Skip to main content
Erschienen in: Rare Metals 5/2020

18.04.2020

Reactive-sintering B4C matrix composite for armor applications

verfasst von: Chao Wu, Yun-Kai Li, Chun-Lei Wan

Erschienen in: Rare Metals | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The B4C matrix composite intended for armor applications still presents restrictions, such as low sintering density, production of large parts and inherited brittleness. Herein, research on this topic is discussed in detail. First, the material outlook of armor applications is organized from the development of composite armor and ceramic materials for armor to the B4C matrix composite and reactive-sintering method. In the second section, the technologies are reviewed for reactive pressureless sintering, reactive hot-pressing sintering, reactive discharge plasma sintering and self-propagating high-temperature sintering. Thereafter, our previous works on the TiB2/SiC/B4C composite and laminated Ti/B4C composite are employed to illustrate their microstructural evolution, phase transformation and fracture model. These studies provide a potential method for producing tough and high-strength ceramic composites for armor application. In the final section, the mechanism, evaluation method and influencing factors of anti-penetration for ceramic armor and B4C matrix composite are reviewed.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Li XD, Yang YS, Lv ST. A numerical study on the disturbance of explosive reactive armors to jet penetration. Def Technol. 2014;10(1):66.CrossRef Li XD, Yang YS, Lv ST. A numerical study on the disturbance of explosive reactive armors to jet penetration. Def Technol. 2014;10(1):66.CrossRef
[2]
Zurück zum Zitat Rahimzadeh T, Arruda EM, Thouless MD. Design of armor for protection against blast and impact. J Mech Phys Solids. 2015;85:98.CrossRef Rahimzadeh T, Arruda EM, Thouless MD. Design of armor for protection against blast and impact. J Mech Phys Solids. 2015;85:98.CrossRef
[3]
Zurück zum Zitat Zhu F, Lu G, Ruan D, Wang ZH. Plastic deformation failure and energy absorption of sandwich structures with metallic cellular cores. Int J Prot Struct. 2010;1:507.CrossRef Zhu F, Lu G, Ruan D, Wang ZH. Plastic deformation failure and energy absorption of sandwich structures with metallic cellular cores. Int J Prot Struct. 2010;1:507.CrossRef
[4]
Zurück zum Zitat Ghaderi SH, Naeini HM, Liaghat GH. Numerical analysis of plastic deformation of a circular sheet metal subjected to transverse impact loading. Int J Impact Eng. 2007;34(4):668.CrossRef Ghaderi SH, Naeini HM, Liaghat GH. Numerical analysis of plastic deformation of a circular sheet metal subjected to transverse impact loading. Int J Impact Eng. 2007;34(4):668.CrossRef
[5]
Zurück zum Zitat Bandaru AK, Ahmad S, Bhatnagar N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos Part A Appl Sci Manuf. 2017;97:151.CrossRef Bandaru AK, Ahmad S, Bhatnagar N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos Part A Appl Sci Manuf. 2017;97:151.CrossRef
[6]
Zurück zum Zitat Liu WL, Chen ZH, Chen ZF, Cheng XW, Wang YW, Chen XH, Liu JY, Li BB, Wang SG. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des. 2015;87:421.CrossRef Liu WL, Chen ZH, Chen ZF, Cheng XW, Wang YW, Chen XH, Liu JY, Li BB, Wang SG. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des. 2015;87:421.CrossRef
[7]
Zurück zum Zitat Lakshmi L, Nandakumar CG. Investigations on the performance of metallic and composite body armors. Procedia Technol. 2016;25:170.CrossRef Lakshmi L, Nandakumar CG. Investigations on the performance of metallic and composite body armors. Procedia Technol. 2016;25:170.CrossRef
[8]
Zurück zum Zitat Gao YB, Zhang W, Xu P, Cai XM, Fan ZQ. Influence of epoxy adhesive layer on impact performance of TiB2–B4C composites armor backed by aluminum plate. Int J Impact Eng. 2018;122:60.CrossRef Gao YB, Zhang W, Xu P, Cai XM, Fan ZQ. Influence of epoxy adhesive layer on impact performance of TiB2–B4C composites armor backed by aluminum plate. Int J Impact Eng. 2018;122:60.CrossRef
[9]
Zurück zum Zitat Assis FS, Pereira AC, Filho FC, Lima EP Jr, Monteiro SN, Weber RP. Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor. J Mater Res Technol. 2018;7(4):535.CrossRef Assis FS, Pereira AC, Filho FC, Lima EP Jr, Monteiro SN, Weber RP. Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor. J Mater Res Technol. 2018;7(4):535.CrossRef
[10]
Zurück zum Zitat Bandaru AK, Vetiyatil L, Ahmad S. The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Compos Part B Eng. 2015;76:300.CrossRef Bandaru AK, Vetiyatil L, Ahmad S. The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Compos Part B Eng. 2015;76:300.CrossRef
[11]
Zurück zum Zitat Govind G, Ahmad S, Idapalapati S. Influence of geometry and hardness of the backing plate on ballistic performance of Bi-layer ceramic armor. Procedia Eng. 2017;173:93.CrossRef Govind G, Ahmad S, Idapalapati S. Influence of geometry and hardness of the backing plate on ballistic performance of Bi-layer ceramic armor. Procedia Eng. 2017;173:93.CrossRef
[12]
Zurück zum Zitat Chung SK. Fracture characterization of armor ceramics. Am Ceram Soc Bull. 1990;69:358. Chung SK. Fracture characterization of armor ceramics. Am Ceram Soc Bull. 1990;69:358.
[13]
Zurück zum Zitat Galanov BA, Kartuzov VV, Ivanov SM. Numerical-analytical model of penetration of long elastically deformable projectiles into semi-infinite targets. Int J Impact Eng. 2008;35(9):1009.CrossRef Galanov BA, Kartuzov VV, Ivanov SM. Numerical-analytical model of penetration of long elastically deformable projectiles into semi-infinite targets. Int J Impact Eng. 2008;35(9):1009.CrossRef
[14]
Zurück zum Zitat Woodward RL. A simple one-dimension approach to moldering ceramic composite armor defeat. Impact Eng. 1990;19:455.CrossRef Woodward RL. A simple one-dimension approach to moldering ceramic composite armor defeat. Impact Eng. 1990;19:455.CrossRef
[15]
Zurück zum Zitat Shin YH, Chung JH, Kim JH. Test and estimation of ballistic armor performance for recent naval ship structural materials. Int J Naval Archit Ocean Eng. 2018;10(6):762.CrossRef Shin YH, Chung JH, Kim JH. Test and estimation of ballistic armor performance for recent naval ship structural materials. Int J Naval Archit Ocean Eng. 2018;10(6):762.CrossRef
[16]
Zurück zum Zitat Hu YL, Jiang F. Development and current status of armor ceramic. Ordnance Mater Sci Eng. 1996;19(5):37. Hu YL, Jiang F. Development and current status of armor ceramic. Ordnance Mater Sci Eng. 1996;19(5):37.
[17]
Zurück zum Zitat Zhang ZG, Wang MC, Song SC, Li M, Sun ZJ. Influence of panel/back thickness on impact damage behavior of alumina/aluminum armors. J Eur Ceram Soc. 2010;30(4):875.CrossRef Zhang ZG, Wang MC, Song SC, Li M, Sun ZJ. Influence of panel/back thickness on impact damage behavior of alumina/aluminum armors. J Eur Ceram Soc. 2010;30(4):875.CrossRef
[18]
Zurück zum Zitat Nastic A, Merati A, Bielawski M, Bolduc M, Fakolujo O, Nganbe M. Instrumented and vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor. J Mater Sci Technol. 2015;31(8):773.CrossRef Nastic A, Merati A, Bielawski M, Bolduc M, Fakolujo O, Nganbe M. Instrumented and vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor. J Mater Sci Technol. 2015;31(8):773.CrossRef
[19]
Zurück zum Zitat Crouch IG, Kesharaju M, Nagarajah R. Characterisation, significance and detection of manufacturing defects in reaction sintered silicon carbide armour materials. Ceram Int. 2015;41(9):11581.CrossRef Crouch IG, Kesharaju M, Nagarajah R. Characterisation, significance and detection of manufacturing defects in reaction sintered silicon carbide armour materials. Ceram Int. 2015;41(9):11581.CrossRef
[20]
Zurück zum Zitat Harris AJ, Vaughan B, Yeomans JA, Smith PA, Burnage ST. Surface preparation of silicon carbide for improved adhesive bond strength in armour applications. J Eur Ceram Soc. 2013;33(15–16):2925.CrossRef Harris AJ, Vaughan B, Yeomans JA, Smith PA, Burnage ST. Surface preparation of silicon carbide for improved adhesive bond strength in armour applications. J Eur Ceram Soc. 2013;33(15–16):2925.CrossRef
[21]
Zurück zum Zitat Clayton JD. Penetration resistance of armor ceramics; dimensional analysis and property correlations. Int J Impact Eng. 2015;85:124.CrossRef Clayton JD. Penetration resistance of armor ceramics; dimensional analysis and property correlations. Int J Impact Eng. 2015;85:124.CrossRef
[22]
Zurück zum Zitat Kudyakova VS, Shishkin RA, Elagin AA, Baranov MV, Beketov AR. Aluminium nitride cubic modifications synthesis methods and its features. Review. J Eur Ceram Soc. 2017;37(4):1143.CrossRef Kudyakova VS, Shishkin RA, Elagin AA, Baranov MV, Beketov AR. Aluminium nitride cubic modifications synthesis methods and its features. Review. J Eur Ceram Soc. 2017;37(4):1143.CrossRef
[23]
Zurück zum Zitat Klement R, Rolc S, Mikulikova R, Krestan J. Transparent armour materials. J Eur Ceram Soc. 2008;28(5):1091.CrossRef Klement R, Rolc S, Mikulikova R, Krestan J. Transparent armour materials. J Eur Ceram Soc. 2008;28(5):1091.CrossRef
[24]
Zurück zum Zitat Pallone A, Demaree J, Adams J. Application of nondestructive ion beam analysis to measure variations in the elemental composition of armor materials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2004;219–220:755.CrossRef Pallone A, Demaree J, Adams J. Application of nondestructive ion beam analysis to measure variations in the elemental composition of armor materials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2004;219–220:755.CrossRef
[25]
Zurück zum Zitat Hu D, Zhang Y, Shen ZW, Cai QY. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems. Ceram Int. 2017;43(13):10368.CrossRef Hu D, Zhang Y, Shen ZW, Cai QY. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems. Ceram Int. 2017;43(13):10368.CrossRef
[26]
Zurück zum Zitat Bandaru AK, Ahmad S, Bhatnagarb N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos A Appl Sci Manuf. 2017;97:151.CrossRef Bandaru AK, Ahmad S, Bhatnagarb N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos A Appl Sci Manuf. 2017;97:151.CrossRef
[27]
Zurück zum Zitat Sun C, Li YK, Wang YF, Zhu LB, Jiang QZ, Miao Y, Chen XB. Effect of alumina addition on the densification of boron carbide ceramics prepared by spark plasma sintering technique. Ceram Int. 2014;40(8):12723.CrossRef Sun C, Li YK, Wang YF, Zhu LB, Jiang QZ, Miao Y, Chen XB. Effect of alumina addition on the densification of boron carbide ceramics prepared by spark plasma sintering technique. Ceram Int. 2014;40(8):12723.CrossRef
[28]
Zurück zum Zitat Goh WL, Zheng Y, Yuan J, Ng KW. Effects of hardness of steel on ceramic armour module against long rod impact. Int J Impact Eng. 2017;109:419.CrossRef Goh WL, Zheng Y, Yuan J, Ng KW. Effects of hardness of steel on ceramic armour module against long rod impact. Int J Impact Eng. 2017;109:419.CrossRef
[29]
Zurück zum Zitat Tang RT, Wen HM. Predicting the perforation of ceramic-faced light armors subjected to projectile impact. Int J Impact Eng. 2017;102:55.CrossRef Tang RT, Wen HM. Predicting the perforation of ceramic-faced light armors subjected to projectile impact. Int J Impact Eng. 2017;102:55.CrossRef
[30]
Zurück zum Zitat Brown LB, Hazell PJ, Crouch IG, Escobedo JP, Brown AD. Computational and split-Hopkinson pressure-bar studies on the effect of the jacket during penetration of an AK47 bullet into ceramic armour. Mater Des. 2017;119:47.CrossRef Brown LB, Hazell PJ, Crouch IG, Escobedo JP, Brown AD. Computational and split-Hopkinson pressure-bar studies on the effect of the jacket during penetration of an AK47 bullet into ceramic armour. Mater Des. 2017;119:47.CrossRef
[31]
Zurück zum Zitat Serjouei A, Gour G, Zhang XF, Idapalapati S, Tan GEB. On improving ballistic limit of bi-layer ceramic-metal armor. Int J Impact Eng. 2017;105:54.CrossRef Serjouei A, Gour G, Zhang XF, Idapalapati S, Tan GEB. On improving ballistic limit of bi-layer ceramic-metal armor. Int J Impact Eng. 2017;105:54.CrossRef
[32]
Zurück zum Zitat Wang Q, Chen ZH, Chen ZF. Design and characteristics of hybrid composite armor subjected to projectile impact. Mater Des. 2013;46:634.CrossRef Wang Q, Chen ZH, Chen ZF. Design and characteristics of hybrid composite armor subjected to projectile impact. Mater Des. 2013;46:634.CrossRef
[33]
Zurück zum Zitat Suri AK, Subramanian C, Sonber JK, Murthy TSRC. Synthesis and consolidation of boron carbide: a review. Int Mater Rev. 2010;55(1):4.CrossRef Suri AK, Subramanian C, Sonber JK, Murthy TSRC. Synthesis and consolidation of boron carbide: a review. Int Mater Rev. 2010;55(1):4.CrossRef
[34]
Zurück zum Zitat Domnich V, Reynaud S, Haber R, Chhowalla M. Boron carbide: structure properties and stability under stress. J Am Ceram Soc. 2011;94(11):3605.CrossRef Domnich V, Reynaud S, Haber R, Chhowalla M. Boron carbide: structure properties and stability under stress. J Am Ceram Soc. 2011;94(11):3605.CrossRef
[35]
Zurück zum Zitat Sahani P, Karak SK, Mishra B, Chakravartyc D, Chaira D. Effect of Al addition on SiC–B4C cermet prepared by pressureless sintering and spark plasma sintering methods. Int J Refract Metal Hard Mater. 2016;57:31.CrossRef Sahani P, Karak SK, Mishra B, Chakravartyc D, Chaira D. Effect of Al addition on SiC–B4C cermet prepared by pressureless sintering and spark plasma sintering methods. Int J Refract Metal Hard Mater. 2016;57:31.CrossRef
[36]
Zurück zum Zitat Heydari MS, Baharvandi HR. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites. Int J Refract Metal Hard Mater. 2015;51:224.CrossRef Heydari MS, Baharvandi HR. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites. Int J Refract Metal Hard Mater. 2015;51:224.CrossRef
[37]
Zurück zum Zitat Saeedi HM, Baharvandi HR. Effect of different additives on the sintering ability and the properties of B4C–TiB2 composite. Int J Refract Metal Hard Mater. 2015;51:61.CrossRef Saeedi HM, Baharvandi HR. Effect of different additives on the sintering ability and the properties of B4C–TiB2 composite. Int J Refract Metal Hard Mater. 2015;51:61.CrossRef
[38]
Zurück zum Zitat Xu CM, Flodström K, Esmaeilzadeh S. Low temperature densification of B4C ceramics with CaF2/Y2O3 additives. Int J Refract Metal Hard Mater. 2012;35:311.CrossRef Xu CM, Flodström K, Esmaeilzadeh S. Low temperature densification of B4C ceramics with CaF2/Y2O3 additives. Int J Refract Metal Hard Mater. 2012;35:311.CrossRef
[39]
Zurück zum Zitat Wei RB, Zhang YJ, Gong HY, Jiang YZ, Zhang Y. The effects of rare-earth oxide additives on the densification of pressureless sintering B4C ceramics. Ceram Int. 2013;39(6):6449.CrossRef Wei RB, Zhang YJ, Gong HY, Jiang YZ, Zhang Y. The effects of rare-earth oxide additives on the densification of pressureless sintering B4C ceramics. Ceram Int. 2013;39(6):6449.CrossRef
[40]
Zurück zum Zitat Solodkyi I, Bezdorozhev O, Vterkovskiy M, Bogomol I, Bolbut V, Krüger M, Badica P, Loboda P. Addition of carbon fibers into B4C infiltrated with molten silicon. Ceram Int. 2019;45(1):168.CrossRef Solodkyi I, Bezdorozhev O, Vterkovskiy M, Bogomol I, Bolbut V, Krüger M, Badica P, Loboda P. Addition of carbon fibers into B4C infiltrated with molten silicon. Ceram Int. 2019;45(1):168.CrossRef
[41]
Zurück zum Zitat Wu HY, Gao MX, Zhu D, Zhang SC, Pan Y, Pan HG, Liu YF, Oliveira F, Vieira JM. SiC whisker reinforced multi-carbides composites prepared from B4C and pyrolyzed rice husks via reactive infiltration. Ceram Int. 2012;38(5):3519.CrossRef Wu HY, Gao MX, Zhu D, Zhang SC, Pan Y, Pan HG, Liu YF, Oliveira F, Vieira JM. SiC whisker reinforced multi-carbides composites prepared from B4C and pyrolyzed rice husks via reactive infiltration. Ceram Int. 2012;38(5):3519.CrossRef
[42]
Zurück zum Zitat Wu C, Li YK, Cheng XW, Xie SH. Formation of laminar Ti–Al–N solid solution and interfacial atomistic structure of TiB2–AlN–B4C composite. J Alloys Compd. 2019;774:727.CrossRef Wu C, Li YK, Cheng XW, Xie SH. Formation of laminar Ti–Al–N solid solution and interfacial atomistic structure of TiB2–AlN–B4C composite. J Alloys Compd. 2019;774:727.CrossRef
[43]
Zurück zum Zitat Ponnusamy P, Feng B, Martin HP, Groen P. Effect of TiB2 nano-inclusions on the thermoelectric properties of boron rich boron carbide. Mater Today Proc. 2018;5(4):10306.CrossRef Ponnusamy P, Feng B, Martin HP, Groen P. Effect of TiB2 nano-inclusions on the thermoelectric properties of boron rich boron carbide. Mater Today Proc. 2018;5(4):10306.CrossRef
[44]
Zurück zum Zitat Alexander R, Ravikanth KV, Srivastava AP, Krishnan M, Dasgupta K. Synergistic effect of carbon nanotubes on the properties of hot pressed boron carbide. Mater Today Commun. 2018;17:450.CrossRef Alexander R, Ravikanth KV, Srivastava AP, Krishnan M, Dasgupta K. Synergistic effect of carbon nanotubes on the properties of hot pressed boron carbide. Mater Today Commun. 2018;17:450.CrossRef
[45]
Zurück zum Zitat Wang TS, Zhang YY, Karandikar P, Ni CY. Structural evolution in reaction-bonded silicon carbide and boron carbide composites (RBSBC). Ceram Int. 2018;44(2):2593.CrossRef Wang TS, Zhang YY, Karandikar P, Ni CY. Structural evolution in reaction-bonded silicon carbide and boron carbide composites (RBSBC). Ceram Int. 2018;44(2):2593.CrossRef
[46]
Zurück zum Zitat Guo H, Zhang ZW. Processing and strengthening mechanisms of boron-carbide-reinforced aluminum matrix composites. Met Powder Rep. 2018;73(2):62.CrossRef Guo H, Zhang ZW. Processing and strengthening mechanisms of boron-carbide-reinforced aluminum matrix composites. Met Powder Rep. 2018;73(2):62.CrossRef
[47]
Zurück zum Zitat Biesuz M, Sglavo VM. Flash sintering of ceramics. J Eur Ceram Soc. 2019;39(2–3):115.CrossRef Biesuz M, Sglavo VM. Flash sintering of ceramics. J Eur Ceram Soc. 2019;39(2–3):115.CrossRef
[48]
Zurück zum Zitat Raju K, Yoon DH. Sintering additives for SiC based on the reactivity: a review. Ceram Int. 2016;42(16):17947.CrossRef Raju K, Yoon DH. Sintering additives for SiC based on the reactivity: a review. Ceram Int. 2016;42(16):17947.CrossRef
[49]
Zurück zum Zitat Rojas FR, Moreno R, Guiberteau F, Ortiz AL. Aqueous colloidal processing of near-net shape B4C–Ni cermet compacts. J Eur Ceram Soc. 2016;36(8):1915.CrossRef Rojas FR, Moreno R, Guiberteau F, Ortiz AL. Aqueous colloidal processing of near-net shape B4C–Ni cermet compacts. J Eur Ceram Soc. 2016;36(8):1915.CrossRef
[50]
Zurück zum Zitat Rafiei M, Salehi M, Shamanian M, Motallebzadeh A. Preparation and oxidation behavior of B4C–Ni and B4C–TiB2–TiC–Ni composite coatings produced by an HVOF process. Ceram Int. 2014;40(8):13599.CrossRef Rafiei M, Salehi M, Shamanian M, Motallebzadeh A. Preparation and oxidation behavior of B4C–Ni and B4C–TiB2–TiC–Ni composite coatings produced by an HVOF process. Ceram Int. 2014;40(8):13599.CrossRef
[51]
Zurück zum Zitat Rong L, Ru HQ, Kai G, Di T. Research on preparation of Zr(OH)4/B4C composite powder by different processes. J Rare Earths. 2007;25:340.CrossRef Rong L, Ru HQ, Kai G, Di T. Research on preparation of Zr(OH)4/B4C composite powder by different processes. J Rare Earths. 2007;25:340.CrossRef
[52]
Zurück zum Zitat Krishnarao RV, Alam MZ, Das DK. In-situ formation of SiC ZrB2–SiC and ZrB2–SiC–B4C–YAG coatings for high temperature oxidation protection of C/C composites. Corros Sci. 2018;141:72.CrossRef Krishnarao RV, Alam MZ, Das DK. In-situ formation of SiC ZrB2–SiC and ZrB2–SiC–B4C–YAG coatings for high temperature oxidation protection of C/C composites. Corros Sci. 2018;141:72.CrossRef
[53]
Zurück zum Zitat Zou J, Zhang GJ, Fu ZY. Pressureless densification of ultra-high temperature ceramics and microstructure tailoring. Chin J Rare Met. 2019;43(11):1221. Zou J, Zhang GJ, Fu ZY. Pressureless densification of ultra-high temperature ceramics and microstructure tailoring. Chin J Rare Met. 2019;43(11):1221.
[54]
Zurück zum Zitat Sogabe T, Matsuda T, Kuroda K. Preparation of B4C-mixed graphite by pressureless sintering and its air oxidation behavior. Carbon. 1995;33(12):1783.CrossRef Sogabe T, Matsuda T, Kuroda K. Preparation of B4C-mixed graphite by pressureless sintering and its air oxidation behavior. Carbon. 1995;33(12):1783.CrossRef
[55]
Zurück zum Zitat Gosset D, Provot B. Boron carbide as a potential inter matrix; an evaluation. Prog Nucl Energy. 2001;38(3–4):263.CrossRef Gosset D, Provot B. Boron carbide as a potential inter matrix; an evaluation. Prog Nucl Energy. 2001;38(3–4):263.CrossRef
[56]
Zurück zum Zitat Taylor KM, Pallick RJ. Dense carbide composite for armor and abrasives. USP. 1973;765:300. Taylor KM, Pallick RJ. Dense carbide composite for armor and abrasives. USP. 1973;765:300.
[57]
Zurück zum Zitat Ortiza AL, Candelario VM, Morenod R, Guiberteau F. Near-net shape manufacture of B4C–Co and ZrC–Co composites by slip casting and pressureless sintering. J Eur Ceram Soc. 2017;37(15):4577.CrossRef Ortiza AL, Candelario VM, Morenod R, Guiberteau F. Near-net shape manufacture of B4C–Co and ZrC–Co composites by slip casting and pressureless sintering. J Eur Ceram Soc. 2017;37(15):4577.CrossRef
[58]
Zurück zum Zitat Heydari MS, Baharvandi HR, Dolatkhah K. Effect of TiO2 nanoparticles on the pressureless sintering of B4C–TiB2 nanocomposites. Int J Refract Metal Hard Mater. 2015;51:6.CrossRef Heydari MS, Baharvandi HR, Dolatkhah K. Effect of TiO2 nanoparticles on the pressureless sintering of B4C–TiB2 nanocomposites. Int J Refract Metal Hard Mater. 2015;51:6.CrossRef
[59]
Zurück zum Zitat Lee KB, Sim HS, Cho SY, Kwon H. Reaction products of Al–Mg:B4C composite fabricated by pressureless infiltration technique. Mater Sci Eng, A. 2001;302(2):227.CrossRef Lee KB, Sim HS, Cho SY, Kwon H. Reaction products of Al–Mg:B4C composite fabricated by pressureless infiltration technique. Mater Sci Eng, A. 2001;302(2):227.CrossRef
[60]
Zurück zum Zitat Song SC, Bao CG, Wang B. Effect of the addition of carbon fibres on the microstructure and mechanical properties of reaction bonded B4C/SiC composites. J Eur Ceram Soc. 2016;36(8):1905.CrossRef Song SC, Bao CG, Wang B. Effect of the addition of carbon fibres on the microstructure and mechanical properties of reaction bonded B4C/SiC composites. J Eur Ceram Soc. 2016;36(8):1905.CrossRef
[61]
Zurück zum Zitat Zulkuf B, Furkan G. Microstructure and mechanical properties of Cu–B4C and CuAl–B4C composites produced by hot pressing. Rare Met. 2019;38(12):1169.CrossRef Zulkuf B, Furkan G. Microstructure and mechanical properties of Cu–B4C and CuAl–B4C composites produced by hot pressing. Rare Met. 2019;38(12):1169.CrossRef
[62]
Zurück zum Zitat Lyu Y, Tang H, Wang P. Tribological properties of carbon fiber toughened SiC prepared by hot pressing sintering. Ceram Int. 2019;45(1):832.CrossRef Lyu Y, Tang H, Wang P. Tribological properties of carbon fiber toughened SiC prepared by hot pressing sintering. Ceram Int. 2019;45(1):832.CrossRef
[63]
Zurück zum Zitat Radloff US, Kern F, Gadow R. Spark plasma sintering and hot pressing of ZTA-NbC materials—a comparison of mechanical and electrical properties. J Eur Ceram Soc. 2018;38(11):4003.CrossRef Radloff US, Kern F, Gadow R. Spark plasma sintering and hot pressing of ZTA-NbC materials—a comparison of mechanical and electrical properties. J Eur Ceram Soc. 2018;38(11):4003.CrossRef
[64]
Zurück zum Zitat Zhang ZX, Xu CJ, Du XW, Li ZL, Wang JL, Xing WH, Sheng Y, Wang WM, Fu ZY. Synthesis mechanism and mechanical properties of TiB2–SiC composites fabricated with the B4C–TiC–Si system by reactive hot pressing. J Alloys Compd. 2015;619:26.CrossRef Zhang ZX, Xu CJ, Du XW, Li ZL, Wang JL, Xing WH, Sheng Y, Wang WM, Fu ZY. Synthesis mechanism and mechanical properties of TiB2–SiC composites fabricated with the B4C–TiC–Si system by reactive hot pressing. J Alloys Compd. 2015;619:26.CrossRef
[65]
Zurück zum Zitat He P, Dong SM, Kan YM, Zhang XY, Ding YS. Microstructure and mechanical properties of B4C–TiB2 composites prepared by reaction hot pressing using Ti3SiC2 as additive. Ceram Int. 2016;42(1):650.CrossRef He P, Dong SM, Kan YM, Zhang XY, Ding YS. Microstructure and mechanical properties of B4C–TiB2 composites prepared by reaction hot pressing using Ti3SiC2 as additive. Ceram Int. 2016;42(1):650.CrossRef
[66]
Zurück zum Zitat Moradkhani A, Baharvandi H, Samani MM. Mechanical properties and microstructure of B4C–NanoTiB2–Fe/Ni composites under different sintering temperatures. Mater Sci Eng, A. 2016;665:141.CrossRef Moradkhani A, Baharvandi H, Samani MM. Mechanical properties and microstructure of B4C–NanoTiB2–Fe/Ni composites under different sintering temperatures. Mater Sci Eng, A. 2016;665:141.CrossRef
[67]
Zurück zum Zitat Liu YZZ, Guo H, Han YY, Zhang XM, Fan YM. Preparation of high thermal-conductivity flake graphite/al by spark plasma sintering. Chin J Rare Met. 2018;43(3):259.CrossRef Liu YZZ, Guo H, Han YY, Zhang XM, Fan YM. Preparation of high thermal-conductivity flake graphite/al by spark plasma sintering. Chin J Rare Met. 2018;43(3):259.CrossRef
[68]
Zurück zum Zitat Wang LJ, Zhang JF, Jiang W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int J Refract Metal Hard Mater. 2013;39:103.CrossRef Wang LJ, Zhang JF, Jiang W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int J Refract Metal Hard Mater. 2013;39:103.CrossRef
[69]
Zurück zum Zitat Rehman SS, Ji W, Khan SA, Asif M, Fu ZY, Wang WM, Wang H, Zhang JY, Wang YC. Microstructure and mechanical properties of B4C based ceramics with Fe3Al as sintering aid by spark plasma sintering. J Eur Ceram Soc. 2014;34(10):2169.CrossRef Rehman SS, Ji W, Khan SA, Asif M, Fu ZY, Wang WM, Wang H, Zhang JY, Wang YC. Microstructure and mechanical properties of B4C based ceramics with Fe3Al as sintering aid by spark plasma sintering. J Eur Ceram Soc. 2014;34(10):2169.CrossRef
[70]
Zurück zum Zitat Xiang MY, Gu JF, Ji W, Xie JJ, Wang WM, Xiong Y, Fu ZY. Reactive spark plasma sintering and mechanical properties of ZrB2–SiC–ZrC composites from ZrC–B4C–Si system. Ceram Int. 2018;44(7):8417.CrossRef Xiang MY, Gu JF, Ji W, Xie JJ, Wang WM, Xiong Y, Fu ZY. Reactive spark plasma sintering and mechanical properties of ZrB2–SiC–ZrC composites from ZrC–B4C–Si system. Ceram Int. 2018;44(7):8417.CrossRef
[71]
Zurück zum Zitat Alexander R, Murthy TSR, Vasanthakumar K, Karthiselva NS, Bakshi SR, Dasgupta K. In-situ synthesis and densification of boron carbide and boron carbide-graphene nanoplatelet composite by reactive spark plasma sintering. Ceram Int. 2018;44(17):21132.CrossRef Alexander R, Murthy TSR, Vasanthakumar K, Karthiselva NS, Bakshi SR, Dasgupta K. In-situ synthesis and densification of boron carbide and boron carbide-graphene nanoplatelet composite by reactive spark plasma sintering. Ceram Int. 2018;44(17):21132.CrossRef
[72]
Zurück zum Zitat Gu JF, Xiang MY, Ji W, Wang WM, Wang H, Fu ZY. Synthesis densification and microstructure of TaC–TaB2–SiC ceramics. J Am Ceram Soc. 2018;101(12):5400.CrossRef Gu JF, Xiang MY, Ji W, Wang WM, Wang H, Fu ZY. Synthesis densification and microstructure of TaC–TaB2–SiC ceramics. J Am Ceram Soc. 2018;101(12):5400.CrossRef
[73]
Zurück zum Zitat Bowen CR, Derby B. Finite-difference modelling of self-propagating high-temperature synthesis of materials. Acta Metall Mater. 1995;43(10):3903.CrossRef Bowen CR, Derby B. Finite-difference modelling of self-propagating high-temperature synthesis of materials. Acta Metall Mater. 1995;43(10):3903.CrossRef
[74]
Zurück zum Zitat Lis J, Miyamoto Y, Pampuch R, Tanihata K. Ti3SiC-based materials prepared by HIP-SHS techniques. Mater Lett. 1995;22(3–4):163.CrossRef Lis J, Miyamoto Y, Pampuch R, Tanihata K. Ti3SiC-based materials prepared by HIP-SHS techniques. Mater Lett. 1995;22(3–4):163.CrossRef
[75]
Zurück zum Zitat Mossino P. Some aspects in self-propagating high-temperature synthesis. Ceram Int. 2004;30(3):311.CrossRef Mossino P. Some aspects in self-propagating high-temperature synthesis. Ceram Int. 2004;30(3):311.CrossRef
[76]
Zurück zum Zitat Munir ZA, Tamburini UA. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater Sci Rep. 1989;3(7–8):277.CrossRef Munir ZA, Tamburini UA. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater Sci Rep. 1989;3(7–8):277.CrossRef
[77]
Zurück zum Zitat Merzhanov AG. History and recent developments in SHS. Ceram Int. 1995;21(5):371.CrossRef Merzhanov AG. History and recent developments in SHS. Ceram Int. 1995;21(5):371.CrossRef
[78]
Zurück zum Zitat Kahrizsangi RE, Torabi O. Combination of mechanochemical activation and self-propagating behavior for the synthesis of nanocomposite Al2O3/B4C powder. J Alloys Compd. 2012;514:54.CrossRef Kahrizsangi RE, Torabi O. Combination of mechanochemical activation and self-propagating behavior for the synthesis of nanocomposite Al2O3/B4C powder. J Alloys Compd. 2012;514:54.CrossRef
[79]
Zurück zum Zitat Liang YH, Wang HY, Yang YF, Zhao RY, Jiang QC. Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu–Ti–B4C system. J Alloys Compd. 2008;462(1–2):113.CrossRef Liang YH, Wang HY, Yang YF, Zhao RY, Jiang QC. Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu–Ti–B4C system. J Alloys Compd. 2008;462(1–2):113.CrossRef
[80]
Zurück zum Zitat Shen P, Zou BL, Jin SB, Jiang QC. Reaction mechanism in self-propagating high temperature synthesis of TiC–TiB2/Al composites from an Al–Ti–B4C system. Mater Sci Eng, A. 2007;454–455:300.CrossRef Shen P, Zou BL, Jin SB, Jiang QC. Reaction mechanism in self-propagating high temperature synthesis of TiC–TiB2/Al composites from an Al–Ti–B4C system. Mater Sci Eng, A. 2007;454–455:300.CrossRef
[81]
Zurück zum Zitat Cui HZ, Liu W, Cao LL, Song Q, Tian J, Teng FL, Wang J. Effects of B4C particle size on pore structures of porous TiB2–TiC by reaction synthesis. J Eur Ceram Soc. 2015;35(13):3381.CrossRef Cui HZ, Liu W, Cao LL, Song Q, Tian J, Teng FL, Wang J. Effects of B4C particle size on pore structures of porous TiB2–TiC by reaction synthesis. J Eur Ceram Soc. 2015;35(13):3381.CrossRef
[82]
Zurück zum Zitat Jiang QC, Ma BX, Wang HY, Wang Y, Dong YP. Fabrication of steel matrix composites locally reinforced with in situ TiB2–TiC particulates using self-propagating high-temperature synthesis reaction of Al–Ti–B4C system during casting. Compos Part A. 2006;37(1):133.CrossRef Jiang QC, Ma BX, Wang HY, Wang Y, Dong YP. Fabrication of steel matrix composites locally reinforced with in situ TiB2–TiC particulates using self-propagating high-temperature synthesis reaction of Al–Ti–B4C system during casting. Compos Part A. 2006;37(1):133.CrossRef
[83]
Zurück zum Zitat Wu C, Xie SH, Li YK. Microstructure evolution and phase transformation of TiB2/SiC/B4C composites synthesized from Ti–SiC–B4C ternary system. Int J Appl Ceram Technol. 2017;14(6):1055.CrossRef Wu C, Xie SH, Li YK. Microstructure evolution and phase transformation of TiB2/SiC/B4C composites synthesized from Ti–SiC–B4C ternary system. Int J Appl Ceram Technol. 2017;14(6):1055.CrossRef
[84]
Zurück zum Zitat Wu C, Li YK, Cheng XW, Xie SH. Microstructural evolution and oxidation behavior of TiB2–SiC–B4C composite fabricated by reactive spark plasma sintering. J Alloys Compd. 2018;765:158.CrossRef Wu C, Li YK, Cheng XW, Xie SH. Microstructural evolution and oxidation behavior of TiB2–SiC–B4C composite fabricated by reactive spark plasma sintering. J Alloys Compd. 2018;765:158.CrossRef
[85]
Zurück zum Zitat Wu C, Li YK, Xie SH. Micro-structure mechanical properties and comparison of monolithic and laminated Ti–B4C composite with Al doped. J Alloys Compd. 2018;733:1.CrossRef Wu C, Li YK, Xie SH. Micro-structure mechanical properties and comparison of monolithic and laminated Ti–B4C composite with Al doped. J Alloys Compd. 2018;733:1.CrossRef
[86]
Zurück zum Zitat Wu C, Xie SH, Li YK, Xu HQ, Chen YW. Effects of Al addition on the phase transformation and interfacial evolution in multilayer Ti–B4C composite. Ceram Int. 2018;44(4):4121.CrossRef Wu C, Xie SH, Li YK, Xu HQ, Chen YW. Effects of Al addition on the phase transformation and interfacial evolution in multilayer Ti–B4C composite. Ceram Int. 2018;44(4):4121.CrossRef
[87]
Zurück zum Zitat Luo T. Preparation and Anti-elastic Properties of Fiber-Constrained Ceramic Composite Targets. Beijing: Beijing Institute of Technology; 2015. 92. Luo T. Preparation and Anti-elastic Properties of Fiber-Constrained Ceramic Composite Targets. Beijing: Beijing Institute of Technology; 2015. 92.
[88]
Zurück zum Zitat Jiang ZG, Zeng SY, Shen ZQ. Research progress on lightweight ceramic armor structure. Acta Armamentarii. 2010;31(5):603. Jiang ZG, Zeng SY, Shen ZQ. Research progress on lightweight ceramic armor structure. Acta Armamentarii. 2010;31(5):603.
[89]
Zurück zum Zitat Hou HL, Zhu X, Liu ZJ, Gu MB, Mei ZY. Experimental study on anti-elasticity of marine lightweight ceramic composite armor. Ordnance Mater Sci Eng. 2007;30(3):5. Hou HL, Zhu X, Liu ZJ, Gu MB, Mei ZY. Experimental study on anti-elasticity of marine lightweight ceramic composite armor. Ordnance Mater Sci Eng. 2007;30(3):5.
[90]
Zurück zum Zitat Zhao JS, Wang YX, Qiu GJ, Meng YJ. Research on structural/functional integrated lightweight composites. FRP Compos Mater. 2005;1:22. Zhao JS, Wang YX, Qiu GJ, Meng YJ. Research on structural/functional integrated lightweight composites. FRP Compos Mater. 2005;1:22.
[91]
Zurück zum Zitat Wilkins ML. Mechanics of penetration and perforation. Int J Eng Sci. 1978;16(11):793.CrossRef Wilkins ML. Mechanics of penetration and perforation. Int J Eng Sci. 1978;16(11):793.CrossRef
[92]
Zurück zum Zitat Lee M, Yoo YH. Analysis of ceramic/metal armor systems. Int J Impact Eng. 2001;25(9):819.CrossRef Lee M, Yoo YH. Analysis of ceramic/metal armor systems. Int J Impact Eng. 2001;25(9):819.CrossRef
[93]
Zurück zum Zitat Hetherington JG, Rajagopalan BP. Energy and momentum changes during ballistic perforation. Int J Impact Eng. 1996;18(3):319.CrossRef Hetherington JG, Rajagopalan BP. Energy and momentum changes during ballistic perforation. Int J Impact Eng. 1996;18(3):319.CrossRef
[94]
Zurück zum Zitat Qiao JC. Study on the Combined Effect of Composite Armor and Reactive Armor. Taiyuan: North University of China; 2018. 116. Qiao JC. Study on the Combined Effect of Composite Armor and Reactive Armor. Taiyuan: North University of China; 2018. 116.
[95]
Zurück zum Zitat Woodward RL, Gooch WA Jr, O’Donnell RG, Perciballi WJ, Baxter BJ, Pattie SD. A study of fragmentation in the ballistic impact of ceramics. Int J Impact Eng. 1994;15(5):605.CrossRef Woodward RL, Gooch WA Jr, O’Donnell RG, Perciballi WJ, Baxter BJ, Pattie SD. A study of fragmentation in the ballistic impact of ceramics. Int J Impact Eng. 1994;15(5):605.CrossRef
[96]
Zurück zum Zitat Woodward RL, Donnell RG, Baxter BJ, Nicol B, Pattie SD. Energy absorption in the failure of ceramic composite armors. Mater Forum. 1989;13:174. Woodward RL, Donnell RG, Baxter BJ, Nicol B, Pattie SD. Energy absorption in the failure of ceramic composite armors. Mater Forum. 1989;13:174.
[97]
Zurück zum Zitat Li WK, Han BH, Zhao ZM. Research progress on armored protective ceramic materials. Special-cast Non-ferr Alloys. 2018;38(3):259. Li WK, Han BH, Zhao ZM. Research progress on armored protective ceramic materials. Special-cast Non-ferr Alloys. 2018;38(3):259.
[98]
Zurück zum Zitat Liu GW, Ni CY, Jin F, Qiao GJ, Lu TJ. Review on the anti-ballistic restraint effect of ceramic/metal composite armor. J Xi’an Jiaotong Univ. 2011;45(3):7. Liu GW, Ni CY, Jin F, Qiao GJ, Lu TJ. Review on the anti-ballistic restraint effect of ceramic/metal composite armor. J Xi’an Jiaotong Univ. 2011;45(3):7.
[99]
Zurück zum Zitat Yaziv D, Rosenberg G, Partom Y. Differential ballistic efficiency of applique armor. In: Proceedings of 9th International Symposium on Ballistics. Royal Military College of Science. Shrivenahm, UK;1986. 315. Yaziv D, Rosenberg G, Partom Y. Differential ballistic efficiency of applique armor. In: Proceedings of 9th International Symposium on Ballistics. Royal Military College of Science. Shrivenahm, UK;1986. 315.
[100]
Zurück zum Zitat Bless SJ, Rosenberg Z, Yoon B. Hypervelocity penetration of ceramic. Int J Impact Eng. 1987;5(1/2/3/4):165.CrossRef Bless SJ, Rosenberg Z, Yoon B. Hypervelocity penetration of ceramic. Int J Impact Eng. 1987;5(1/2/3/4):165.CrossRef
[101]
Zurück zum Zitat Hohler V, Stilp KA, Weber J. Hypervelocity penetration of tungsten sinter-alloy rods into aluminum. Int J Impact Eng. 1995;17(1/2/3):409.CrossRef Hohler V, Stilp KA, Weber J. Hypervelocity penetration of tungsten sinter-alloy rods into aluminum. Int J Impact Eng. 1995;17(1/2/3):409.CrossRef
[102]
Zurück zum Zitat Zhang ZQ, Zhao BR, Zhang RS, Wei CZ. Armor Protection Technology Foundation. Beijing: Weapon Industry Press; 2000. 44. Zhang ZQ, Zhao BR, Zhang RS, Wei CZ. Armor Protection Technology Foundation. Beijing: Weapon Industry Press; 2000. 44.
[103]
Zurück zum Zitat Wang LS, Fang YC, Yin BY. Mechanical properties of boron carbide ceramics and its influencing factors. Powder Metall Mater Sci Eng. 2001;6(4):255. Wang LS, Fang YC, Yin BY. Mechanical properties of boron carbide ceramics and its influencing factors. Powder Metall Mater Sci Eng. 2001;6(4):255.
[104]
Zurück zum Zitat Wu HL, Wu X, Hu LP, Li ST, Miao C, Zhong T. Experimental study on the elastic resistance of ceramic composite targets with different constraints. Ordnance Mater Sci Eng. 2010;33(2):74. Wu HL, Wu X, Hu LP, Li ST, Miao C, Zhong T. Experimental study on the elastic resistance of ceramic composite targets with different constraints. Ordnance Mater Sci Eng. 2010;33(2):74.
[105]
Zurück zum Zitat Wang TJ, Xiong N, Zhou WP, Qin SG. Research progress of new metal melt infiltration composites. Mater Mech Eng. 2006;30(9):1. Wang TJ, Xiong N, Zhou WP, Qin SG. Research progress of new metal melt infiltration composites. Mater Mech Eng. 2006;30(9):1.
[106]
Zurück zum Zitat Fu SL, Ding HD, Lei BQ, Han WZ, Pang MQ. A primary investigation of ballistic performances of (B4C + Al) tri-dimension microstructure composite. J Armored Force Eng Inst. 2003;17(3):17. Fu SL, Ding HD, Lei BQ, Han WZ, Pang MQ. A primary investigation of ballistic performances of (B4C + Al) tri-dimension microstructure composite. J Armored Force Eng Inst. 2003;17(3):17.
[107]
Zurück zum Zitat Ding HD, Zhang JY, Xu Y, Fang NX, Zhang GJ. Preparation and target test of boron carbide based double composite armor plate. China Surf Eng. 2013;26(3):86. Ding HD, Zhang JY, Xu Y, Fang NX, Zhang GJ. Preparation and target test of boron carbide based double composite armor plate. China Surf Eng. 2013;26(3):86.
[108]
Zurück zum Zitat Sun C. Preparation Properties and Ballistic Performance Test of B4C Matrix Composite Ceramic. Beijing: Beijing Institute of Technology; 2015. 122. Sun C. Preparation Properties and Ballistic Performance Test of B4C Matrix Composite Ceramic. Beijing: Beijing Institute of Technology; 2015. 122.
[109]
Zurück zum Zitat Yi CH, Hu ME, Gu Y. Experimental study on high-speed penetration of ceramic/aluminum alloy composite structure by 93 tungsten fragment. Ordnance Mater Sci Eng. 2013;36:17. Yi CH, Hu ME, Gu Y. Experimental study on high-speed penetration of ceramic/aluminum alloy composite structure by 93 tungsten fragment. Ordnance Mater Sci Eng. 2013;36:17.
[110]
Zurück zum Zitat Yue XY, Li ZN, Guo GY, Ru HQ. Preparation and ballistic resistance of B4C–Al foam composites with a bilayer structure. J Univ Sci Technol Beijing. 2014;36:1082. Yue XY, Li ZN, Guo GY, Ru HQ. Preparation and ballistic resistance of B4C–Al foam composites with a bilayer structure. J Univ Sci Technol Beijing. 2014;36:1082.
Metadaten
Titel
Reactive-sintering B4C matrix composite for armor applications
verfasst von
Chao Wu
Yun-Kai Li
Chun-Lei Wan
Publikationsdatum
18.04.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01404-6

Weitere Artikel der Ausgabe 5/2020

Rare Metals 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.