Skip to main content
Erschienen in: Cognitive Computation 5/2019

23.07.2019

Multi-target Interactive Neural Network for Automated Segmentation of the Hippocampus in Magnetic Resonance Imaging

verfasst von: Beibei Hou, Guixia Kang, Ningbo Zhang, Kui Liu

Erschienen in: Cognitive Computation | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hippocampus has been recognized as an important biomarker for the diagnosis and assessment of neurological diseases. Convenient and accurate automated segmentation of the hippocampus facilitates the analysis of large-scale neuroimaging studies. This work describes a novel technique for hippocampus segmentation in magnetic resonance images, in which interactive neural network (Inter-Net) is based on 3D convolutional operations. Inter-Net achieves the interaction through two aspects: one is the compartments, which builds an exponential ensemble network that integrates numerous short networks together when forward propagation. The other is the pathways, which realizes inter-connection between feature extraction and restoration. In addition, a multi-target architecture is proposed by designing multiple objective functions in terms of evaluation index, information theory, and data distribution. The proposed architecture is validated in fivefold cross-validation on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, where the mean Dice similarity indices of 0.919 (± 0.023) and precision of 0.926 (± 0.032) for the hippocampus segmentation. The running time is approximately 42.1 s from reading the image to outputting the segmentation result in our computer configuration. We compare the experimental results of a variety of methods to prove the effectiveness of the Inter-Net and contrast integrated architectures with different objective functions to illustrate the robustness of the fusion. The proposed framework is general and can be easily extended to numerous tissue segmentation tasks while it is tailored for the hippocampus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Czepielewski LS, Wang L, Gama CS, et al. The relationship of intellectual functioning and cognitive performance to brain structure in schizophrenia. Schizophr Bull. 2017;43(2):355–64.PubMed Czepielewski LS, Wang L, Gama CS, et al. The relationship of intellectual functioning and cognitive performance to brain structure in schizophrenia. Schizophr Bull. 2017;43(2):355–64.PubMed
2.
Zurück zum Zitat Steiger VR, Brühl AB, Weidt S, Delsignore A, Rufer M, Jäncke L, et al. Pattern of structural brain changes in social anxiety disorder after cognitive behavioral group therapy: a longitudinal multimodal MRI study. Mol Psychiatry. 2017;22(8):1164–71.PubMed Steiger VR, Brühl AB, Weidt S, Delsignore A, Rufer M, Jäncke L, et al. Pattern of structural brain changes in social anxiety disorder after cognitive behavioral group therapy: a longitudinal multimodal MRI study. Mol Psychiatry. 2017;22(8):1164–71.PubMed
3.
Zurück zum Zitat den Heijer T, van der Lijn F, Vernooij MW, et al. Structural and diffusion MRI measures of the hippocampus and memory performance. Neuroimage. 2012;63(4):1782–9. den Heijer T, van der Lijn F, Vernooij MW, et al. Structural and diffusion MRI measures of the hippocampus and memory performance. Neuroimage. 2012;63(4):1782–9.
4.
Zurück zum Zitat Wixted JT, Squire LR. The medial temporal lobe and the attributes of memory. Trends Cogn Sci. 2011;15(5):210–7.PubMedPubMedCentral Wixted JT, Squire LR. The medial temporal lobe and the attributes of memory. Trends Cogn Sci. 2011;15(5):210–7.PubMedPubMedCentral
5.
Zurück zum Zitat Jeneson A, Squire LR. Working memory, long-term memory, and medial temporal lobe function. Learn Mem. 2012;19(1):15–25.PubMedPubMedCentral Jeneson A, Squire LR. Working memory, long-term memory, and medial temporal lobe function. Learn Mem. 2012;19(1):15–25.PubMedPubMedCentral
6.
Zurück zum Zitat Bobinski M, Wegiel J, Wisniewski HM, Tarnawski M, Bobinski M, Reisberg B, et al. Neurofibrillary pathology—correlation with hippocampal formation atrophy in Alzheimer disease. Neurobiol Aging. 1996;17(6):909–19.PubMed Bobinski M, Wegiel J, Wisniewski HM, Tarnawski M, Bobinski M, Reisberg B, et al. Neurofibrillary pathology—correlation with hippocampal formation atrophy in Alzheimer disease. Neurobiol Aging. 1996;17(6):909–19.PubMed
7.
Zurück zum Zitat Geuze E, Vermetten E, Bremner JD. MR-based in vivo hippocampal volumetrics: 1. Review of methodologies currently employed. Mol Psychiatry. 2005;10(2):147–59.PubMed Geuze E, Vermetten E, Bremner JD. MR-based in vivo hippocampal volumetrics: 1. Review of methodologies currently employed. Mol Psychiatry. 2005;10(2):147–59.PubMed
8.
Zurück zum Zitat Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. A structural MRI study of human brain development from birth to 2 years. J Neurosci. 2008;28(47):12176–82.PubMedPubMedCentral Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. A structural MRI study of human brain development from birth to 2 years. J Neurosci. 2008;28(47):12176–82.PubMedPubMedCentral
9.
Zurück zum Zitat Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292–303.PubMedPubMedCentral Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292–303.PubMedPubMedCentral
10.
Zurück zum Zitat Jacobsen C, Hagemeier J, Myhr KM, Nyland H, Lode K, Bergsland N, et al. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J Neurol Neurosurg Psychiatry. 2014;85(10):1109–15.PubMed Jacobsen C, Hagemeier J, Myhr KM, Nyland H, Lode K, Bergsland N, et al. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J Neurol Neurosurg Psychiatry. 2014;85(10):1109–15.PubMed
11.
Zurück zum Zitat Andreasen NC, Liu D, Ziebell S, Vora A, Ho BC. Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatr. 2013;170(6):609–15.PubMed Andreasen NC, Liu D, Ziebell S, Vora A, Ho BC. Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatr. 2013;170(6):609–15.PubMed
12.
Zurück zum Zitat Scheenstra AEH, van de Ven RCG, van der Weerd L, van den Maagdenberg AM, Dijkstra J, Reiber JH. Automated segmentation of in vivo and ex vivo mouse brain magnetic resonance images. Mol Imaging. 2009;8(1):35–44.PubMed Scheenstra AEH, van de Ven RCG, van der Weerd L, van den Maagdenberg AM, Dijkstra J, Reiber JH. Automated segmentation of in vivo and ex vivo mouse brain magnetic resonance images. Mol Imaging. 2009;8(1):35–44.PubMed
13.
Zurück zum Zitat Carmichael OT, Aizenstein HA, Davis SW, Becker JT, Thompson PM, Meltzer CC, et al. Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. Neuroimage. 2005;27(4):979–90.PubMedPubMedCentral Carmichael OT, Aizenstein HA, Davis SW, Becker JT, Thompson PM, Meltzer CC, et al. Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. Neuroimage. 2005;27(4):979–90.PubMedPubMedCentral
14.
Zurück zum Zitat Chupin M, Mukuna-Bantumbakulu AR, Hasboun D, Bardinet E, Baillet S, Kinkingnéhun S, et al. Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer’s disease. Neuroimage. 2007;34(3):996–1019.PubMed Chupin M, Mukuna-Bantumbakulu AR, Hasboun D, Bardinet E, Baillet S, Kinkingnéhun S, et al. Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer’s disease. Neuroimage. 2007;34(3):996–1019.PubMed
15.
Zurück zum Zitat Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.
16.
Zurück zum Zitat Zandifar A, Fonov V, Coupé P, Pruessner J, Collins DL, Alzheimer’s Disease Neuroimaging Initiative. A comparison of accurate automatic hippocampal segmentation methods. NeuroImage. 2017;155:383–93.PubMed Zandifar A, Fonov V, Coupé P, Pruessner J, Collins DL, Alzheimer’s Disease Neuroimaging Initiative. A comparison of accurate automatic hippocampal segmentation methods. NeuroImage. 2017;155:383–93.PubMed
17.
Zurück zum Zitat Hosseini MP, Nazem Zadeh MR, Pompili D, Jafari-Khouzani K, Elisevich K, Soleanian-Zadeh H. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients. Med Phys. 2016;43(1):538–53.PubMedPubMedCentral Hosseini MP, Nazem Zadeh MR, Pompili D, Jafari-Khouzani K, Elisevich K, Soleanian-Zadeh H. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients. Med Phys. 2016;43(1):538–53.PubMedPubMedCentral
18.
Zurück zum Zitat Dill V, Franco AR, Pinho MS. Automated methods for hippocampus segmentation: the evolution and a review of the state of the art. Neuroinformatics. 2015;13(2):133–50.PubMed Dill V, Franco AR, Pinho MS. Automated methods for hippocampus segmentation: the evolution and a review of the state of the art. Neuroinformatics. 2015;13(2):133–50.PubMed
19.
Zurück zum Zitat Birenbaum A, Greenspan H. Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell. 2017;65:111–8. Birenbaum A, Greenspan H. Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell. 2017;65:111–8.
20.
Zurück zum Zitat Kwak K, Yoon U, Lee DK, Kim GH, Seo SW, Na DL. Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening. Magn Reson Imaging. 2013;31(7):1190–6.PubMed Kwak K, Yoon U, Lee DK, Kim GH, Seo SW, Na DL. Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening. Magn Reson Imaging. 2013;31(7):1190–6.PubMed
21.
Zurück zum Zitat Pipitone J, Park MTM, Winterburn J, Lett TA, Lerch JP, Pruessner JC, et al. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage. 2014;101:494–512.PubMed Pipitone J, Park MTM, Winterburn J, Lett TA, Lerch JP, Pruessner JC, et al. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage. 2014;101:494–512.PubMed
22.
Zurück zum Zitat Sabuncu MR, Yeo BTT, Van Leemput K, Fischl B, Golland P. A generative model for image segmentation based on label fusion. IEEE Trans Med Imaging. 2010;29(10):1714–29.PubMedPubMedCentral Sabuncu MR, Yeo BTT, Van Leemput K, Fischl B, Golland P. A generative model for image segmentation based on label fusion. IEEE Trans Med Imaging. 2010;29(10):1714–29.PubMedPubMedCentral
23.
Zurück zum Zitat Van der Lijn F, De Bruijne M, Klein S, Den Heijer T, Hoogendam YY, Van der Lugt A, et al. Automated brain structure segmentation based on atlas registration and appearance models. IEEE Trans Med Imaging. 2012;31(2):276–86.PubMed Van der Lijn F, De Bruijne M, Klein S, Den Heijer T, Hoogendam YY, Van der Lugt A, et al. Automated brain structure segmentation based on atlas registration and appearance models. IEEE Trans Med Imaging. 2012;31(2):276–86.PubMed
24.
Zurück zum Zitat Kim M, Wu G, Li W, Wang L, Son YD, Cho ZH, et al. Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models. NeuroImage. 2013;83:335–45.PubMedPubMedCentral Kim M, Wu G, Li W, Wang L, Son YD, Cho ZH, et al. Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models. NeuroImage. 2013;83:335–45.PubMedPubMedCentral
25.
Zurück zum Zitat Hao Y, Wang T, Zhang X, Duan Y, Yu C, Jiang T, et al. Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation. Hum Brain Mapp. 2014;35(6):2674–97.PubMed Hao Y, Wang T, Zhang X, Duan Y, Yu C, Jiang T, et al. Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation. Hum Brain Mapp. 2014;35(6):2674–97.PubMed
26.
Zurück zum Zitat Moghaddam MJ, Soltanian-Zadeh H. Automatic segmentation of brain structures using geometric moment invariants and artificial neural networks//International conference on Information Processing in Medical Imaging. Berlin: Springer; 2009. p. 326–37. Moghaddam MJ, Soltanian-Zadeh H. Automatic segmentation of brain structures using geometric moment invariants and artificial neural networks//International conference on Information Processing in Medical Imaging. Berlin: Springer; 2009. p. 326–37.
27.
Zurück zum Zitat Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. pp. 3431–3440. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. pp. 3431–3440.
28.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2015. p. 234–41. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2015. p. 234–41.
29.
Zurück zum Zitat Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.PubMed Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.PubMed
30.
Zurück zum Zitat Liu X, Deng Z. Segmentation of drivable road using deep fully convolutional residual network with pyramid pooling. Cogn Comput. 2017:1–10. Liu X, Deng Z. Segmentation of drivable road using deep fully convolutional residual network with pyramid pooling. Cogn Comput. 2017:1–10.
31.
Zurück zum Zitat Liu W, Tao D. Multiview Hessian regularization for image annotation. IEEE Trans Image Process. 2013;22(7):2676–87.PubMed Liu W, Tao D. Multiview Hessian regularization for image annotation. IEEE Trans Image Process. 2013;22(7):2676–87.PubMed
32.
Zurück zum Zitat Liu W, Yang X, Tao D, Cheng J, Tang Y. Multiview dimension reduction via Hessian multiset canonical correlations. Information Fusion. 2018;41:119–28. Liu W, Yang X, Tao D, Cheng J, Tang Y. Multiview dimension reduction via Hessian multiset canonical correlations. Information Fusion. 2018;41:119–28.
33.
Zurück zum Zitat Yuan Y, Xun G, Ma F, et al. Muvan: a multi-view attention network for multivariate temporal data. 2018 IEEE International Conference on Data Mining (ICDM). Piscataway: IEEE; 2018. p. 717–26. Yuan Y, Xun G, Ma F, et al. Muvan: a multi-view attention network for multivariate temporal data. 2018 IEEE International Conference on Data Mining (ICDM). Piscataway: IEEE; 2018. p. 717–26.
34.
Zurück zum Zitat Kang G, Liu K, Hou B, Zhang N. 3D multi-view convolutional neural networks for lung nodule classification. PloS one, Public Library of Science. 2017;12(11):e0188290. Kang G, Liu K, Hou B, Zhang N. 3D multi-view convolutional neural networks for lung nodule classification. PloS one, Public Library of Science. 2017;12(11):e0188290.
35.
Zurück zum Zitat Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35(5):1160–9.PubMed Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35(5):1160–9.PubMed
37.
Zurück zum Zitat Chen Y, Shi B, Wang Z, Zhang P, Smith CD, Liu J. Hippocampus segmentation through multi-view ensemble ConvNets[C]//Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on. IEEE, 2017. pp. 192–196. Chen Y, Shi B, Wang Z, Zhang P, Smith CD, Liu J. Hippocampus segmentation through multi-view ensemble ConvNets[C]//Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on. IEEE, 2017. pp. 192–196.
38.
Zurück zum Zitat Jack CR Jr, Bernstein MA, Fox NC, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27(4):685–91.PubMedPubMedCentral Jack CR Jr, Bernstein MA, Fox NC, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27(4):685–91.PubMedPubMedCentral
39.
Zurück zum Zitat Wen G, Hou Z, Li H, Li D, Jiang L, Xun E. Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn Comput. 2017;9(5):597–610. Wen G, Hou Z, Li H, Li D, Jiang L, Xun E. Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn Comput. 2017;9(5):597–610.
40.
Zurück zum Zitat Brosch T, Tang LY, Yoo Y, Li DK. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging. 2016;35(5):1229–39.PubMed Brosch T, Tang LY, Yoo Y, Li DK. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging. 2016;35(5):1229–39.PubMed
41.
Zurück zum Zitat Veit A, Wilber M, Belongie S. Residual networks are exponential ensembles of relatively shallow networks. arXiv preprint. arXiv preprint arXiv:1605.06431. 2016;1(2):3. Veit A, Wilber M, Belongie S. Residual networks are exponential ensembles of relatively shallow networks. arXiv preprint. arXiv preprint arXiv:1605.06431. 2016;1(2):3.
42.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. European Conference on Computer Vision. Cham: Springer; 2016. p. 630–45. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. European Conference on Computer Vision. Cham: Springer; 2016. p. 630–45.
43.
Zurück zum Zitat Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th international conference on machine learning (ICML-10). 2010. pp. 807–814. Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th international conference on machine learning (ICML-10). 2010. pp. 807–814.
44.
Zurück zum Zitat Zeiler MD. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701. 2012. Zeiler MD. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701. 2012.
45.
Zurück zum Zitat Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014.
46.
Zurück zum Zitat Dauphin Y, de Vries H, Bengio Y. Equilibrated adaptive learning rates for non-convex optimization[C]. Adv Neural Inf Proces Syst. 2015:1504–12. Dauphin Y, de Vries H, Bengio Y. Equilibrated adaptive learning rates for non-convex optimization[C]. Adv Neural Inf Proces Syst. 2015:1504–12.
47.
Zurück zum Zitat Srivastava N, Hinton G, Krizhevsky A, Stuskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58. Srivastava N, Hinton G, Krizhevsky A, Stuskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58.
48.
Zurück zum Zitat Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014.
49.
Zurück zum Zitat Zeng D, Zhao F, Shen W, Ge S. Compressing and accelerating neural network for facial point localization. Cogn Comput. 2017:1–9. Zeng D, Zhao F, Shen W, Ge S. Compressing and accelerating neural network for facial point localization. Cogn Comput. 2017:1–9.
50.
Zurück zum Zitat Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.
51.
Zurück zum Zitat Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Prog Biomed. 2011;104(3):e158–77. Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Prog Biomed. 2011;104(3):e158–77.
52.
Zurück zum Zitat Ghanei A, Soltanian-Zadeh H, Windham JP. A 3D deformable surface model for segmentation of objects from volumetric data in medical images. Comput Biol Med. 1998;28(3):239–2.PubMed Ghanei A, Soltanian-Zadeh H, Windham JP. A 3D deformable surface model for segmentation of objects from volumetric data in medical images. Comput Biol Med. 1998;28(3):239–2.PubMed
53.
Zurück zum Zitat Lötjönen JMP, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, et al. Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage. 2010;49(3):2352–65.PubMed Lötjönen JMP, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, et al. Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage. 2010;49(3):2352–65.PubMed
54.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 770–778. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 770–778.
55.
Zurück zum Zitat Wolz R, Aljabar P, Hajnal JV, Hammers A, Rueckert D. Alzheimer’s Disease Neuroimaging Initiative. LEAP: learning embeddings for atlas propagation. NeuroImage. 2010;49(2):1316–25.PubMed Wolz R, Aljabar P, Hajnal JV, Hammers A, Rueckert D. Alzheimer’s Disease Neuroimaging Initiative. LEAP: learning embeddings for atlas propagation. NeuroImage. 2010;49(2):1316–25.PubMed
Metadaten
Titel
Multi-target Interactive Neural Network for Automated Segmentation of the Hippocampus in Magnetic Resonance Imaging
verfasst von
Beibei Hou
Guixia Kang
Ningbo Zhang
Kui Liu
Publikationsdatum
23.07.2019
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2019
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09645-z

Weitere Artikel der Ausgabe 5/2019

Cognitive Computation 5/2019 Zur Ausgabe