Skip to main content
Erschienen in: International Journal of Steel Structures 2/2021

02.02.2021

Rapid Prediction of Long-term Deflections in Steel-Concrete Composite Bridges Through a Neural Network Model

verfasst von: Sushil Kumar, K. A. Patel, Sandeep Chaudhary, A. K. Nagpal

Erschienen in: International Journal of Steel Structures | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a closed-form expression for the rapid prediction of long-term deflections in simply supported steel–concrete composite bridges under the service load. The proposed expression incorporates the flexibility of shear connectors, shear lag effect and time effects (creep and shrinkage) in concrete. The expression has been derived from the trained artificial neural network (ANN). The training, validation and testing data sets for the ANN were produced using the validated finite element (FE) model. The proposed expression has been verified for a number of specimen-bridges and the errors were observed to be within acceptable limits for practical design purposes. Furthermore, a sensitivity analysis has been performed using the proposed closed-form expression to study the effect of the input parameters on the output. The proposed expression requires nominal computational effort, compared to the FE analysis and, therefore, can be applied to rapid prediction of deflections for everyday preliminary design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Al-deen, S., Ranzi, G., & Vrcelj, Z. (2011a). Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck. Journal of Constructional Steel Research, 67(10), 1658–1676.CrossRef Al-deen, S., Ranzi, G., & Vrcelj, Z. (2011a). Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck. Journal of Constructional Steel Research, 67(10), 1658–1676.CrossRef
Zurück zum Zitat Al-deen, S., Ranzi, G., & Vrcelj, Z. (2011b). Full-scale long-term experiments of simply supported composite beams with solid slabs. Journal of Constructional Steel Research, 67(3), 308–321.CrossRef Al-deen, S., Ranzi, G., & Vrcelj, Z. (2011b). Full-scale long-term experiments of simply supported composite beams with solid slabs. Journal of Constructional Steel Research, 67(3), 308–321.CrossRef
Zurück zum Zitat Amadio, C., & Fragiacomo, M. (1997). Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams. Journal of Structural Engineering, 123(9), 1153–1162.CrossRef Amadio, C., & Fragiacomo, M. (1997). Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams. Journal of Structural Engineering, 123(9), 1153–1162.CrossRef
Zurück zum Zitat Amadio, C., & Fragiacomo, M. (2002). Effective width evaluation for steel–concrete composite beams. Journal of Constructional Steel Research, 58(3), 373–388.CrossRef Amadio, C., & Fragiacomo, M. (2002). Effective width evaluation for steel–concrete composite beams. Journal of Constructional Steel Research, 58(3), 373–388.CrossRef
Zurück zum Zitat Abaqus Analysis user’s manual 6.11 (2011), Dassault Systems Simulia Corp., Providence, RI, USA. Abaqus Analysis user’s manual 6.11 (2011), Dassault Systems Simulia Corp., Providence, RI, USA.
Zurück zum Zitat Bhardwaj, A., Matsagar, V., Nagpal, A. K., & Chaudhary, S. (2020). Bond Behavior in Flexural Members: Numerical Studies. International Journal of Steel Structures, 1–19. Bhardwaj, A., Matsagar, V., Nagpal, A. K., & Chaudhary, S. (2020). Bond Behavior in Flexural Members: Numerical Studies. International Journal of Steel Structures, 1–19.
Zurück zum Zitat Bischoff, P. H. (2005). Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber reinforced polymer bars. Journal of structural engineering, 131(5), 752–767.CrossRef Bischoff, P. H. (2005). Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber reinforced polymer bars. Journal of structural engineering, 131(5), 752–767.CrossRef
Zurück zum Zitat Bradford, M. A. (1991). Deflections of composite steel-concrete beams subject to creep and shrinkage. ACI Structural Journal, 88(5), 610–614. Bradford, M. A. (1991). Deflections of composite steel-concrete beams subject to creep and shrinkage. ACI Structural Journal, 88(5), 610–614.
Zurück zum Zitat Bradford, M. A., & Gilbert, R. I. (1992a). Composite beams with partial interaction under sustained loads. Journal of Structural Engineering, 118(7), 1871–1883.CrossRef Bradford, M. A., & Gilbert, R. I. (1992a). Composite beams with partial interaction under sustained loads. Journal of Structural Engineering, 118(7), 1871–1883.CrossRef
Zurück zum Zitat Bradford, M. A., & Gilbert, R. I. (1992b). Time-dependent stresses and deformations in propped composite beams. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 94(3), 315–322.CrossRef Bradford, M. A., & Gilbert, R. I. (1992b). Time-dependent stresses and deformations in propped composite beams. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 94(3), 315–322.CrossRef
Zurück zum Zitat Bradford, M. A., Manh, H. V., & Gilbert, R. I. (2002). Numerical analysis of continuous composite beams under service loading. Advances in Structural Engineering, 5(1), 1–12.CrossRef Bradford, M. A., Manh, H. V., & Gilbert, R. I. (2002). Numerical analysis of continuous composite beams under service loading. Advances in Structural Engineering, 5(1), 1–12.CrossRef
Zurück zum Zitat BS 5400. (2005). Code of practice for design of composite bridges Steel, concrete and composite bridges. London: British Standard Institutions. BS 5400. (2005). Code of practice for design of composite bridges Steel, concrete and composite bridges. London: British Standard Institutions.
Zurück zum Zitat Carreira, D. J., & Chu, K. H. (1985). Stress-strain relationship for plain concrete in compression. ACI Journal, 82(6), 797–804. Carreira, D. J., & Chu, K. H. (1985). Stress-strain relationship for plain concrete in compression. ACI Journal, 82(6), 797–804.
Zurück zum Zitat CEB-FIP MC 90. (1999). Model code for concrete structures. Thomas Telford, Lausanne CEB-FIP MC 90. (1999). Model code for concrete structures. Thomas Telford, Lausanne
Zurück zum Zitat Chaudhary, S., Pendharkar, U., & Nagpal, A. K. (2007). Hybrid procedure for cracking and time-dependent effects in composite frames at service load. Journal of Structural Engineering, 133(2), 166–175.CrossRef Chaudhary, S., Pendharkar, U., & Nagpal, A. K. (2007). Hybrid procedure for cracking and time-dependent effects in composite frames at service load. Journal of Structural Engineering, 133(2), 166–175.CrossRef
Zurück zum Zitat Chaudhary, S., Pendharkar, U., Patel, K. A., & Nagpal, A. K. (2014). Neural networks for deflections in continuous composite beams considering concrete cracking. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 38, 205–221. Chaudhary, S., Pendharkar, U., Patel, K. A., & Nagpal, A. K. (2014). Neural networks for deflections in continuous composite beams considering concrete cracking. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 38, 205–221.
Zurück zum Zitat Chiewanichakorn, M., Aref, A. J., Chen, S. S., & Ahn, I. S. (2004). Effective flange width definition for steel–concrete composite bridge girder. Journal of Structural Engineering, 130(12), 2016–2031.CrossRef Chiewanichakorn, M., Aref, A. J., Chen, S. S., & Ahn, I. S. (2004). Effective flange width definition for steel–concrete composite bridge girder. Journal of Structural Engineering, 130(12), 2016–2031.CrossRef
Zurück zum Zitat D’Aniello, M., Güneyisi, E. M., Landolfo, R., & Mermerdaş, K. (2015). Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams. Thin-Walled Structures, 94, 67–78.CrossRef D’Aniello, M., Güneyisi, E. M., Landolfo, R., & Mermerdaş, K. (2015). Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams. Thin-Walled Structures, 94, 67–78.CrossRef
Zurück zum Zitat Dezi, L., Gara, F., & Leoni, G. (2006). Effective slab width in prestressed twin-girder composite decks. Journal of Structural Engineering, 132(9), 1358–1370.CrossRef Dezi, L., Gara, F., & Leoni, G. (2006). Effective slab width in prestressed twin-girder composite decks. Journal of Structural Engineering, 132(9), 1358–1370.CrossRef
Zurück zum Zitat Dezi, L., Gara, F., Leoni, G., & Tarantino, A. M. (2001). Time-dependent analysis of shear-lag effect in composite beams. Journal of Engineering Mechanics, 127(1), 71–79.CrossRef Dezi, L., Gara, F., Leoni, G., & Tarantino, A. M. (2001). Time-dependent analysis of shear-lag effect in composite beams. Journal of Engineering Mechanics, 127(1), 71–79.CrossRef
Zurück zum Zitat Dezi, L., Ianni, C., & Tarantino, A. M. (1993). Simplified creep analysis of composite beams with flexible connectors. Journal of Structural Engineering, 119(5), 1484–1497.CrossRef Dezi, L., Ianni, C., & Tarantino, A. M. (1993). Simplified creep analysis of composite beams with flexible connectors. Journal of Structural Engineering, 119(5), 1484–1497.CrossRef
Zurück zum Zitat Dezi, L., Leoni, G., & Tarantino, A. M. (1998). Creep and shrinkage analysis of composite beams. Progress in Structural Engineering and Materials, 1(2), 170–177.CrossRef Dezi, L., Leoni, G., & Tarantino, A. M. (1998). Creep and shrinkage analysis of composite beams. Progress in Structural Engineering and Materials, 1(2), 170–177.CrossRef
Zurück zum Zitat Dezi, L., & Mentrasti, L. (1985). Nonuniform bending-stress distribution (shear lag). Journal of Structural Engineering, 111(12), 2675–2690.CrossRef Dezi, L., & Mentrasti, L. (1985). Nonuniform bending-stress distribution (shear lag). Journal of Structural Engineering, 111(12), 2675–2690.CrossRef
Zurück zum Zitat Dezi, L., & Tarantino, A. M. (1993). Creep in composite continuous beams. I: Theoretical treatment. Journal of Structural Engineering, 119(7), 2095–2111.CrossRef Dezi, L., & Tarantino, A. M. (1993). Creep in composite continuous beams. I: Theoretical treatment. Journal of Structural Engineering, 119(7), 2095–2111.CrossRef
Zurück zum Zitat Dezi, L., & Tarantino, A. M. (1993). Creep in composite continuous beams. II: Parametric study. Journal of Structural Engineering, 119(7), 2112–2133.CrossRef Dezi, L., & Tarantino, A. M. (1993). Creep in composite continuous beams. II: Parametric study. Journal of Structural Engineering, 119(7), 2112–2133.CrossRef
Zurück zum Zitat Eurocode 4. (2004). Design of composite steel and concrete structures- Part 1.1: General rules and rules for buildings. Brussels: European Committee for Standardization. Eurocode 4. (2004). Design of composite steel and concrete structures- Part 1.1: General rules and rules for buildings. Brussels: European Committee for Standardization.
Zurück zum Zitat Fragiacomo, M., Amadio, C., & Macorini, L. (2004). Finite-element model for collapse and long-term analysis of steel–concrete composite beams. Journal of Structural Engineering, 130(3), 489–497.CrossRef Fragiacomo, M., Amadio, C., & Macorini, L. (2004). Finite-element model for collapse and long-term analysis of steel–concrete composite beams. Journal of Structural Engineering, 130(3), 489–497.CrossRef
Zurück zum Zitat Gara, F., Leoni, G., & Dezi, L. (2009). A beam finite element including shear lag effect for the time-dependent analysis of steel–concrete composite decks. Engineering Structures, 31(8), 1888–1902.CrossRef Gara, F., Leoni, G., & Dezi, L. (2009). A beam finite element including shear lag effect for the time-dependent analysis of steel–concrete composite decks. Engineering Structures, 31(8), 1888–1902.CrossRef
Zurück zum Zitat Gara, F., Ranzi, G., & Leoni, G. (2006). Time analysis of composite beams with partial interaction using available modelling techniques: A comparative study. Journal of Constructional Steel Research, 62(9), 917–930.CrossRef Gara, F., Ranzi, G., & Leoni, G. (2006). Time analysis of composite beams with partial interaction using available modelling techniques: A comparative study. Journal of Constructional Steel Research, 62(9), 917–930.CrossRef
Zurück zum Zitat Ghaleini, E. N., Koopialipoor, M., Momenzadeh, M., Sarafraz, M. E., Mohamad, E. T., & Gordan, B. (2019). A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls. Engineering with Computers, 35(2), 647–658.CrossRef Ghaleini, E. N., Koopialipoor, M., Momenzadeh, M., Sarafraz, M. E., Mohamad, E. T., & Gordan, B. (2019). A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls. Engineering with Computers, 35(2), 647–658.CrossRef
Zurück zum Zitat Girhammar, U. A., & Gopu, V. K. (1993). Composite beam-columns with interlayer slip—exact analysis. Journal of Structural Engineering, 119(4), 1265–1282.CrossRef Girhammar, U. A., & Gopu, V. K. (1993). Composite beam-columns with interlayer slip—exact analysis. Journal of Structural Engineering, 119(4), 1265–1282.CrossRef
Zurück zum Zitat Gordan, B., Armaghani, D. J., Hajihassani, M., & Monjezi, M. (2016). Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering with Computers, 32(1), 85–97.CrossRef Gordan, B., Armaghani, D. J., Hajihassani, M., & Monjezi, M. (2016). Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering with Computers, 32(1), 85–97.CrossRef
Zurück zum Zitat Gupta, R. K., Kumar, S., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2015). Rapid prediction of deflections in multi-span continuous composite bridges using neural networks. International Journal of Steel Structures, 15(4), 893–909.CrossRef Gupta, R. K., Kumar, S., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2015). Rapid prediction of deflections in multi-span continuous composite bridges using neural networks. International Journal of Steel Structures, 15(4), 893–909.CrossRef
Zurück zum Zitat Gupta, R. K., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2013). Closed form solution for deflection of flexible composite bridges. Procedia Engineering, 51, 75–83.CrossRef Gupta, R. K., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2013). Closed form solution for deflection of flexible composite bridges. Procedia Engineering, 51, 75–83.CrossRef
Zurück zum Zitat Hasan, Q. A., Badaruzzaman, W. W., Al-Zand, A. W., & Mutalib, A. A. (2017). The state of the art of steel and steel concrete composite straight plate girder bridges. Thin-Walled Structures, 119, 988–1020.CrossRef Hasan, Q. A., Badaruzzaman, W. W., Al-Zand, A. W., & Mutalib, A. A. (2017). The state of the art of steel and steel concrete composite straight plate girder bridges. Thin-Walled Structures, 119, 988–1020.CrossRef
Zurück zum Zitat Jasim, N. A. (1999). Deflections of partially composite beams with linear connector density. Journal of Constructional Steel Research, 49(3), 241–254.CrossRef Jasim, N. A. (1999). Deflections of partially composite beams with linear connector density. Journal of Constructional Steel Research, 49(3), 241–254.CrossRef
Zurück zum Zitat Johnson, R. P., & Molenstra, N. (1991). Partial shear connection in composite beams for buildings. Proceedings of the Institution of Civil Engineers, 91(4), 679–704.CrossRef Johnson, R. P., & Molenstra, N. (1991). Partial shear connection in composite beams for buildings. Proceedings of the Institution of Civil Engineers, 91(4), 679–704.CrossRef
Zurück zum Zitat Khan, M. I. (2012). Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks. Automation in Construction, 22, 516–524.CrossRef Khan, M. I. (2012). Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks. Automation in Construction, 22, 516–524.CrossRef
Zurück zum Zitat Kim, D., Kim, D. H., Cui, J., Seo, H. Y., & Lee, Y. H. (2009). Iterative neural network strategy for static model identification of an FRP deck. Steel and Composite Structures, 9(5), 445–455.CrossRef Kim, D., Kim, D. H., Cui, J., Seo, H. Y., & Lee, Y. H. (2009). Iterative neural network strategy for static model identification of an FRP deck. Steel and Composite Structures, 9(5), 445–455.CrossRef
Zurück zum Zitat Kwak, H. G., & Seo, Y. J. (2002). Time-dependent behavior of composite beams with flexible connectors. Computer Methods in Applied Mechanics and Engineering, 191(34), 3751–3772.MATHCrossRef Kwak, H. G., & Seo, Y. J. (2002). Time-dependent behavior of composite beams with flexible connectors. Computer Methods in Applied Mechanics and Engineering, 191(34), 3751–3772.MATHCrossRef
Zurück zum Zitat Mabsout, M. E., Tarhini, K. M., Frederick, G. R., & Kesserwan, A. (1999). Effect of multilanes on wheel load distribution in steel girder bridges. Journal of Bridge Engineering, 4(2), 99–106.CrossRef Mabsout, M. E., Tarhini, K. M., Frederick, G. R., & Kesserwan, A. (1999). Effect of multilanes on wheel load distribution in steel girder bridges. Journal of Bridge Engineering, 4(2), 99–106.CrossRef
Zurück zum Zitat Marcello Tarantino, A., & Dezi, L. (1992). Creep effects in composite beams with flexible shear connectors. Journal of Structural Engineering, 118(8), 2063–2080.CrossRef Marcello Tarantino, A., & Dezi, L. (1992). Creep effects in composite beams with flexible shear connectors. Journal of Structural Engineering, 118(8), 2063–2080.CrossRef
Zurück zum Zitat MATLAB 7.10. (2010). Neural networks toolbox user’s guide. USA. MATLAB 7.10. (2010). Neural networks toolbox user’s guide. USA.
Zurück zum Zitat Mcgarraugh, J. B., & Baldwin, J. W. (1971). Lightweight concrete on steel composite beams. Engineering Journal, 8(3), 90–98. Mcgarraugh, J. B., & Baldwin, J. W. (1971). Lightweight concrete on steel composite beams. Engineering Journal, 8(3), 90–98.
Zurück zum Zitat Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, X. N., Bui, D. T., & Rashid, A. S. A. (2020). Prediction of ultimate bearing capacity through various novel evolutionary and neural network models. Engineering with Computers, 36(2), 671–687.CrossRef Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, X. N., Bui, D. T., & Rashid, A. S. A. (2020). Prediction of ultimate bearing capacity through various novel evolutionary and neural network models. Engineering with Computers, 36(2), 671–687.CrossRef
Zurück zum Zitat Mohammadhassani, M., Nezamabadi-pour, H., Jumaat, M. Z., Jameel, M., & Arumugam, A. (2013). Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams. Computers and Concrete, 11(3), 237–252.CrossRef Mohammadhassani, M., Nezamabadi-pour, H., Jumaat, M. Z., Jameel, M., & Arumugam, A. (2013). Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams. Computers and Concrete, 11(3), 237–252.CrossRef
Zurück zum Zitat Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M., Jameel, M., Hakim, S. J. S., & Zargar, M. (2013). Application of the ANFIS model in deflection prediction of concrete deep beam. Structural Engineering and Mechanics, 45(3), 319–332.CrossRef Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M., Jameel, M., Hakim, S. J. S., & Zargar, M. (2013). Application of the ANFIS model in deflection prediction of concrete deep beam. Structural Engineering and Mechanics, 45(3), 319–332.CrossRef
Zurück zum Zitat Moosazadeh, S., Namazi, E., Aghababaei, H., Marto, A., Mohamad, H., & Hajihassani, M. (2019). Prediction of building damage induced by tunnelling through an optimized artificial neural network. Engineering with Computers, 35(2), 579–591.CrossRef Moosazadeh, S., Namazi, E., Aghababaei, H., Marto, A., Mohamad, H., & Hajihassani, M. (2019). Prediction of building damage induced by tunnelling through an optimized artificial neural network. Engineering with Computers, 35(2), 579–591.CrossRef
Zurück zum Zitat Nie, J., & Cai, C. S. (2003). Steel–concrete composite beams considering shear slip effects. Journal of Structural Engineering, 129(4), 495–506.CrossRef Nie, J., & Cai, C. S. (2003). Steel–concrete composite beams considering shear slip effects. Journal of Structural Engineering, 129(4), 495–506.CrossRef
Zurück zum Zitat Nie, J. G., Tian, C. Y., & Cai, C. S. (2008). Effective width of steel–concrete composite beam at ultimate strength state. Engineering structures, 30(5), 1396–1407.CrossRef Nie, J. G., Tian, C. Y., & Cai, C. S. (2008). Effective width of steel–concrete composite beam at ultimate strength state. Engineering structures, 30(5), 1396–1407.CrossRef
Zurück zum Zitat Patel, K. A., Bhardwaj, A., Chaudhary, S., & Nagpal, A. K. (2015). Explicit expression for effective moment of inertia of RC beams. Latin American Journal of Solids and Structures, 12(3), 542–560.CrossRef Patel, K. A., Bhardwaj, A., Chaudhary, S., & Nagpal, A. K. (2015). Explicit expression for effective moment of inertia of RC beams. Latin American Journal of Solids and Structures, 12(3), 542–560.CrossRef
Zurück zum Zitat Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2017). An automated computationally efficient two-stage procedure for service load analysis of RC flexural members considering concrete cracking. Engineering with Computers, 33(3), 669–688.CrossRef Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2017). An automated computationally efficient two-stage procedure for service load analysis of RC flexural members considering concrete cracking. Engineering with Computers, 33(3), 669–688.CrossRef
Zurück zum Zitat Pendharkar, U., Chaudhary, S., & Nagpal, A. K. (2007). Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete. Engineering structures, 29(9), 2069–2079.CrossRef Pendharkar, U., Chaudhary, S., & Nagpal, A. K. (2007). Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete. Engineering structures, 29(9), 2069–2079.CrossRef
Zurück zum Zitat Pendharkar, U., Chaudhary, S., & Nagpal, A. K. (2010). Neural networks for inelastic mid-span deflections in continuous composite beams. Structural Engineering and Mechanics, 36(2), 165–179.CrossRef Pendharkar, U., Chaudhary, S., & Nagpal, A. K. (2010). Neural networks for inelastic mid-span deflections in continuous composite beams. Structural Engineering and Mechanics, 36(2), 165–179.CrossRef
Zurück zum Zitat Pendharkar, U., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2017). Closed-form expressions for long-term deflections in high-rise composite frames. International Journal of Steel Structures, 17(1), 31–42.CrossRef Pendharkar, U., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2017). Closed-form expressions for long-term deflections in high-rise composite frames. International Journal of Steel Structures, 17(1), 31–42.CrossRef
Zurück zum Zitat Pendharkar, U., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2017). Rapid prediction of moments in high-rise composite frames considering cracking and time-effects. PeriodicaPolytechnica Civil Engineering, 61(2), 282–291. Pendharkar, U., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2017). Rapid prediction of moments in high-rise composite frames considering cracking and time-effects. PeriodicaPolytechnica Civil Engineering, 61(2), 282–291.
Zurück zum Zitat Porco, G., Spadea, G., & Zinno, R. (1994). Finite element analysis and parametric study of steel-concrete composite beams. Cement and Concrete Composites, 16(4), 261–272.CrossRef Porco, G., Spadea, G., & Zinno, R. (1994). Finite element analysis and parametric study of steel-concrete composite beams. Cement and Concrete Composites, 16(4), 261–272.CrossRef
Zurück zum Zitat Ramnavas, M. P., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2015). Cracked span length beam element for service load analysis of steel concrete compositebridges. Computers & Structures, 157, 201–208.CrossRef Ramnavas, M. P., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2015). Cracked span length beam element for service load analysis of steel concrete compositebridges. Computers & Structures, 157, 201–208.CrossRef
Zurück zum Zitat Ranzi, G., & Bradford, M. A. (2009). Analysis of composite beams with partial interaction using the direct stiffness approach accounting for time effects. International journal for Numerical Methods in Engineering, 78(5), 564–586.MathSciNetMATHCrossRef Ranzi, G., & Bradford, M. A. (2009). Analysis of composite beams with partial interaction using the direct stiffness approach accounting for time effects. International journal for Numerical Methods in Engineering, 78(5), 564–586.MathSciNetMATHCrossRef
Zurück zum Zitat Ranzi, G., Gara, F., Leoni, G., & Bradford, M. A. (2006). Analysis of composite beams with partial shear interaction using available modelling techniques: A comparative study. Computers & Structures, 84(13), 930–941.CrossRef Ranzi, G., Gara, F., Leoni, G., & Bradford, M. A. (2006). Analysis of composite beams with partial shear interaction using available modelling techniques: A comparative study. Computers & Structures, 84(13), 930–941.CrossRef
Zurück zum Zitat Roberts, T. M. (1985). Finite difference analysis of composite beams with partial interaction. Computers & Structures, 21(3), 469–473.CrossRef Roberts, T. M. (1985). Finite difference analysis of composite beams with partial interaction. Computers & Structures, 21(3), 469–473.CrossRef
Zurück zum Zitat Sabiston, T., Inal, K., & Lee-Sullivan, P. (2020). Application of artificial neural networks to predict fibre orientation in long fibre compression moulded composite materials. Composites Science and Technology, 190, 108034.CrossRef Sabiston, T., Inal, K., & Lee-Sullivan, P. (2020). Application of artificial neural networks to predict fibre orientation in long fibre compression moulded composite materials. Composites Science and Technology, 190, 108034.CrossRef
Zurück zum Zitat Sedlacek, G., & Bild, S. (1993). A simplified method for the determination of the effective width due to shear lag effects. Journal of Constructional Steel Research, 24(3), 155–182.CrossRef Sedlacek, G., & Bild, S. (1993). A simplified method for the determination of the effective width due to shear lag effects. Journal of Constructional Steel Research, 24(3), 155–182.CrossRef
Zurück zum Zitat Tadesse, Z., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2012). Neural networks for prediction of deflection in composite bridges. Journal of Constructional Steel Research, 68(1), 138–149.CrossRef Tadesse, Z., Patel, K. A., Chaudhary, S., & Nagpal, A. K. (2012). Neural networks for prediction of deflection in composite bridges. Journal of Constructional Steel Research, 68(1), 138–149.CrossRef
Zurück zum Zitat Tan, Z. X., Thambiratnam, D. P., Chan, T. H., Gordan, M., & Abdul Razak, H. (2020). Damage detection in steel-concrete composite bridge using vibration characteristics and artificial neural network. Structure and Infrastructure Engineering, 16(9), 1247–1261.CrossRef Tan, Z. X., Thambiratnam, D. P., Chan, T. H., Gordan, M., & Abdul Razak, H. (2020). Damage detection in steel-concrete composite bridge using vibration characteristics and artificial neural network. Structure and Infrastructure Engineering, 16(9), 1247–1261.CrossRef
Zurück zum Zitat Tarhini, K. M., & Frederick, G. R. (1992). Wheel load distribution in I-girder highway bridges. Journal of Structural Engineering, 118(5), 1285–1294.CrossRef Tarhini, K. M., & Frederick, G. R. (1992). Wheel load distribution in I-girder highway bridges. Journal of Structural Engineering, 118(5), 1285–1294.CrossRef
Zurück zum Zitat Tohidi, S., & Sharifi, Y. (2015). Neural networks for inelastic distortional buckling capacity assessment of steel I-beams. Thin-Walled Structures, 94, 359–371.CrossRef Tohidi, S., & Sharifi, Y. (2015). Neural networks for inelastic distortional buckling capacity assessment of steel I-beams. Thin-Walled Structures, 94, 359–371.CrossRef
Zurück zum Zitat Virtuoso, F., & Vieira, R. (2004). Time dependent behaviour of continuous composite beams with flexible connection. Journal of Constructional Steel Research, 60(3–5), 451–463.CrossRef Virtuoso, F., & Vieira, R. (2004). Time dependent behaviour of continuous composite beams with flexible connection. Journal of Constructional Steel Research, 60(3–5), 451–463.CrossRef
Zurück zum Zitat Wang, W. W., Dai, J. G., Li, G., & Huang, C. K. (2011). Long-term behavior of prestressed old-new concrete composite beams. Journal of Bridge Engineering, 16(2), 275–285.CrossRef Wang, W. W., Dai, J. G., Li, G., & Huang, C. K. (2011). Long-term behavior of prestressed old-new concrete composite beams. Journal of Bridge Engineering, 16(2), 275–285.CrossRef
Zurück zum Zitat Wang, Y. C. (1998). Deflection of steel-concrete composite beams with partial shear interaction. Journal of Structural Engineering, 124(10), 1159–1165.CrossRef Wang, Y. C. (1998). Deflection of steel-concrete composite beams with partial shear interaction. Journal of Structural Engineering, 124(10), 1159–1165.CrossRef
Zurück zum Zitat Wright, H. D. (1990). The deformation of composite beams with discrete flexible connection. Journal of Constructional Steel Research, 15(1–2), 49–64.CrossRef Wright, H. D. (1990). The deformation of composite beams with discrete flexible connection. Journal of Constructional Steel Research, 15(1–2), 49–64.CrossRef
Metadaten
Titel
Rapid Prediction of Long-term Deflections in Steel-Concrete Composite Bridges Through a Neural Network Model
verfasst von
Sushil Kumar
K. A. Patel
Sandeep Chaudhary
A. K. Nagpal
Publikationsdatum
02.02.2021
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 2/2021
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-021-00458-1

Weitere Artikel der Ausgabe 2/2021

International Journal of Steel Structures 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.