Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.CrossRef
14.
Zurück zum Zitat Rashedi E, Nezamabadi-Pour H, Saryazdi S. BGSA: binary gravitational search algorithm. Nat Comput. 2010;9(3):727–45.CrossRef Rashedi E, Nezamabadi-Pour H, Saryazdi S. BGSA: binary gravitational search algorithm. Nat Comput. 2010;9(3):727–45.CrossRef
15.
Zurück zum Zitat Rashedi E, Rashedi E, Nezamabadi-pour H. A comprehensive survey on gravitational search algorithm. Swarm and evolutionary computation, 2018 Rashedi E, Rashedi E, Nezamabadi-pour H. A comprehensive survey on gravitational search algorithm. Swarm and evolutionary computation, 2018
16.
Zurück zum Zitat Shams M, Rashedi E, Hakimi A. Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier. Appl Math Comput. 2015;258:436–53. Shams M, Rashedi E, Hakimi A. Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier. Appl Math Comput. 2015;258:436–53.
17.
Zurück zum Zitat Doraghinejad M, Nezamabadi-pour H. Black hole: a new operator for gravitational search algorithm. Int J Comput Intell Syst. 2014;7(5):809–26.CrossRef Doraghinejad M, Nezamabadi-pour H. Black hole: a new operator for gravitational search algorithm. Int J Comput Intell Syst. 2014;7(5):809–26.CrossRef
18.
Zurück zum Zitat Kherabadi HA, Mood SE, Javidi MM. Mutation: a new operator in gravitational search algorithm using fuzzy controller. Cybernet Inform Technol. 2017;17(1):72–86.CrossRef Kherabadi HA, Mood SE, Javidi MM. Mutation: a new operator in gravitational search algorithm using fuzzy controller. Cybernet Inform Technol. 2017;17(1):72–86.CrossRef
19.
Zurück zum Zitat Valdez F, Melin P, Castillo O. A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Syst Appl. 2014;41(14):6459–66.CrossRef Valdez F, Melin P, Castillo O. A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Syst Appl. 2014;41(14):6459–66.CrossRef
20.
Zurück zum Zitat Valdez F, Melin P, Castillo O. An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl Soft Comput. 2011;11(2):2625–32.CrossRef Valdez F, Melin P, Castillo O. An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl Soft Comput. 2011;11(2):2625–32.CrossRef
21.
Zurück zum Zitat Chang B-M, Tsai H-H, Shih J-S. Using fuzzy logic and particle swarm optimization to design a decision-based filter for cDNA microarray image restoration. Eng Appl Artif Intell. 2014;36:12–26.CrossRef Chang B-M, Tsai H-H, Shih J-S. Using fuzzy logic and particle swarm optimization to design a decision-based filter for cDNA microarray image restoration. Eng Appl Artif Intell. 2014;36:12–26.CrossRef
22.
Zurück zum Zitat Mood S, Rasshedi E, Javidi M. New functions for mass calculation in gravitational search algorithm. J Comput Sec. 2016. 2(3). Mood S, Rasshedi E, Javidi M. New functions for mass calculation in gravitational search algorithm. J Comput Sec. 2016. 2(3).
23.
Zurück zum Zitat Modieginyane KM, Letswamotse BB, Malekian R, Abu-Mahfouz AM. Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers & Electrical Engineering. 2018 Feb 1;66:274-87. Modieginyane KM, Letswamotse BB, Malekian R, Abu-Mahfouz AM. Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers & Electrical Engineering. 2018 Feb 1;66:274-87.
24.
Zurück zum Zitat Nie F, Zeng Z, Tsang IW, Xu D, Zhang C. Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw. 2011;22(11):1796–808.PubMedCrossRef Nie F, Zeng Z, Tsang IW, Xu D, Zhang C. Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw. 2011;22(11):1796–808.PubMedCrossRef
25.
Zurück zum Zitat Heinzelman WR, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on. 2000. IEEE. Heinzelman WR, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on. 2000. IEEE.
26.
Zurück zum Zitat Muruganathan SD, Ma DCF, Bhasin RI, Fapojuwo AO. A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Commun Mag. 2005;43(3):S8–13.CrossRef Muruganathan SD, Ma DCF, Bhasin RI, Fapojuwo AO. A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Commun Mag. 2005;43(3):S8–13.CrossRef
27.
Zurück zum Zitat Pradhan N, Sharma K, Singh VK. A survey on hierarchical clustering algorithm for wireless sensor networks. Energy. 2016;134(4):30–5. Pradhan N, Sharma K, Singh VK. A survey on hierarchical clustering algorithm for wireless sensor networks. Energy. 2016;134(4):30–5.
28.
Zurück zum Zitat Curry RM, Smith JC. A survey of optimization algorithms for wireless sensor network lifetime maximization. Comput Ind Eng. 2016;101:145–66.CrossRef Curry RM, Smith JC. A survey of optimization algorithms for wireless sensor network lifetime maximization. Comput Ind Eng. 2016;101:145–66.CrossRef
29.
Zurück zum Zitat Latiff NA, Tsimenidis CC, Sharif BS. Energy-aware clustering for wireless sensor networks using particle swarm optimization. Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on. 2007. IEEE. Latiff NA, Tsimenidis CC, Sharif BS. Energy-aware clustering for wireless sensor networks using particle swarm optimization. Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on. 2007. IEEE.
30.
Zurück zum Zitat Mirhosseini M, Barani F, Nezamabadi-pour H. QQIGSA: a quadrivalent quantum-inspired GSA and its application in optimal adaptive design of wireless sensor networks. J Netw Comput Appl. 2017;78:231–41.CrossRef Mirhosseini M, Barani F, Nezamabadi-pour H. QQIGSA: a quadrivalent quantum-inspired GSA and its application in optimal adaptive design of wireless sensor networks. J Netw Comput Appl. 2017;78:231–41.CrossRef
31.
Zurück zum Zitat Bäck T, Hoffmeister F. Extended selection mechanisms in genetic algorithms. 1991. Bäck T, Hoffmeister F. Extended selection mechanisms in genetic algorithms. 1991.
32.
Zurück zum Zitat Blickle T, Thiele L. A comparison of selection schemes used in genetic algorithms. 1995, TIK-report. Blickle T, Thiele L. A comparison of selection schemes used in genetic algorithms. 1995, TIK-report.
33.
Zurück zum Zitat Whitley LD. The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best. in ICGA. 1989. Fairfax, VA. Whitley LD. The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best. in ICGA. 1989. Fairfax, VA.
34.
Zurück zum Zitat Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans Evol Comput. 1999;3(2):82–102.CrossRef Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans Evol Comput. 1999;3(2):82–102.CrossRef
35.
Zurück zum Zitat Sastry K, Goldberg D, Kendall G. Genetic algorithms, in Search methodologies. 2005, Springer. 97–125. Sastry K, Goldberg D, Kendall G. Genetic algorithms, in Search methodologies. 2005, Springer. 97–125.
36.
Zurück zum Zitat Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32(200):675–701.CrossRef Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32(200):675–701.CrossRef
37.
Zurück zum Zitat García S, Fernández A, Luengo J, Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci. 2010;180(10):2044–64.CrossRef García S, Fernández A, Luengo J, Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci. 2010;180(10):2044–64.CrossRef
38.
Zurück zum Zitat Abdi, H., Binomial distribution: binomial and sign tests. Encyclopedia of measurement and statistics, 2007. 1. Abdi, H., Binomial distribution: binomial and sign tests. Encyclopedia of measurement and statistics, 2007. 1.
39.
Zurück zum Zitat Zhang J, Sanderson AC. JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput. 2009;13(5):945–58.CrossRef Zhang J, Sanderson AC. JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput. 2009;13(5):945–58.CrossRef
40.
Zurück zum Zitat Shi Y, Eberhart R. A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. 1998. IEEE. Shi Y, Eberhart R. A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. 1998. IEEE.
41.
Zurück zum Zitat Tsai H-C, Tyan YY, Wu YW, Lin YH. Gravitational particle swarm. Appl Math Comput. 2013;219(17):9106–17. Tsai H-C, Tyan YY, Wu YW, Lin YH. Gravitational particle swarm. Appl Math Comput. 2013;219(17):9106–17.
42.
Zurück zum Zitat Sarafrazi S, Nezamabadi-Pour H, Saryazdi S. Disruption: a new operator in gravitational search algorithm. Scientia Iranica. 2011;18(3):539–48.CrossRef Sarafrazi S, Nezamabadi-Pour H, Saryazdi S. Disruption: a new operator in gravitational search algorithm. Scientia Iranica. 2011;18(3):539–48.CrossRef
43.
Zurück zum Zitat Li X, Engelbrecht A, Epitropakis MG. Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Tech. Rep, 2013. Li X, Engelbrecht A, Epitropakis MG. Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Tech. Rep, 2013.
44.
Zurück zum Zitat Liang J et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 2013. 201212: 3–18. Liang J et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 2013. 201212: 3–18.
45.
Zurück zum Zitat Rodríguez-Fdez I et al. STAC: a web platform for the comparison of algorithms using statistical tests. In Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on. 2015. IEEE. Rodríguez-Fdez I et al. STAC: a web platform for the comparison of algorithms using statistical tests. In Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on. 2015. IEEE.
46.
Zurück zum Zitat An J, Kang Q, Wang L, Wu Q. Mussels wandering optimization: an ecologically inspired algorithm for global optimization. Cogn Comput. 2013;5(2):188–99.CrossRef An J, Kang Q, Wang L, Wu Q. Mussels wandering optimization: an ecologically inspired algorithm for global optimization. Cogn Comput. 2013;5(2):188–99.CrossRef
47.
Zurück zum Zitat Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth International Symposium on. 1995. IEEE. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth International Symposium on. 1995. IEEE.
48.
Zurück zum Zitat He S, Wu QH, Saunders J. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. 2009;13(5):973–90.CrossRef He S, Wu QH, Saunders J. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. 2009;13(5):973–90.CrossRef
49.
Zurück zum Zitat Kumar S. Energy efficient clustering algorithm for WSN. In Signal Processing and Integrated Networks (SPIN), 2015 2nd International Conference on. 2015. IEEE. Kumar S. Energy efficient clustering algorithm for WSN. In Signal Processing and Integrated Networks (SPIN), 2015 2nd International Conference on. 2015. IEEE.
50.
Zurück zum Zitat Mekonnen MT, Rao KN. Cluster optimization based on metaheuristic algorithms in wireless sensor networks. Wirel Pers Commun. 2017;97(2):2633–47.CrossRef Mekonnen MT, Rao KN. Cluster optimization based on metaheuristic algorithms in wireless sensor networks. Wirel Pers Commun. 2017;97(2):2633–47.CrossRef
51.
Zurück zum Zitat RejinaParvin J, Vasanthanayaki C. Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensors J. 2015;15(8):4264–74.CrossRef RejinaParvin J, Vasanthanayaki C. Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensors J. 2015;15(8):4264–74.CrossRef
52.
Zurück zum Zitat Kennedy J. Particle swarm optimization. Encyclopedia of machine learning. 2011, Springer. 760–766. Kennedy J. Particle swarm optimization. Encyclopedia of machine learning. 2011, Springer. 760–766.
Metadaten
Titel
Rank-Based Gravitational Search Algorithm: a Novel Nature-Inspired Optimization Algorithm for Wireless Sensor Networks Clustering
verfasst von
Sepehr Ebrahimi Mood
Mohammad Masoud Javidi
Publikationsdatum
18.07.2019
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2019
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09665-9

Weitere Artikel der Ausgabe 5/2019

Cognitive Computation 5/2019 Zur Ausgabe