Skip to main content

2023 | OriginalPaper | Buchkapitel

Rapid Design of Square-Spiral Metamaterial for Enhanced Wireless Power Transfer Applications Using Artificial Neural Networks

verfasst von : Bui Huu Nguyen, Quoc-Dong Hoang, Luan N. T. Huynh

Erschienen in: Machine Learning and Mechanics Based Soft Computing Applications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless power transfer (WPT) is an appropriate method of delivering power without connecting wires to multiple devices. To further increase WPT performance, metamaterials’ extraordinary properties, such as electromagnetic field focusing, have been used successfully. Normally, metamaterial properties depend on multiple parameters. Several metamaterial designs require a significant amount of time to complete numerical simulation. In this work, we propose a rapid design square-spiral metamaterial method using an artificial neural network (ANN). When ANN is used, the results show an accuracy of 97.4% and a collective mean square error (MSE) less than 0.7 × 10–3. For synthesizing the design parameters, the results show an accuracy of 95.6% and the MSE less than 7 × 10–3. Besides, the computation time of 1000 samples can be reduced 93 × 103 times compared to the HFSS simulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ho, J. S., Kim, S., & Poon, A. S. (2013, June). Midfield wireless powering for implantable systems. Proceedings of the IEEE, 101, 1369–1378. Ho, J. S., Kim, S., & Poon, A. S. (2013, June). Midfield wireless powering for implantable systems. Proceedings of the IEEE, 101, 1369–1378.
2.
Zurück zum Zitat Pham, T. S., Ranaweera, A. K., Ngo, D. V., & Lee, J. W. (2017, July). Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer. Journal of Physics D: Applied Physics, 50, 305102. Pham, T. S., Ranaweera, A. K., Ngo, D. V., & Lee, J. W. (2017, July). Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer. Journal of Physics D: Applied Physics, 50, 305102.
3.
Zurück zum Zitat Ma, W., Cheng, F., & Liu, Y. (2018, June). Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326–6334. Ma, W., Cheng, F., & Liu, Y. (2018, June). Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326–6334.
4.
Zurück zum Zitat Nadell, C. C., Huang, B., Malof, J. M., & Padilla, W. J. (2019, September). Deep learning for accelerated all-dielectric metasurface design. Optics Express, 27, 27523–27535. Nadell, C. C., Huang, B., Malof, J. M., & Padilla, W. J. (2019, September). Deep learning for accelerated all-dielectric metasurface design. Optics Express, 27, 27523–27535.
5.
Zurück zum Zitat Qiu, T., Shi, X., Wang, J., Li, Y., Qu, S., Cheng, Q., Cui, T., & Sui, S. (2019, April). Deep learning: A rapid and efficient route to automatic metasurface design. Advancement of Science, 6, 1900128. Qiu, T., Shi, X., Wang, J., Li, Y., Qu, S., Cheng, Q., Cui, T., & Sui, S. (2019, April). Deep learning: A rapid and efficient route to automatic metasurface design. Advancement of Science, 6, 1900128.
6.
Zurück zum Zitat Bui, H. N. (2020, October). Design of tunable metasurface using deep neural networks for field localized wireless power transfer. IEEE Access, 8, 194868–194878. Bui, H. N. (2020, October). Design of tunable metasurface using deep neural networks for field localized wireless power transfer. IEEE Access, 8, 194868–194878.
7.
Zurück zum Zitat Tahersima, M. H., Kojima, K., Koike-Akino, T., Jha, D., Wang, B., Lin, C., & Parsons, K. (2019, February). Deep neural network inverse design of integrated photonic power splitters. Science and Reports, 9, 1–9. Tahersima, M. H., Kojima, K., Koike-Akino, T., Jha, D., Wang, B., Lin, C., & Parsons, K. (2019, February). Deep neural network inverse design of integrated photonic power splitters. Science and Reports, 9, 1–9.
8.
Zurück zum Zitat Akashi, N., Toma, M., & Kajikawa, K. (2019, November). Design of metamaterials using neural networks. Proceedings of SPIE, 11194, 111940U. Akashi, N., Toma, M., & Kajikawa, K. (2019, November). Design of metamaterials using neural networks. Proceedings of SPIE, 11194, 111940U.
9.
Zurück zum Zitat Hou, J., Lin, H., Xu, W., Tian, Y., Wang, Y., Shi, X., Deng, F., & Chen, L. (2020, November). Customized inverse design of metamaterial absorber based on target-driven deep learning method. IEEE Access, 8, 211849–211859. Hou, J., Lin, H., Xu, W., Tian, Y., Wang, Y., Shi, X., Deng, F., & Chen, L. (2020, November). Customized inverse design of metamaterial absorber based on target-driven deep learning method. IEEE Access, 8, 211849–211859.
10.
Zurück zum Zitat So, S., Mun, J., & Rho, J. (2019, June). Simultaneous inverse design of materials and structures via deep learning: Demonstration of dipole resonance engineering using core-shell nanoparticles. Applied Materials & Interfaces, 11, 24264–24268. So, S., Mun, J., & Rho, J. (2019, June). Simultaneous inverse design of materials and structures via deep learning: Demonstration of dipole resonance engineering using core-shell nanoparticles. Applied Materials & Interfaces, 11, 24264–24268.
11.
Zurück zum Zitat An, S., Fowler, C., Zheng, B., Shalaginov, M. Y., Tang, H., Li, H., Zhou, L., Ding, J., Agarwal, A. M., Baleine, C. R., Richardson, K. A., Gu, T., Hu, J., & Zhang, H. (2019). A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196–3207. An, S., Fowler, C., Zheng, B., Shalaginov, M. Y., Tang, H., Li, H., Zhou, L., Ding, J., Agarwal, A. M., Baleine, C. R., Richardson, K. A., Gu, T., Hu, J., & Zhang, H. (2019). A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196–3207.
Metadaten
Titel
Rapid Design of Square-Spiral Metamaterial for Enhanced Wireless Power Transfer Applications Using Artificial Neural Networks
verfasst von
Bui Huu Nguyen
Quoc-Dong Hoang
Luan N. T. Huynh
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-6450-3_12

Premium Partner