Skip to main content
Erschienen in: Neural Computing and Applications 8/2017

12.01.2016 | Original Article

Reaching optimized parameter set: protein secondary structure prediction using neural network

verfasst von: Jyotshna Dongardive, Siby Abraham

Erschienen in: Neural Computing and Applications | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose an optimized parameter set for protein secondary structure prediction using three-layer feed forward back propagation neural network. The methodology uses four parameters viz. encoding scheme, window size, number of neurons in the hidden layer and type of learning algorithm. The input layer of the network consists of neurons changing from 3 to 19, corresponding to different window sizes. The hidden layer chooses a natural number from 1 to 20 as the number of neurons. The output layer consists of three neurons, each corresponding to known secondary structural classes viz. α-helix, β-strands and coil/turns, respectively. It also uses eight different learning algorithms and nine encoding schemes. Exhaustive experiments were performed using non-homologous dataset. The experimental results were compared using performance measures like Q 3, sensitivity, specificity, Mathew correlation coefficient and accuracy. The paper also discusses the process of obtaining a stabilized cluster of 2530 records from a collection of 11,340 records. The graphs of these stabilized clusters of records with respect to accuracy are concave, convergence is monotonic increasing and rate of convergence is uniform. The paper gives BLOSUM62 as the encoding scheme, 19 as the window size, 19 as the number of neurons in the hidden layer and one-step secant as the learning algorithm with the highest accuracy of 78 %. These parameter values are proposed as the optimized parameter set for the three-layer feed forward back propagation neural network for the protein secondary structure prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agarwal S, Baboota A, Mendiratta D (2013) Design and implementation of an algorithm to predict secondary structure of proteins using artificial neural networks. Int J Emerg Res Manag Technol 2:12 Agarwal S, Baboota A, Mendiratta D (2013) Design and implementation of an algorithm to predict secondary structure of proteins using artificial neural networks. Int J Emerg Res Manag Technol 2:12
2.
Zurück zum Zitat Alirezaee M, Dehzangi A, Mansoori E (2012) Predicting the secondary structure of proteins by cascading neural networks. Int J Artif Intell Appl (IJAIA) 3(6):29–47 Alirezaee M, Dehzangi A, Mansoori E (2012) Predicting the secondary structure of proteins by cascading neural networks. Int J Artif Intell Appl (IJAIA) 3(6):29–47
3.
Zurück zum Zitat Griffiths AJF, Miller JH, Suzuki DD, Lewontin RC, Gelbart WM (2000) An introduction to genetic analysis, 7th edn. WH Freeman and Company, New York Griffiths AJF, Miller JH, Suzuki DD, Lewontin RC, Gelbart WM (2000) An introduction to genetic analysis, 7th edn. WH Freeman and Company, New York
4.
Zurück zum Zitat Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M et al (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29(1):37–40CrossRef Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M et al (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29(1):37–40CrossRef
5.
Zurück zum Zitat Apweiler R, Bairoch A, Wu CH (2004) Protein sequence databases. Curr Opin Chem Biol 8(1):76–80CrossRef Apweiler R, Bairoch A, Wu CH (2004) Protein sequence databases. Curr Opin Chem Biol 8(1):76–80CrossRef
7.
Zurück zum Zitat Attwood TK, Croning MD, Flower DR, Lewis AP, Mabey JE, Scordis P, Selley JN, Wright W (2000) PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res 28(1):225–227CrossRef Attwood TK, Croning MD, Flower DR, Lewis AP, Mabey JE, Scordis P, Selley JN, Wright W (2000) PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res 28(1):225–227CrossRef
8.
Zurück zum Zitat Attwood TK, Flower DR, Lewis AP, Mabey JE, Morgan SR, Scordis P et al (1999) PRINTS prepares for the new millennium. Nucleic Acids Res 27(1):220–225CrossRef Attwood TK, Flower DR, Lewis AP, Mabey JE, Morgan SR, Scordis P et al (1999) PRINTS prepares for the new millennium. Nucleic Acids Res 27(1):220–225CrossRef
9.
Zurück zum Zitat Avdagic Z, Purisevic E, Buza E, Coralic Z (2009) Neural network algorithm for prediction of secondary protein structure. Acta Inf Med 17(2):67–70 Avdagic Z, Purisevic E, Buza E, Coralic Z (2009) Neural network algorithm for prediction of secondary protein structure. Acta Inf Med 17(2):67–70
10.
Zurück zum Zitat Baldi P (1995) Gradient descent learning algorithms overview: a general dynamical systems perspective. IEEE Trans Neural Netw 6(1):182–195CrossRef Baldi P (1995) Gradient descent learning algorithms overview: a general dynamical systems perspective. IEEE Trans Neural Netw 6(1):182–195CrossRef
11.
Zurück zum Zitat Barker WC, Garavelli JS, Huang H, McGarvey PB, Orcutt BC, Srinivasarao GY, Xiao C, Yeh LS, Ledley RS, Janda JF, Pfeiffer F, Tsugita A, Mewes HW, Wu C (2000) The protein information resource (PIR). Nucleic Acids Res 28(1):41–44CrossRef Barker WC, Garavelli JS, Huang H, McGarvey PB, Orcutt BC, Srinivasarao GY, Xiao C, Yeh LS, Ledley RS, Janda JF, Pfeiffer F, Tsugita A, Mewes HW, Wu C (2000) The protein information resource (PIR). Nucleic Acids Res 28(1):41–44CrossRef
12.
Zurück zum Zitat Barlow TW (1995) Feed-forward neural networks for secondary structure prediction. J Mol Graph 1995(13):175–183CrossRef Barlow TW (1995) Feed-forward neural networks for secondary structure prediction. J Mol Graph 1995(13):175–183CrossRef
13.
Zurück zum Zitat Battiti R (1999) First- and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput 10:251–276 Battiti R (1999) First- and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput 10:251–276
14.
Zurück zum Zitat Beale EML (1972) A derivation of conjugate gradients. In: Lootsma FA (ed) Numerical methods for nonlinear optimization. Academic Press, London, pp 39–43 Beale EML (1972) A derivation of conjugate gradients. In: Lootsma FA (ed) Numerical methods for nonlinear optimization. Academic Press, London, pp 39–43
15.
Zurück zum Zitat Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRef Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRef
16.
Zurück zum Zitat Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur J Biochem 80:319–324CrossRef Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur J Biochem 80:319–324CrossRef
17.
Zurück zum Zitat Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542CrossRef Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542CrossRef
18.
Zurück zum Zitat Bishop CM (1995) Neural networks for pattern recognition. Oxford Clarendon Press/Oxford University Press, OxfordMATH Bishop CM (1995) Neural networks for pattern recognition. Oxford Clarendon Press/Oxford University Press, OxfordMATH
19.
Zurück zum Zitat Böhm G (1996) New approaches in molecular structure prediction. Biophys Chem 59(1–2):1–32CrossRef Böhm G (1996) New approaches in molecular structure prediction. Biophys Chem 59(1–2):1–32CrossRef
20.
Zurück zum Zitat Bohr H, Boht J, Brunak S, Cotterill RM, Lautrup B, Norskov L, Olsen OH, Petersen SB (1988) Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin. FEBS Lett 1988(241):223–228CrossRef Bohr H, Boht J, Brunak S, Cotterill RM, Lautrup B, Norskov L, Olsen OH, Petersen SB (1988) Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin. FEBS Lett 1988(241):223–228CrossRef
21.
Zurück zum Zitat Bohr H, Boht J, Brunak S, Cotterill RM, Fredholm H, Lautrup B, Petersen SB (1993) Protein structures from distance inequalities. J Mol Biol 1993(231):861–869CrossRef Bohr H, Boht J, Brunak S, Cotterill RM, Fredholm H, Lautrup B, Petersen SB (1993) Protein structures from distance inequalities. J Mol Biol 1993(231):861–869CrossRef
23.
Zurück zum Zitat Broyden CG (1970) The convergence of a class of double rank minimization algorithms, 2. The new algorithm. J Inst Math Appl 6:222–231MathSciNetMATHCrossRef Broyden CG (1970) The convergence of a class of double rank minimization algorithms, 2. The new algorithm. J Inst Math Appl 6:222–231MathSciNetMATHCrossRef
24.
Zurück zum Zitat Ceroni A, Frasconi P, Pollastri G (2005) Learning protein secondary structure from sequential and relational data. Neural Netw 2005(18):1029–1039CrossRef Ceroni A, Frasconi P, Pollastri G (2005) Learning protein secondary structure from sequential and relational data. Neural Netw 2005(18):1029–1039CrossRef
25.
Zurück zum Zitat Chandonia JM, Karplus M (1995) Neural networks for secondary structure and structural class prediction. Protein Sci 4:275–285CrossRef Chandonia JM, Karplus M (1995) Neural networks for secondary structure and structural class prediction. Protein Sci 4:275–285CrossRef
26.
Zurück zum Zitat Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222CrossRef Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222CrossRef
27.
Zurück zum Zitat Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13(2):222–245CrossRef Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13(2):222–245CrossRef
28.
Zurück zum Zitat Cooper G (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland Cooper G (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland
29.
Zurück zum Zitat Corpet F, Gouzy J, Kahn D (1999) Recent improvements of the Pro-Dom database of protein domain families. Nucleic Acids Res 27:263–267CrossRef Corpet F, Gouzy J, Kahn D (1999) Recent improvements of the Pro-Dom database of protein domain families. Nucleic Acids Res 27:263–267CrossRef
30.
Zurück zum Zitat Corpet F, Servant F, Gouzy J, Kahn D (2000) ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res 28:267–269CrossRef Corpet F, Servant F, Gouzy J, Kahn D (2000) ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res 28:267–269CrossRef
31.
Zurück zum Zitat Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines: and other Kernel based learning methods. University Press, CambridgeMATHCrossRef Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines: and other Kernel based learning methods. University Press, CambridgeMATHCrossRef
32.
Zurück zum Zitat Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511CrossRef Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511CrossRef
33.
Zurück zum Zitat Cuff JA, Barton GJ (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins Struct Funct Genet 34:508–519CrossRef Cuff JA, Barton GJ (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins Struct Funct Genet 34:508–519CrossRef
34.
Zurück zum Zitat Dayhoff MO, Schwartz RM. Orcutt BC (1979) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington. 5(Suppl 3):345–352 Dayhoff MO, Schwartz RM. Orcutt BC (1979) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington. 5(Suppl 3):345–352
35.
Zurück zum Zitat Deka A, Sarma KK (2012) Artificial neural network aided protein structure prediction. Int J Comput Appl 48(18):33–37 Deka A, Sarma KK (2012) Artificial neural network aided protein structure prediction. Int J Comput Appl 48(18):33–37
36.
Zurück zum Zitat Dermuth H, Mark B, Martin H (2009) Neural network toolbox™ 6: user guide. Mathworks Publication Dermuth H, Mark B, Martin H (2009) Neural network toolbox™ 6: user guide. Mathworks Publication
38.
Zurück zum Zitat Dinubhai PM, Shah HB (2014) Protein secondary structure prediction using neural network: a comparative study. Int J Enhanc Res Manag Comput Appl 3(4):18–23 Dinubhai PM, Shah HB (2014) Protein secondary structure prediction using neural network: a comparative study. Int J Enhanc Res Manag Comput Appl 3(4):18–23
39.
Zurück zum Zitat Drenth J (1999) Principles of protein X-ray crystallography, 2nd edn. Springerg, New YorkCrossRef Drenth J (1999) Principles of protein X-ray crystallography, 2nd edn. Springerg, New YorkCrossRef
41.
Zurück zum Zitat Faraggi E, Zhang T, Yang YA, Kurgan L, Zhou Y (2012) SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem 33(3):259–267CrossRef Faraggi E, Zhang T, Yang YA, Kurgan L, Zhou Y (2012) SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem 33(3):259–267CrossRef
43.
Zurück zum Zitat Fasman GF (1989) The development of the prediction of protein structure. In: Fasman GF (ed) Prediction of protein structure and principle of protein conformation. Plenum Press, New York, pp 193–613CrossRef Fasman GF (1989) The development of the prediction of protein structure. In: Fasman GF (ed) Prediction of protein structure and principle of protein conformation. Plenum Press, New York, pp 193–613CrossRef
44.
Zurück zum Zitat Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRef Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRef
46.
Zurück zum Zitat Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322MATHCrossRef Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322MATHCrossRef
47.
Zurück zum Zitat Sasagawa F, Tajima K (1991) Prediction of protein secondary structure by the neural network. In: Mitaku S, Gotoh O, Nitta K, Konagaya A, Yonezawa A (eds) Genome informatics, vol 2, Japan, pp 140–143 Sasagawa F, Tajima K (1991) Prediction of protein secondary structure by the neural network. In: Mitaku S, Gotoh O, Nitta K, Konagaya A, Yonezawa A (eds) Genome informatics, vol 2, Japan, pp 140–143
48.
Zurück zum Zitat Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120(1):97–120CrossRef Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120(1):97–120CrossRef
49.
Zurück zum Zitat Gibrat JF, Garnier J, Robson B (1987) Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol 198:425–443CrossRef Gibrat JF, Garnier J, Robson B (1987) Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol 198:425–443CrossRef
50.
Zurück zum Zitat Gilbrat J, Madej T, Bryant S (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol 1996(6):377–385CrossRef Gilbrat J, Madej T, Bryant S (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol 1996(6):377–385CrossRef
51.
Zurück zum Zitat Goldfarb D (1970) A family of variable metric algorithms derived by variational means. Math Comput 24:23–26MATHCrossRef Goldfarb D (1970) A family of variable metric algorithms derived by variational means. Math Comput 24:23–26MATHCrossRef
52.
Zurück zum Zitat Gur D, Rockette HE, Armfield DR et al (2003) Prevalence effect in a laboratory environment. Radiology 228(1):10–14CrossRef Gur D, Rockette HE, Armfield DR et al (2003) Prevalence effect in a laboratory environment. Radiology 228(1):10–14CrossRef
53.
Zurück zum Zitat Hager WW, Zhang H (2006) A survey of nonlinear conjugate gradient methods. Pac J Optim 2:35–58MathSciNetMATH Hager WW, Zhang H (2006) A survey of nonlinear conjugate gradient methods. Pac J Optim 2:35–58MathSciNetMATH
54.
Zurück zum Zitat Zhang Haiyan, Zhang Jinshan, Li Zaixin (2012) Algebraic encoding and protein secondary structure prediction. Int J Algebra 6(17–20):975–984MathSciNetMATH Zhang Haiyan, Zhang Jinshan, Li Zaixin (2012) Algebraic encoding and protein secondary structure prediction. Int J Algebra 6(17–20):975–984MathSciNetMATH
55.
Zurück zum Zitat Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle RiverMATH Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle RiverMATH
56.
Zurück zum Zitat Henikoff JG, Greene EA, Pietrokovski S, Henikoff S (2000) Increased coverage of protein families with the blocks database servers. Nucleic Acids Res 28:228–230CrossRef Henikoff JG, Greene EA, Pietrokovski S, Henikoff S (2000) Increased coverage of protein families with the blocks database servers. Nucleic Acids Res 28:228–230CrossRef
57.
Zurück zum Zitat Henikoff JG, Henikoff S (1996) Blocks database and its applications. Methods Enzymol 266:88–105CrossRef Henikoff JG, Henikoff S (1996) Blocks database and its applications. Methods Enzymol 266:88–105CrossRef
58.
Zurück zum Zitat Henikoff JG, Pietrokovski S, Henikoff S (1996) The Blocks database—a system for protein classification. Nucleic Acids Res 24(1):197–200CrossRef Henikoff JG, Pietrokovski S, Henikoff S (1996) The Blocks database—a system for protein classification. Nucleic Acids Res 24(1):197–200CrossRef
59.
Zurück zum Zitat Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. PNAS 89(22):10915–10919CrossRef Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. PNAS 89(22):10915–10919CrossRef
60.
Zurück zum Zitat Henikoff S, Henikoff JG (1991) Automated assembly of protein blocks for database searching. Nucleic Acids Res 19(23):6565–6572CrossRef Henikoff S, Henikoff JG (1991) Automated assembly of protein blocks for database searching. Nucleic Acids Res 19(23):6565–6572CrossRef
61.
Zurück zum Zitat Hering JA, Innocent PR, Haris PI (2003) Neuro-fuzzy structural classification of proteins for improve protein secondary structure prediction. Proteomics 3:1646–1675CrossRef Hering JA, Innocent PR, Haris PI (2003) Neuro-fuzzy structural classification of proteins for improve protein secondary structure prediction. Proteomics 3:1646–1675CrossRef
62.
Zurück zum Zitat Hirst JD, Sternberg MJ (1992) Prediction of structural and functional features of protein and nucleic acid sequences by artificial neural networks. Biochemistry 31:7211–7218CrossRef Hirst JD, Sternberg MJ (1992) Prediction of structural and functional features of protein and nucleic acid sequences by artificial neural networks. Biochemistry 31:7211–7218CrossRef
63.
Zurück zum Zitat Ho HK, Zhang L, Ramamohanarao K, Martin S (2013) A survey of machine learning methods for secondary and supersecondary protein structure prediction. Methods Mol Biol 932:87–106CrossRef Ho HK, Zhang L, Ramamohanarao K, Martin S (2013) A survey of machine learning methods for secondary and supersecondary protein structure prediction. Methods Mol Biol 932:87–106CrossRef
64.
Zurück zum Zitat Hofmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219CrossRef Hofmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219CrossRef
65.
Zurück zum Zitat Holley HL, Karplus M (1989) Protein secondary structure prediction with a neural network. Proc Nat Acad Sci 86:152–156CrossRef Holley HL, Karplus M (1989) Protein secondary structure prediction with a neural network. Proc Nat Acad Sci 86:152–156CrossRef
67.
Zurück zum Zitat Hu H, Pan Y, Harrison R, Tai PC (2004) Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier. IEEE Trans Nanobiosci 3(4):265–271CrossRef Hu H, Pan Y, Harrison R, Tai PC (2004) Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier. IEEE Trans Nanobiosci 3(4):265–271CrossRef
68.
Zurück zum Zitat Hua S, Sun Z (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 308(2):397–407CrossRef Hua S, Sun Z (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 308(2):397–407CrossRef
69.
Zurück zum Zitat Huang H, Xiao C, Wu CH (2000) ProClass protein family database. Nucleic Acids Res 28:273–276CrossRef Huang H, Xiao C, Wu CH (2000) ProClass protein family database. Nucleic Acids Res 28:273–276CrossRef
70.
Zurück zum Zitat Huang J, Brutlag L (2001) The EMOTIF database. Nucleic Acids Res 29(1):202–204CrossRef Huang J, Brutlag L (2001) The EMOTIF database. Nucleic Acids Res 29(1):202–204CrossRef
71.
Zurück zum Zitat Huang X, Huang DS, Zhang GZ, Zhu YP, Li YX (2005) Prediction of protein secondary structure using improved two-level neural network architecture. Protein Pept Lett 12(8):805–811CrossRef Huang X, Huang DS, Zhang GZ, Zhu YP, Li YX (2005) Prediction of protein secondary structure using improved two-level neural network architecture. Protein Pept Lett 12(8):805–811CrossRef
72.
Zurück zum Zitat Hunter L (1993) Artificial intelligence and molecular biology, 1st edn. AAAI Press, Menlo Park Hunter L (1993) Artificial intelligence and molecular biology, 1st edn. AAAI Press, Menlo Park
73.
Zurück zum Zitat Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, NJ Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, NJ
74.
Zurück zum Zitat Jaroniec C, MacPhee C, Bajaj V, McMahon M, Dobson C, Griffin R (2004) High resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101(3):711–716CrossRef Jaroniec C, MacPhee C, Bajaj V, McMahon M, Dobson C, Griffin R (2004) High resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101(3):711–716CrossRef
75.
Zurück zum Zitat Johal AK, Singh R (2014) Protein secondary structure prediction using improved support vector machine and neural networks. Int J Eng Comput Sci 3(1):3593–3597 Johal AK, Singh R (2014) Protein secondary structure prediction using improved support vector machine and neural networks. Int J Eng Comput Sci 3(1):3593–3597
76.
Zurück zum Zitat Jordan MI, Jacobs RA (1994) Hierarchical mixtures of experts and the EM algorithm. Neural Comput 6:181–214CrossRef Jordan MI, Jacobs RA (1994) Hierarchical mixtures of experts and the EM algorithm. Neural Comput 6:181–214CrossRef
77.
Zurück zum Zitat Kabsch W, Sander C (1983) How good are predictions of protein secondary structure? FEBS Lett 155(2):179–182CrossRef Kabsch W, Sander C (1983) How good are predictions of protein secondary structure? FEBS Lett 155(2):179–182CrossRef
78.
Zurück zum Zitat Kawabata T, Doi J (1997) Improvement of protein secondary structure prediction using binary word encoding. Proteins 27(1):36–46CrossRef Kawabata T, Doi J (1997) Improvement of protein secondary structure prediction using binary word encoding. Proteins 27(1):36–46CrossRef
79.
Zurück zum Zitat Kim H, Park H (2003) Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng 16(8):553–560CrossRef Kim H, Park H (2003) Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng 16(8):553–560CrossRef
80.
Zurück zum Zitat Kloczkowski A, Ting K-L, Jernigan RL, Garnier J (2002) Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins Struct Funct Genet 49:154–166CrossRef Kloczkowski A, Ting K-L, Jernigan RL, Garnier J (2002) Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins Struct Funct Genet 49:154–166CrossRef
81.
Zurück zum Zitat Kneller DG, Cohen FE, Langridge R (1990) Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol 214:171–182CrossRef Kneller DG, Cohen FE, Langridge R (1990) Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol 214:171–182CrossRef
82.
Zurück zum Zitat Koh I, Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, Narayanan E, Graña O, Valencia A, Sali A, Rost B (2003) EVA: continuous automatic evaluation of protein structure prediction servers. Nucleic Acids Res 31:3311–3315CrossRef Koh I, Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, Narayanan E, Graña O, Valencia A, Sali A, Rost B (2003) EVA: continuous automatic evaluation of protein structure prediction servers. Nucleic Acids Res 31:3311–3315CrossRef
83.
Zurück zum Zitat Kohavi R, Foster P (1998) Glossary of terms. Mach Learn 30(2–3):271–274 Kohavi R, Foster P (1998) Glossary of terms. Mach Learn 30(2–3):271–274
84.
Zurück zum Zitat Koswatta TJ, Samaraweera P, Sumanasinghe VA (2011) A simple comparison between specific protein secondary structure prediction tools. Trop Agric Res 23:91–98 Koswatta TJ, Samaraweera P, Sumanasinghe VA (2011) A simple comparison between specific protein secondary structure prediction tools. Trop Agric Res 23:91–98
86.
Zurück zum Zitat Kuen-Pin Wu, Lin Hsin-Nan, Chang Jia-Ming, Sung Ting-Yi, Hsu Wen-Lian (2004) HYPROSP: a hybrid protein secondary structure prediction algorithm—a knowledge-based approach. Nucleic Acids Res 32(17):5059–5065CrossRef Kuen-Pin Wu, Lin Hsin-Nan, Chang Jia-Ming, Sung Ting-Yi, Hsu Wen-Lian (2004) HYPROSP: a hybrid protein secondary structure prediction algorithm—a knowledge-based approach. Nucleic Acids Res 32(17):5059–5065CrossRef
87.
Zurück zum Zitat Lee S, Lee BC, Kim D (2006) Prediction of protein secondary structure content using amino acid composition and evolutionary information. Proteins 62(4):1107–1114CrossRef Lee S, Lee BC, Kim D (2006) Prediction of protein secondary structure content using amino acid composition and evolutionary information. Proteins 62(4):1107–1114CrossRef
88.
Zurück zum Zitat Lena PD, Fariselli P, Margara L, Vassura Macro, Casadio R (2011) Divide and conquer strategies for protein structure prediction. In: Bruni R (ed) Mathematical approaches to polymer sequence analysis and related problems. Springer, New York, pp 23–46CrossRef Lena PD, Fariselli P, Margara L, Vassura Macro, Casadio R (2011) Divide and conquer strategies for protein structure prediction. In: Bruni R (ed) Mathematical approaches to polymer sequence analysis and related problems. Springer, New York, pp 23–46CrossRef
89.
Zurück zum Zitat Lewis P, Momany F, Scheraga H (1973) Chain reversals in proteins. Biochim Biophys Acta Protein Struct Mol Enzymol 303(2):211–229CrossRef Lewis P, Momany F, Scheraga H (1973) Chain reversals in proteins. Biochim Biophys Acta Protein Struct Mol Enzymol 303(2):211–229CrossRef
90.
Zurück zum Zitat Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J (2004) Molecular biology of the cell, 5th edn. WH Freeman and Company, New York Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J (2004) Molecular biology of the cell, 5th edn. WH Freeman and Company, New York
91.
Zurück zum Zitat Maclin R, Shavlik JW (1993) Using knowledge-based neural networks to improve algorithms: refining the Chou–Fasman algorithm for protein folding. Mach Learn 11:195–215 Maclin R, Shavlik JW (1993) Using knowledge-based neural networks to improve algorithms: refining the Chou–Fasman algorithm for protein folding. Mach Learn 11:195–215
92.
Zurück zum Zitat Mainmn O, Rokach L (2010) Introduction to knowledge discovery and data mining. In: Mainmn O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, New York, pp 1–15CrossRef Mainmn O, Rokach L (2010) Introduction to knowledge discovery and data mining. In: Mainmn O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, New York, pp 1–15CrossRef
93.
Zurück zum Zitat Matthews BW (1975) Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451CrossRef Matthews BW (1975) Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451CrossRef
94.
Zurück zum Zitat Maxfield F, Scheraga H (1979) Improvements in the prediction of protein backbone topography by reduction of statistical errors. Biochemistry 18:697–704CrossRef Maxfield F, Scheraga H (1979) Improvements in the prediction of protein backbone topography by reduction of statistical errors. Biochemistry 18:697–704CrossRef
95.
Zurück zum Zitat McGarvey P, Huang H, Barker WC, Orcutt BC, Wu CH (2000) The PIR Web site: new resource for bioinformatics. Bioinformatics 16:290–291CrossRef McGarvey P, Huang H, Barker WC, Orcutt BC, Wu CH (2000) The PIR Web site: new resource for bioinformatics. Bioinformatics 16:290–291CrossRef
96.
Zurück zum Zitat McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405CrossRef McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405CrossRef
97.
Zurück zum Zitat Meiler J, Baker D (2003) Coupled prediction of protein secondary and tertiary structure. Proc Natl Sci Soc 100(21):12105–12110CrossRef Meiler J, Baker D (2003) Coupled prediction of protein secondary and tertiary structure. Proc Natl Sci Soc 100(21):12105–12110CrossRef
98.
Zurück zum Zitat Mejia C, Fogelman-Soulie F (1990) Incorporating knowledge in multi-layer networks: the example of proteins secondary structure prediction. In: Fogelman-Soulie F, Herault J (eds) Neurocomputing: algorithms, architectures, and applications. Springer, Berlin, pp 3–13CrossRef Mejia C, Fogelman-Soulie F (1990) Incorporating knowledge in multi-layer networks: the example of proteins secondary structure prediction. In: Fogelman-Soulie F, Herault J (eds) Neurocomputing: algorithms, architectures, and applications. Springer, Berlin, pp 3–13CrossRef
99.
Zurück zum Zitat Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. 6:525–533CrossRef Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. 6:525–533CrossRef
100.
Zurück zum Zitat Mottalib MA, Mahdi MSR, Haque ABMZ, Al Mamun SM, Al-Mamun HA (2010) Protein secondary structure prediction using feed-forward neural network. J Comput Inf Technol 1:1 Mottalib MA, Mahdi MSR, Haque ABMZ, Al Mamun SM, Al-Mamun HA (2010) Protein secondary structure prediction using feed-forward neural network. J Comput Inf Technol 1:1
101.
Zurück zum Zitat Nagano K (1977) Triplet information in helix prediction applied to the analysis of super-secondary structures. J Mol Biol 109:251–274CrossRef Nagano K (1977) Triplet information in helix prediction applied to the analysis of super-secondary structures. J Mol Biol 109:251–274CrossRef
102.
Zurück zum Zitat Nelson D, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. WH Freeman and Company, New York Nelson D, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. WH Freeman and Company, New York
103.
Zurück zum Zitat Obuchowski N (2000) Sample size tables for receiver operating characteristic studies. Am J Roentgenol 175:603–608CrossRef Obuchowski N (2000) Sample size tables for receiver operating characteristic studies. Am J Roentgenol 175:603–608CrossRef
104.
Zurück zum Zitat Pauling L, Corey R, Branson H (1951) Configurations of polypeptide chains with favored orientations of the polypeptide around single bonds: two pleated sheets. Proc Natl Acad Sci USA 37(11):729–740CrossRef Pauling L, Corey R, Branson H (1951) Configurations of polypeptide chains with favored orientations of the polypeptide around single bonds: two pleated sheets. Proc Natl Acad Sci USA 37(11):729–740CrossRef
105.
Zurück zum Zitat Pauling L, Corey R, Branson H (1951) The structure of proteins: two hydrogen-bonded helicel configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205–211CrossRef Pauling L, Corey R, Branson H (1951) The structure of proteins: two hydrogen-bonded helicel configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205–211CrossRef
106.
Zurück zum Zitat Pearson K, Lee A (1902) On the laws of inheritance in man. Inherit Phys Characters. Biom 2:357–362 Pearson K, Lee A (1902) On the laws of inheritance in man. Inherit Phys Characters. Biom 2:357–362
107.
Zurück zum Zitat Pearson K (1896) Mathematical contributions to the theory of evolution. III: regression, heredity and panmixia. Proc R Soc Lond Philos Trans R Soc 187:253–318CrossRef Pearson K (1896) Mathematical contributions to the theory of evolution. III: regression, heredity and panmixia. Proc R Soc Lond Philos Trans R Soc 187:253–318CrossRef
108.
Zurück zum Zitat Pirovano W, Heringa J (2000) Protein secondary structure prediction. In: Carugo O, Eisenhaber F (eds) Data mining techniques for the life sciences. Springer, pp 327–348 Pirovano W, Heringa J (2000) Protein secondary structure prediction. In: Carugo O, Eisenhaber F (eds) Data mining techniques for the life sciences. Springer, pp 327–348
109.
Zurück zum Zitat Pollastri G, Przybylski D (2002) RostB, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235CrossRef Pollastri G, Przybylski D (2002) RostB, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235CrossRef
111.
Zurück zum Zitat Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865–884CrossRef Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865–884CrossRef
112.
Zurück zum Zitat Radzicka A, Wolfenden R (1988) Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 27:1664–1670CrossRef Radzicka A, Wolfenden R (1988) Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 27:1664–1670CrossRef
113.
Zurück zum Zitat Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of IEEE international conference on neural networks, San Francisco, pp 586–591 Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of IEEE international conference on neural networks, San Francisco, pp 586–591
114.
Zurück zum Zitat Rost B, Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins Struct Funct Genet 19:55–72CrossRef Rost B, Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins Struct Funct Genet 19:55–72CrossRef
115.
Zurück zum Zitat Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232(2):584–599CrossRef Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232(2):584–599CrossRef
116.
Zurück zum Zitat Rost B, Sander C (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci 90:7558–7562CrossRef Rost B, Sander C (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci 90:7558–7562CrossRef
117.
Zurück zum Zitat Rost B (1996) NN which predicts protein secondary structure. In: Fiesler E, Beale R (eds) Hand book of neural computation. Oxford University Press, Oxford, p G4.1 Rost B (1996) NN which predicts protein secondary structure. In: Fiesler E, Beale R (eds) Hand book of neural computation. Oxford University Press, Oxford, p G4.1
118.
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, the PDP Group (eds) Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, Cambridge, pp 318–362 Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, the PDP Group (eds) Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, Cambridge, pp 318–362
120.
Zurück zum Zitat Salamov AA, Solovyev VV (1995) Prediction of proteins secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 247(1):5–11CrossRef Salamov AA, Solovyev VV (1995) Prediction of proteins secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 247(1):5–11CrossRef
121.
Zurück zum Zitat Schulz GE, Schirmer RH (1979) Principles of Proteins Structure. Springer Verlag, New YorkCrossRef Schulz GE, Schirmer RH (1979) Principles of Proteins Structure. Springer Verlag, New YorkCrossRef
123.
Zurück zum Zitat Shepherd AJ, Gorse D, Thornthon JM (1999) Prediction of the location and type of beta-turns in proteins using neural networks. Protein Sci 8(5):1045–1055CrossRef Shepherd AJ, Gorse D, Thornthon JM (1999) Prediction of the location and type of beta-turns in proteins using neural networks. Protein Sci 8(5):1045–1055CrossRef
124.
Zurück zum Zitat Shepherd AJ, Gorse D, Thornton JM (2003) A novel approach to the recognition of protein architecture form sequence using Fourier analysis and neural networks. Proteins 50(2):290–302CrossRef Shepherd AJ, Gorse D, Thornton JM (2003) A novel approach to the recognition of protein architecture form sequence using Fourier analysis and neural networks. Proteins 50(2):290–302CrossRef
125.
Zurück zum Zitat Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101CrossRef Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101CrossRef
126.
Zurück zum Zitat Srinivasarao GY, Yeh LS, Marzec CR, Orcutt BC, Barkerm WC (1999) Database of protein sequence alignments: PIR-ALN. Bioinformatics 15:382–390CrossRef Srinivasarao GY, Yeh LS, Marzec CR, Orcutt BC, Barkerm WC (1999) Database of protein sequence alignments: PIR-ALN. Bioinformatics 15:382–390CrossRef
127.
Zurück zum Zitat Stolorz P, Lapedes A, Xia Y (1992) Predicting protein secondary structure using neural net and statistical methods. J Mol Biol 225:363–377CrossRef Stolorz P, Lapedes A, Xia Y (1992) Predicting protein secondary structure using neural net and statistical methods. J Mol Biol 225:363–377CrossRef
128.
Zurück zum Zitat Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159CrossRef Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159CrossRef
129.
Zurück zum Zitat The UniProt Consortium (2010) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148CrossRef The UniProt Consortium (2010) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148CrossRef
130.
Zurück zum Zitat Uniprot C (2009) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38(Database issue):D142–D148 Uniprot C (2009) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38(Database issue):D142–D148
131.
Zurück zum Zitat Vieth M, Kolinski A, Skolnick J, Sikorski A (1992) Prediction of protein secondary structure by neural networks:encoding short and long range patterns of amino acid packing. Acta Biochim Pol 39(4):369–392 Vieth M, Kolinski A, Skolnick J, Sikorski A (1992) Prediction of protein secondary structure by neural networks:encoding short and long range patterns of amino acid packing. Acta Biochim Pol 39(4):369–392
132.
Zurück zum Zitat Vogl TP, Mangis JK, Zigler AK, Zink WT, Alkon DL (1988) Accelerating the convergence of the backpropagation method. Biol Cybern 59:256–264CrossRef Vogl TP, Mangis JK, Zigler AK, Zink WT, Alkon DL (1988) Accelerating the convergence of the backpropagation method. Biol Cybern 59:256–264CrossRef
133.
Zurück zum Zitat Wood MJ, Hirst JD (2005) Protein secondary structure prediction with dihedral angles. Proteins 59(3):476–481CrossRef Wood MJ, Hirst JD (2005) Protein secondary structure prediction with dihedral angles. Proteins 59(3):476–481CrossRef
134.
Zurück zum Zitat Wu CH (1997) Artificial neural networks for molecular sequence analysis. Comput Chem 21:237–256CrossRef Wu CH (1997) Artificial neural networks for molecular sequence analysis. Comput Chem 21:237–256CrossRef
135.
Zurück zum Zitat Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York
136.
Zurück zum Zitat Yang J (2008) Protein secondary structure prediction based on neural network models and support vector machines. CS229 Final Project, Dec 2008 Departments of Electrical Engineering, Stanford University Yang J (2008) Protein secondary structure prediction based on neural network models and support vector machines. CS229 Final Project, Dec 2008 Departments of Electrical Engineering, Stanford University
137.
Zurück zum Zitat Yaseen A, Li Y (2014) Context-based features enhance protein secondary structure prediction accuracy. J Chem Inf Model 54(3):992–1002CrossRef Yaseen A, Li Y (2014) Context-based features enhance protein secondary structure prediction accuracy. J Chem Inf Model 54(3):992–1002CrossRef
138.
Zurück zum Zitat Zeng H, Zhou L, Li L, Wu Y (2012) An improved prediction of protein secondary structures based on a multi-mold integrated neural network. Nat Comput (ICNC). doi:10.1109/ICNC.2012.6234679 Zeng H, Zhou L, Li L, Wu Y (2012) An improved prediction of protein secondary structures based on a multi-mold integrated neural network. Nat Comput (ICNC). doi:10.​1109/​ICNC.​2012.​6234679
139.
Zurück zum Zitat Zhang H, Zhang T, Chen K, Kedaisetti KD, Mizianty MJ, Bao Q, Stach W, Kurgan L (2011) Critical assessment of high-throughput standalone methods for secondary structure prediction. Brief Bioinform 12(6):672–688CrossRef Zhang H, Zhang T, Chen K, Kedaisetti KD, Mizianty MJ, Bao Q, Stach W, Kurgan L (2011) Critical assessment of high-throughput standalone methods for secondary structure prediction. Brief Bioinform 12(6):672–688CrossRef
140.
Zurück zum Zitat Zhang X, Mesirow JP, Waltz DL (1992) Hybrid system for protein secondary structure prediction. J Mol Biol 225:1049–1063CrossRef Zhang X, Mesirow JP, Waltz DL (1992) Hybrid system for protein secondary structure prediction. J Mol Biol 225:1049–1063CrossRef
Metadaten
Titel
Reaching optimized parameter set: protein secondary structure prediction using neural network
verfasst von
Jyotshna Dongardive
Siby Abraham
Publikationsdatum
12.01.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-2150-2

Weitere Artikel der Ausgabe 8/2017

Neural Computing and Applications 8/2017 Zur Ausgabe