Skip to main content

2022 | OriginalPaper | Buchkapitel

13. Realistic Fire Resistance Evaluation in the Context of Autonomous Infrastructure

verfasst von : Liming Jiang, Xiqiang Wu, Yaqiang Jiang

Erschienen in: Handbook of Cognitive and Autonomous Systems for Fire Resilient Infrastructures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For decades, the community of fire safety engineers have been dedicated to applying appropriate measures to improve the fire resistance of modern structures. However, estimation of structural resilience in fires is almost narrowed down to the practice of using standard fire curve and prescriptive design (i.e., applying fire protection simply according to the rate of fire resistance). Even with the recent spread of performance-based design (PBD) approaches within the fire safety community, the tools for and understanding of structural fire engineering still lag severely behind. In the 1990s, the ground-breaking Cardington fire tests have demonstrated the significance of investigating system-level responses in evaluating the fire resistance, from which the floor system was found to survive in a post-flashover fire through a tensile membrane action. A similar breakthrough was made after rigorous investigations on the tragic collapse of World Trade Center (WTC) buildings on September 11, 2001, which, by contrast, has shown the system-level vulnerability of modern designed structures. Had the towers not been hit by the aircraft and only set on fire, comprehensive investigations showed that they would have still collapsed. With the decades of research, many fundamental mechanisms of structural behaviour in fires have been identified. The advance of modern technologies and techniques has been utilised in understanding the structural behaviour in fires and ultimately preventing the fire induced failure and collapse. This chapter begins with a brief introduction of these fire induced collapses to underline the complexity of fire–structure interaction analyses, which is followed by a summary of the latest established design fire scenarios and structural failure mechanisms. While highlighting visionary application of autonomous infrastructure in evaluating structural fire resistance, smart technologies such as artificial intelligence (AI) have been summarised in the context of predicting fire behaviour and structural responses. As a pioneering attempt to investigate the collapse criteria for early warning, the tests in Sichuan Fire Research Institute (SCFRI) are presented to demonstrate the use of advanced technologies to monitor the critical events leading to fire induced structural collapse. At the end of this chapter, the prospect of future structural fire resistance evaluation is discussed, while such a vision will always focus on improving the safety performance of built environment considering fire threats.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McAllister, T. P., Sadek, F., Gross, J. L., Kirkpatrick, S., MacNeill, R. A., Bocchieri, R. T., … Sarawit, A. T. (2013). Structural Analysis of Impact Damage to World Trade Center Buildings 1, 2, and 7. Fire Technology, 49(3), 615–642. McAllister, T. P., Sadek, F., Gross, J. L., Kirkpatrick, S., MacNeill, R. A., Bocchieri, R. T., … Sarawit, A. T. (2013). Structural Analysis of Impact Damage to World Trade Center Buildings 1, 2, and 7. Fire Technology, 49(3), 615–642.
2.
Zurück zum Zitat FEMA. (2002) World Trade Center Building performance study: data collection, preliminary observations and recommendations. New York, 1(May), 1–92. FEMA. (2002) World Trade Center Building performance study: data collection, preliminary observations and recommendations. New York, 1(May), 1–92.
3.
Zurück zum Zitat NIST. (2005). NIST NCSTAR 1: Final Report on the Collapse of the World Trade Center Towers. NIST NCSTAR 1, WTC Investigation. NIST. (2005). NIST NCSTAR 1: Final Report on the Collapse of the World Trade Center Towers. NIST NCSTAR 1, WTC Investigation.
4.
Zurück zum Zitat Abboud, N. N. (2010) WTC7 Collapse Analysis and Assessment Report. Weidlinger Associates Inc. Abboud, N. N. (2010) WTC7 Collapse Analysis and Assessment Report. Weidlinger Associates Inc.
5.
Zurück zum Zitat Kotsovinos, P., & Usmani, A. (2013). The World Trade Center 9/11 Disaster and Progressive Collapse of Tall Buildings. Fire Technology, 49(3), 741–765. Kotsovinos, P., & Usmani, A. (2013). The World Trade Center 9/11 Disaster and Progressive Collapse of Tall Buildings. Fire Technology, 49(3), 741–765.
8.
Zurück zum Zitat NIST. (2008). NIST NCSTAR 1A: Final Report on the Collapse of the World Trade Center Building 7. NIST NCSTAR 1A, WTC Investigation. NIST. (2008). NIST NCSTAR 1A: Final Report on the Collapse of the World Trade Center Building 7. NIST NCSTAR 1A, WTC Investigation.
9.
Zurück zum Zitat Arup. (2009) WTC -7 Structural Fire Analysis. London. Arup. (2009) WTC -7 Structural Fire Analysis. London.
10.
Zurück zum Zitat Empis, C. A., Cowlard, A. J., Jowsey, A. I., Usmani, A. S., & Torero, J. L. (2015) A Novel Methodology for the Analysis of Tall Buildings in Fire: WTC-7. Empis, C. A., Cowlard, A. J., Jowsey, A. I., Usmani, A. S., & Torero, J. L. (2015) A Novel Methodology for the Analysis of Tall Buildings in Fire: WTC-7.
11.
Zurück zum Zitat Hulsey, J. L., Quan, Z., & Xiao, F. (2019) A Structural Reevaluation of the Collapse of World Trade Center 7. Fairbanks. Hulsey, J. L., Quan, Z., & Xiao, F. (2019) A Structural Reevaluation of the Collapse of World Trade Center 7. Fairbanks.
13.
Zurück zum Zitat Hajiloo, H., Adelzadeh, M., and Green, M. F. (2017) “Col- lapse of the Plasco Tower in Fire.” Proc., The Second International Conference on Structural Safety under Fire & Blast, London, UK. Hajiloo, H., Adelzadeh, M., and Green, M. F. (2017) “Col- lapse of the Plasco Tower in Fire.” Proc., The Second International Conference on Structural Safety under Fire & Blast, London, UK.
14.
Zurück zum Zitat Han, L., Potter, S., Beckett, G. et al (2010) FireGrid: An e-infrastructure for next-generation emergency response support. J Parallel Distrib Comput 70:1128–1141. Han, L., Potter, S., Beckett, G. et al (2010) FireGrid: An e-infrastructure for next-generation emergency response support. J Parallel Distrib Comput 70:1128–1141.
15.
Zurück zum Zitat SFPE. (2016). SFPE Handbook of Fire Protection Eng. In M. Hurley, J. Hall, K. Harada, E. Kuligowski, M. Puchovsky, J. Torero, … C. Wiezorek (Eds.), SFPE Handbook of Fire Protection Engineering. SFPE. (2016). SFPE Handbook of Fire Protection Eng. In M. Hurley, J. Hall, K. Harada, E. Kuligowski, M. Puchovsky, J. Torero, … C. Wiezorek (Eds.), SFPE Handbook of Fire Protection Engineering.
16.
Zurück zum Zitat Wakamatsu, T., & Hasemi, Y. (1988). Heating Mechanism of Building Components Exposed to a Localized Fire -FDM Thermal Analysis of a Steel Beam under Ceiling-. In Fire Safety Science 3 (pp. 335–346). Wakamatsu, T., & Hasemi, Y. (1988). Heating Mechanism of Building Components Exposed to a Localized Fire -FDM Thermal Analysis of a Steel Beam under Ceiling-. In Fire Safety Science 3 (pp. 335–346).
18.
Zurück zum Zitat Wakamatsu, T., Hasemi, Y., Kagiya, K., & Kamikawa, D. (2003) Heating Mechanism of Unprotected Steel Beam Installed Beneath Ceiling and Exposed to a Localized Fire: Verification using the real-scale experiment and effects of the smoke layer. In Fire Safety Science--Proceedings of the Seventh International Symposium (pp. 1099–1110). International Association for Fire Safety Science. Wakamatsu, T., Hasemi, Y., Kagiya, K., & Kamikawa, D. (2003) Heating Mechanism of Unprotected Steel Beam Installed Beneath Ceiling and Exposed to a Localized Fire: Verification using the real-scale experiment and effects of the smoke layer. In Fire Safety Science--Proceedings of the Seventh International Symposium (pp. 1099–1110). International Association for Fire Safety Science.
19.
Zurück zum Zitat Jiang, L., Jiang, Y., Zhang, Z., Usmani, A. (2021a) Thermal Analysis Infrastructure in OpenSees for Fire and its Smart Application Interface Towards Natural Fire Modelling, Fire Technology. Jiang, L., Jiang, Y., Zhang, Z., Usmani, A. (2021a) Thermal Analysis Infrastructure in OpenSees for Fire and its Smart Application Interface Towards Natural Fire Modelling, Fire Technology.
20.
Zurück zum Zitat Lange, D., & Sjöström, J. (2014). Mechanical response of a partially restrained column exposed to localised fires. Fire Safety Journal, 67, 82–95. Lange, D., & Sjöström, J. (2014). Mechanical response of a partially restrained column exposed to localised fires. Fire Safety Journal, 67, 82–95.
22.
Zurück zum Zitat Stern-Gottfried, J., Rein, G., Bisby, L.A. & Torero, J.L. (2010) Experimental review of the homogeneous temperature assumption in post-flashover compartment fires. Fire Safety Journal.45 (4), 249–261. Stern-Gottfried, J., Rein, G., Bisby, L.A. & Torero, J.L. (2010) Experimental review of the homogeneous temperature assumption in post-flashover compartment fires. Fire Safety Journal.45 (4), 249–261.
23.
Zurück zum Zitat Drysdale, D. (2011) An Introduction to Fire Dynamics. Third Edition. Chichester, Wiley. Drysdale, D. (2011) An Introduction to Fire Dynamics. Third Edition. Chichester, Wiley.
24.
Zurück zum Zitat Bisby, L., Gales, J. & Maluk, C. (2013) A contemporary review of large-scale non-standard structural fire testing. Fire Science Reviews.2 (1), 1–27. Bisby, L., Gales, J. & Maluk, C. (2013) A contemporary review of large-scale non-standard structural fire testing. Fire Science Reviews.2 (1), 1–27.
25.
Zurück zum Zitat Hidalgo, J.P., Cowlard, A., Abecassis-Empis, C., Maluk, C., et al. (2017) An experimental study of full-scale open floor plan enclosure fires. Fire Safety Journal.89, 22–40. Hidalgo, J.P., Cowlard, A., Abecassis-Empis, C., Maluk, C., et al. (2017) An experimental study of full-scale open floor plan enclosure fires. Fire Safety Journal.89, 22–40.
26.
Zurück zum Zitat Hidalgo, J. P., Goode, T., Gupta, V., Cowlard, A., Abecassis-Empis, C., Maclean, J., … Torero, J. L. (2019) The Malveira fire test: Full-scale demonstration of fire modes in open-plan compartments. Fire Safety Journal, 108, 102827. Hidalgo, J. P., Goode, T., Gupta, V., Cowlard, A., Abecassis-Empis, C., Maclean, J., … Torero, J. L. (2019) The Malveira fire test: Full-scale demonstration of fire modes in open-plan compartments. Fire Safety Journal, 108, 102827.
29.
Zurück zum Zitat Dai, X., Jiang, L., Maclean, J., Welch, S., et al. (2016) A conceptual framework for a design travelling fire for large compartments with fire resistant islands. In: Proceedings of the 14th International Interflam Conference. 2016 pp. 1039–1050. Dai, X., Jiang, L., Maclean, J., Welch, S., et al. (2016) A conceptual framework for a design travelling fire for large compartments with fire resistant islands. In: Proceedings of the 14th International Interflam Conference. 2016 pp. 1039–1050.
30.
Zurück zum Zitat Dai, X., Welch, S., Vassart, O., Cabova, K., Jiang, L., Maclean, J., … Usmani, A. (2020) An Extended Travelling Fire Method (ETFM) Framework for Performance-Based Structural Design. Fire and Materials, 44(33), 1–21. Dai, X., Welch, S., Vassart, O., Cabova, K., Jiang, L., Maclean, J., … Usmani, A. (2020) An Extended Travelling Fire Method (ETFM) Framework for Performance-Based Structural Design. Fire and Materials, 44(33), 1–21.
32.
Zurück zum Zitat Nan, Z., Khan, A., Jiang, L., Chen, S., Usmani, A. (2021). Effect of travelling behaviour to structural members subjected to fire. Building Simulation (under review) Nan, Z., Khan, A., Jiang, L., Chen, S., Usmani, A. (2021). Effect of travelling behaviour to structural members subjected to fire. Building Simulation (under review)
33.
Zurück zum Zitat Charlier, M., Vassart, O., Dai, X., Welch, S., Anderson, J., Sjostrom, J., Nadjai, A. (2020) A simplified representation of travelling fire development in large compartment using CFD analyses. In Proceedings of the 11th International Conference on Structures in Fire, 2020:526-536, Brisbane. Charlier, M., Vassart, O., Dai, X., Welch, S., Anderson, J., Sjostrom, J., Nadjai, A. (2020) A simplified representation of travelling fire development in large compartment using CFD analyses. In Proceedings of the 11th International Conference on Structures in Fire, 2020:526-536, Brisbane.
34.
Zurück zum Zitat Kotsovinos, P., Jiang, Y., & Usmani, A. (2013). Effect of vertically travelling fires on the collapse of tall buildings. International Journal of High-Rise Buidings, 2(1), 49–62. Kotsovinos, P., Jiang, Y., & Usmani, A. (2013). Effect of vertically travelling fires on the collapse of tall buildings. International Journal of High-Rise Buidings, 2(1), 49–62.
35.
Zurück zum Zitat Usmani, A. (2005). Understanding the Response of Composite Structures to Fire. Engineering Journal, Second Qua, 83–98. Usmani, A. (2005). Understanding the Response of Composite Structures to Fire. Engineering Journal, Second Qua, 83–98.
36.
Zurück zum Zitat Jiang, L. & Usmani, A. (2018a) Computational performance of beam-column elements in modelling structural members subjected to localised fire. Engineering Structures. 156, 490–502. Jiang, L. & Usmani, A. (2018a) Computational performance of beam-column elements in modelling structural members subjected to localised fire. Engineering Structures. 156, 490–502.
37.
Zurück zum Zitat Ramesh, S., Choe, L. & Zhang, C. (2020) Experimental investigation of structural steel beams subjected to localized fire. Engineering Structures. 218 (May), 110844. Ramesh, S., Choe, L. & Zhang, C. (2020) Experimental investigation of structural steel beams subjected to localized fire. Engineering Structures. 218 (May), 110844.
38.
Zurück zum Zitat Wang, W.Y. & Li, G.Q. (2009) Behavior of steel columns in a fire with partial damage to fire protection. Journal of Constructional Steel Research, 65 (6), 1392–1400. Wang, W.Y. & Li, G.Q. (2009) Behavior of steel columns in a fire with partial damage to fire protection. Journal of Constructional Steel Research, 65 (6), 1392–1400.
39.
Zurück zum Zitat British Steel (1999) The Behavior Of Multi Storey Steel Framed Buildings In Fire, A European Joint Research Program. British Steel (1999) The Behavior Of Multi Storey Steel Framed Buildings In Fire, A European Joint Research Program.
40.
Zurück zum Zitat Khan, M.A., Jiang, L., Cashell, K.A. & Usmani, A. (2018) Analysis of restrained composite beams exposed to fire using a hybrid simulation approach. Engineering Structures.172, 956–966. Khan, M.A., Jiang, L., Cashell, K.A. & Usmani, A. (2018) Analysis of restrained composite beams exposed to fire using a hybrid simulation approach. Engineering Structures.172, 956–966.
42.
Zurück zum Zitat Al-Jabri, K. S., Burgess, I. W., & Plank, R. J. (2004) Prediction of the degradation of connection characteristics at elevated temperature. Journal of Constructional Steel Research, 60(3–5), 771–781. Al-Jabri, K. S., Burgess, I. W., & Plank, R. J. (2004) Prediction of the degradation of connection characteristics at elevated temperature. Journal of Constructional Steel Research, 60(3–5), 771–781.
43.
Zurück zum Zitat Dai, X. H., Wang, Y. C., & Bailey, C. G. (2010) Numerical modelling of structural fire behaviour of restrained steel beam-column assemblies using typical joint types. Engineering Structures, 32(8), 2337–2351. Dai, X. H., Wang, Y. C., & Bailey, C. G. (2010) Numerical modelling of structural fire behaviour of restrained steel beam-column assemblies using typical joint types. Engineering Structures, 32(8), 2337–2351.
44.
Zurück zum Zitat Wang, Y. C., Davison, J. B., Burgess, I. W., Plank, R. J., Yu, H. X., Dai, X. H., & Bailey, C. G. (2010) The safety of common steel beam/column connections in fire. Structural Engineer, 88(21), 26–35. Wang, Y. C., Davison, J. B., Burgess, I. W., Plank, R. J., Yu, H. X., Dai, X. H., & Bailey, C. G. (2010) The safety of common steel beam/column connections in fire. Structural Engineer, 88(21), 26–35.
46.
Zurück zum Zitat ODPM (2004) The Building Regulations 2000, Part A, Schedule 1: A3, Disproportionate Collapse. ODPM (2004) The Building Regulations 2000, Part A, Schedule 1: A3, Disproportionate Collapse.
47.
Zurück zum Zitat Agarwal, A. & Varma, A.H. (2014) Fire Induced Progressive Collapse of Steel Building Structures: The Role of Interior Gravity Columns. Engineering Structures. 58, 129–140. Agarwal, A. & Varma, A.H. (2014) Fire Induced Progressive Collapse of Steel Building Structures: The Role of Interior Gravity Columns. Engineering Structures. 58, 129–140.
48.
Zurück zum Zitat Fu, F. (2009) Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research. 65 (6), 1269–1278. Fu, F. (2009) Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research. 65 (6), 1269–1278.
49.
Zurück zum Zitat Vlassis, A.G., Izzuddin, B. a., Elghazouli, A.Y. & Nethercot, D.A. (2008) Progressive collapse of multi-storey buildings due to sudden column loss—Part II: Application. Engineering Structures. 30 (5), 1424–1438. Vlassis, A.G., Izzuddin, B. a., Elghazouli, A.Y. & Nethercot, D.A. (2008) Progressive collapse of multi-storey buildings due to sudden column loss—Part II: Application. Engineering Structures. 30 (5), 1424–1438.
50.
Zurück zum Zitat Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. & Nethercot, D.A. (2008) Progressive collapse of multi-storey buildings due to sudden column loss — Part I: Simplified assessment framework. Engineering Structures. 30 (5), 1308–1318. Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. & Nethercot, D.A. (2008) Progressive collapse of multi-storey buildings due to sudden column loss — Part I: Simplified assessment framework. Engineering Structures. 30 (5), 1308–1318.
52.
Zurück zum Zitat Vlassis, A.G., Izzuddin, B. a., Elghazouli, A.Y. & Nethercot, D.A. (2009) Progressive collapse of multi-storey buildings due to failed floor impact. Engineering Structures. 31 (7), 1522–1534. Vlassis, A.G., Izzuddin, B. a., Elghazouli, A.Y. & Nethercot, D.A. (2009) Progressive collapse of multi-storey buildings due to failed floor impact. Engineering Structures. 31 (7), 1522–1534.
53.
Zurück zum Zitat Pham, X.D. & Tan, K.H. (2013) Membrane actions of RC slabs in mitigating progressive collapse of building structures. Engineering Structures. 55, 107–115. Pham, X.D. & Tan, K.H. (2013) Membrane actions of RC slabs in mitigating progressive collapse of building structures. Engineering Structures. 55, 107–115.
54.
Zurück zum Zitat Fang, C., Izzuddin, B. a., Elghazouli, a. Y., & Nethercot, D. a. (2011) Robustness of steel-composite building structures subject to localised fire. Fire Safety Journal, 46(6), 348–363. Fang, C., Izzuddin, B. a., Elghazouli, a. Y., & Nethercot, D. a. (2011) Robustness of steel-composite building structures subject to localised fire. Fire Safety Journal, 46(6), 348–363.
55.
Zurück zum Zitat Shepherd, P.G. & Burgess, I.W. (2011) On the buckling of axially restrained steel columns in fire. Engineering Structures. 33 (10), 2832–2838. Shepherd, P.G. & Burgess, I.W. (2011) On the buckling of axially restrained steel columns in fire. Engineering Structures. 33 (10), 2832–2838.
56.
Zurück zum Zitat Sun, R., Huang, Z. & Burgess, I.W. (2012) Progressive collapse analysis of steel structures under fire conditions. Engineering Structures. 34, 400–413. Sun, R., Huang, Z. & Burgess, I.W. (2012) Progressive collapse analysis of steel structures under fire conditions. Engineering Structures. 34, 400–413.
57.
Zurück zum Zitat Jiang, J., & Li, G. Q. (2017) Progressive collapse analysis of 3D steel frames with concrete slabs exposed to localized fire. Engineering Structures, 149, 21–34. Jiang, J., & Li, G. Q. (2017) Progressive collapse analysis of 3D steel frames with concrete slabs exposed to localized fire. Engineering Structures, 149, 21–34.
58.
Zurück zum Zitat Gernay, T., & Gamba, A. (2018) Progressive collapse triggered by fire induced column loss: Detrimental effect of thermal forces. Engineering Structures, 172(June), 483–496. Gernay, T., & Gamba, A. (2018) Progressive collapse triggered by fire induced column loss: Detrimental effect of thermal forces. Engineering Structures, 172(June), 483–496.
59.
Zurück zum Zitat Bažant, Z. P., & Zhou, Y. (2001) Why did world trade center collapse? - Simple analysis. Archive of Applied Mechanics, 71(12), 802–806.MATH Bažant, Z. P., & Zhou, Y. (2001) Why did world trade center collapse? - Simple analysis. Archive of Applied Mechanics, 71(12), 802–806.MATH
60.
Zurück zum Zitat Lange, D., Röben, C. and Usmani, A. (2012) ‘Tall building collapse mechanisms initiated by fire: Mechanisms and design methodology’, Engineering Structures, 36, pp. 90–103. Lange, D., Röben, C. and Usmani, A. (2012) ‘Tall building collapse mechanisms initiated by fire: Mechanisms and design methodology’, Engineering Structures, 36, pp. 90–103.
61.
Zurück zum Zitat Aralt TT, Nilsen AR (2009). Automatic fire detection in road traffic tunnels. Tunn Undergr Sp Technol 24:75–83. Aralt TT, Nilsen AR (2009). Automatic fire detection in road traffic tunnels. Tunn Undergr Sp Technol 24:75–83.
62.
Zurück zum Zitat Cho, B.H., Bae, J.W., Jung, S.H. (2008) Image processing-based fire detection system using statistic color model. Proc - ALPIT 2008, 7th Int Conf Adv Lang Process Web Inf Technol 245–250. Cho, B.H., Bae, J.W., Jung, S.H. (2008) Image processing-based fire detection system using statistic color model. Proc - ALPIT 2008, 7th Int Conf Adv Lang Process Web Inf Technol 245–250.
63.
Zurück zum Zitat Diehl, D.A. (1976) Fire Detection Systems. In: Plumbing Eng. pp 23–26 Diehl, D.A. (1976) Fire Detection Systems. In: Plumbing Eng. pp 23–26
64.
Zurück zum Zitat Noda, S., Ueda, K. (2002) Fire detection in tunnels using an image processing method. pp 57–62 Noda, S., Ueda, K. (2002) Fire detection in tunnels using an image processing method. pp 57–62
65.
Zurück zum Zitat Hodges, J.L., Lattimer, B.Y., Luxbacher, K.D. (2019) Compartment fire predictions using transpose convolutional neural networks. Fire Safety Journal 108:102854. Hodges, J.L., Lattimer, B.Y., Luxbacher, K.D. (2019) Compartment fire predictions using transpose convolutional neural networks. Fire Safety Journal 108:102854.
66.
Zurück zum Zitat Mountrakis, G., Im, J., Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing. 2011 May 1;66(3):247-59. Mountrakis, G., Im, J., Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing. 2011 May 1;66(3):247-59.
71.
Zurück zum Zitat Treyin, B.U., Dedeolu, Y., etin, A.E. (2005) Flame detection in video using hidden Markov models. In: Proceedings - International Conference on Image Processing, ICIP. pp 1230–1233. Treyin, B.U., Dedeolu, Y., etin, A.E. (2005) Flame detection in video using hidden Markov models. In: Proceedings - International Conference on Image Processing, ICIP. pp 1230–1233.
72.
Zurück zum Zitat Chen, T.H., Wu, P.H., Chiou, Y.C. (2004) An early fire-detection method based on image processing. Proc - Int Conf Image Process ICIP 3:1707–1710. Chen, T.H., Wu, P.H., Chiou, Y.C. (2004) An early fire-detection method based on image processing. Proc - Int Conf Image Process ICIP 3:1707–1710.
73.
Zurück zum Zitat Ko, B.C., Cheong, K.H., Nam, J.Y. (2009) Fire detection based on vision sensor and support vector machines. Fire Safety Journal 44:322–329. Ko, B.C., Cheong, K.H., Nam, J.Y. (2009) Fire detection based on vision sensor and support vector machines. Fire Safety Journal 44:322–329.
74.
Zurück zum Zitat Alamgir, N., Nguyen, K., Chandran, V., Boles, W. (2018) Combining multi-channel color space with local binary co-occurrence feature descriptors for accurate smoke detection from surveillance videos. Fire Safety Journal 102:1–10. Alamgir, N., Nguyen, K., Chandran, V., Boles, W. (2018) Combining multi-channel color space with local binary co-occurrence feature descriptors for accurate smoke detection from surveillance videos. Fire Safety Journal 102:1–10.
75.
Zurück zum Zitat Zhou, Z., Shi, Y., Gao, Z., Li, S. (2016) Wildfire smoke detection based on local extremal region segmentation and surveillance. Fire Safety Journal 85:50–58. Zhou, Z., Shi, Y., Gao, Z., Li, S. (2016) Wildfire smoke detection based on local extremal region segmentation and surveillance. Fire Safety Journal 85:50–58.
77.
Zurück zum Zitat Wu, X., Park, Y., Li, A., et al (2020) Smart Detection of Fire Source in Tunnel Based on the Numerical Database and Artificial Intelligence. Fire Technology,57, 657-682. Wu, X., Park, Y., Li, A., et al (2020) Smart Detection of Fire Source in Tunnel Based on the Numerical Database and Artificial Intelligence. Fire Technology,57, 657-682.
78.
Zurück zum Zitat Pei, Y., Gan, F. (2009) Research on data fusion system of fire detection based on neural-network. Proc 2009 Pacific-Asia Conf Circuits, Commun Syst PACCS 2009 665–668. Pei, Y., Gan, F. (2009) Research on data fusion system of fire detection based on neural-network. Proc 2009 Pacific-Asia Conf Circuits, Commun Syst PACCS 2009 665–668.
80.
Zurück zum Zitat Hodges, J.L. (2018) Predicting Large Domain Multi-Physics Fire Behavior Using Artificial Neural Networks. Virginia Polytechnic Institute and State University Hodges, J.L. (2018) Predicting Large Domain Multi-Physics Fire Behavior Using Artificial Neural Networks. Virginia Polytechnic Institute and State University
81.
Zurück zum Zitat Carvel, R.O., Beard, A.N., Jowitt, P.W. (2005) Fire spread between vehicles in tunnels: Effects of tunnel size, longitudinal ventilation and vehicle spacing. Fire Technology 41:271–304. Carvel, R.O., Beard, A.N., Jowitt, P.W. (2005) Fire spread between vehicles in tunnels: Effects of tunnel size, longitudinal ventilation and vehicle spacing. Fire Technology 41:271–304.
82.
Zurück zum Zitat Dexters, A., Coile, R. (2020) Testing for knowledge: Application of machine learning techniques for prediction of flashover in a 1/5 scale ISO 13784-1 enclosure. Fire Mater 1–12. Dexters, A., Coile, R. (2020) Testing for knowledge: Application of machine learning techniques for prediction of flashover in a 1/5 scale ISO 13784-1 enclosure. Fire Mater 1–12.
84.
Zurück zum Zitat Naser, M.Z. (2019a) Properties and material models for modern construction materials at elevated temperatures. Computational Materials Science 160:16–29. Naser, M.Z. (2019a) Properties and material models for modern construction materials at elevated temperatures. Computational Materials Science 160:16–29.
87.
Zurück zum Zitat Fu, F. (2020) Fire induced progressive collapse potential assessment of steel framed buildings using machine learning. J Constr Steel Res 166:105918. Fu, F. (2020) Fire induced progressive collapse potential assessment of steel framed buildings using machine learning. J Constr Steel Res 166:105918.
89.
Zurück zum Zitat ISO (1999) Fire-resistance tests-Elements of building construction-Part 1: General requirements. ISO 834-1:1999. ISO (1999) Fire-resistance tests-Elements of building construction-Part 1: General requirements. ISO 834-1:1999.
90.
Zurück zum Zitat Jiang, L., & Usmani, A. (2018b) Towards scenario fires – modelling structural response to fire using an integrated computational tool. Advances in Structural Engineering, 21(13), 2056–2067. Jiang, L., & Usmani, A. (2018b) Towards scenario fires – modelling structural response to fire using an integrated computational tool. Advances in Structural Engineering, 21(13), 2056–2067.
91.
Zurück zum Zitat Jiang, L., Anwar, O., Jiang, J. & Usmani, A. (2021b) Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage plasticity material. Engineering Structures.234, 111977. Jiang, L., Anwar, O., Jiang, J. & Usmani, A. (2021b) Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage plasticity material. Engineering Structures.234, 111977.
Metadaten
Titel
Realistic Fire Resistance Evaluation in the Context of Autonomous Infrastructure
verfasst von
Liming Jiang
Xiqiang Wu
Yaqiang Jiang
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-98685-8_13

Premium Partner