2016 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Field-effect Self-mixing Terahertz Detectors
The effect of symmetries in the terahertz field distribution and the field-effect channel on terahertz photocurrent is examined and compared to the quasi-static field-effect detector model. Resonant excitation of cavity plasmon modes and nonresonant self-mixing of terahertz waves are demonstrated in an AlGaN/GaN two-dimensional electron gas with symmetrically designed nanogates, antennas, and filters. We found that the self-mixing signal can be effectively suppressed by the symmetric design and the resonant response benefits from the residual asymmetry. The findings further confirm the quasi-static field-effect detector model. The findings also suggest that a single detector may provide both a high sensitivity from the self-mixing mechanism and a good spectral resolution from the resonant response by optimizing the degree of geometrical and/or electronic symmetries.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Dyakonov, M.I., Shur, M.S.: Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett.
71, 2465 (1993)
CrossRef
2.
Dyakonov, M., Shur, M.S.: Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices
43(3), 380–387 (1996)
CrossRef
3.
Knap, W., Rumyantsev, S., Lu, J., Shur, M., Saylor, C., Brunel, L.: Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl. Phys. Lett.
80, 3433 (2002)
CrossRef
4.
El Fatimy, A., Teppe, F., Dyakonova, N., Knap, W., Seliuta, D., Valuis, G., Shchepetov, A., Roelens, Y., Bollaert, S., Cappy, A., Rumyantsev, S.: Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors. Appl. Phys. Lett.
89, 131926 (2006)
CrossRef
5.
Popov, V.V., Polischuk, O.V., Knap, W., El Fatimy, A.: Broadening of the plasmon resonance due to plasmon-plasmon intermode scattering in terahertz high-electron-mobility transistors. Appl. Phys. Lett.
93, 263503 (2008)
CrossRef
6.
Boubanga-Tombet, S., Teppe, F., Coquillat, D., Nadar, S., Dyakonova, N., Videlier, H., Knap, W., Shchepetov, A., Gardes, C., Roelens, Y., Bollaert, S., Seliuta, D., Vadoklis, R., Valueis, G.: Current driven resonant plasma wave detection of terahertz radiation: toward the Dyakonov-Shur instability. Appl. Phys. Lett.
92, 212101 (2008)
CrossRef
7.
Peralta, X.G., Allen, S.J., Wanke, M.C., Harff, N.E., Simmons, J.A., Lilly, M.P., Reno, J.L., Burke, P.J., Eisenstein, J.P.: Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors. Appl. Phys. Lett.
81, 1627 (2002)
CrossRef
8.
Dyer, G.C., Aizin, G.R., Allen, S.J., Grine, A.D., Bethke, D., Reno, J.L., Shaner, E.A.: Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nature Photon.
7, 925–930 (2013)
CrossRef
9.
Tanigawa, T., Onishi, T., Takigawa, S., Otsuji, T.: Enhanced responsivity in a novel AlGaN/ GaN plasmon-resonant terahertz detector using gate-dipole antenna with parasitic elements. In: The 68th Device Research Conference, vol. 68, pp. 167–168 (2010)
10.
Kim, S., Zimmerman, J.D., Focardi, P., Gossard, A.C., Wu, D.H., Sherwin, M.S.: Room temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors. Appl. Phys. Lett.
92, 253508 (2008)
CrossRef
11.
Knap, W., Deng, Y., Rumyantsev, S., Shur, M.S.: Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett.
81, 4637 (2002)
CrossRef
12.
Otsuji, T., Shur, M.: Terahertz plasmonics: good results and great expectations. IEEE Microw. Mag.
15, 43 (2014)
CrossRef
13.
Lisauskas, A., Pfeiffer, U., Öjefors, E., Bolìvar, P.H., Glaab, D., Roskos, H.G.: Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys.
105, 114511 (2009)
CrossRef
14.
Hadi, R.A., Sherry, H., Grzyb, J., Zhao, Y., Förster, W., Keller, H.M., Cathelinand, A., Kaiser, A., Pfeiffer, U.R.: A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65 nm CMOS. IEEE J. Solid-State Circuits
47, 2999 (2012)
CrossRef
15.
Sun, J.D., Sun, Y.F., Wu, D.M., Cai, Y., Qin, H., Zhang, B.S.: High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett.
100, 013506 (2012)
CrossRef
16.
Sun, J.D., Qin, H., Lewis, R.A., Sun, Y.F., Zhang, X.Y., Cai, Y., Wu, D.M., Zhang, B.S.: Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector. Appl. Phys. Lett.
100, 173513 (2012)
CrossRef
17.
Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater.
11, 865–871 (2012)
CrossRef
18.
Sun, Y.F., Sun, J.D., Zhou, Y., Tan, R.B., Zeng, C.H., Xue, W., Qin, H., Zhang, B.S., Wu, D.M.: Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas. Appl. Phys. Lett.
98, 252103 (2011)
CrossRef
19.
Sun, J.D., Qin, H., Lewis, R.A., Yang, X.X., Sun, Y.F., Zhang, Z.P., Li, X.X., Zhang, X.Y., Cai, Y., Wu, D.M., Zhang, B.S.: The effect of symmetry on resonant and nonresonant photoresponses in a field-effect terahertz detector. Appl. Phys. Lett.
106, 031119 (2015)
CrossRef
- Titel
- Realization of Resonant Plasmon Excitation and Detection
- DOI
- https://doi.org/10.1007/978-3-662-48681-8_4
- Autor:
-
Jiandong Sun
- Verlag
- Springer Berlin Heidelberg
- Sequenznummer
- 4
- Kapitelnummer
- Chapter 4