Skip to main content
Erschienen in: International Journal of Material Forming 5/2023

01.09.2023 | Review

Recent advances in 4D printing hydrogel for biological interfaces

verfasst von: Huanhui Wang, Jianpeng Guo

Erschienen in: International Journal of Material Forming | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

4D printed hydrogels are 3D printed objects whose properties and functions are programmable. In the definition of 4D printing, the fourth dimension arises from the ability of printed structures to change their shape and/or function over time when exposed to given conditions environmental stimuli, during their post-press life. Stimulation-responsive hydrogels produced by the emerging 4D bioprinting technology are currently considered as encouraging tools for various biomedical applications due to their exciting properties such as stretchability, biocompatibility, ultra-flexibility, and printability. Using 3D printing technology, customized functional structures with controllable geometry and trigger ability can be autonomously printed onto desired biological interfaces without considering microfabrication techniques. In this review, by studying the progress in the field of hydrogels for biointerfaces, we summarized the techniques of 4D printing gels, the classification of bioinks, the design strategies of actuators. In addition, we also introduced the applications of 4D hydrogels in tissue repair, vascular grafts, drug delivery, and wearable sensors. Comprehensive insights into the constraints, critical requirements for 4D bioprinting including the biocompatibility of materials, precise designs for meticulous transformations, and individual variability in biological interfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gladman S, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) “Biomimetic 4D printing,“ (in eng), Nature materials, vol. 15, no. 4, pp. 413-8, Apr Gladman S, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) “Biomimetic 4D printing,“ (in eng), Nature materials, vol. 15, no. 4, pp. 413-8, Apr
2.
Zurück zum Zitat Sun X, Yao F, Li J (2020) Nanocomposite hydrogel-based strain and pressure sensors: a review. J Mater Chem A 8(36):18605–18623CrossRef Sun X, Yao F, Li J (2020) Nanocomposite hydrogel-based strain and pressure sensors: a review. J Mater Chem A 8(36):18605–18623CrossRef
3.
Zurück zum Zitat Leu Alexa R et al (2021) “3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering,“ Polymers, vol. 13, no. 5, p. 727, Leu Alexa R et al (2021) “3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering,“ Polymers, vol. 13, no. 5, p. 727,
4.
Zurück zum Zitat Zhou J, Vijayavenkataraman S (2021) “3D-printable conductive materials for tissue engineering and biomedical applications,“ Bioprinting, vol. 24, p. e00166, 2021/12/01/ Zhou J, Vijayavenkataraman S (2021) “3D-printable conductive materials for tissue engineering and biomedical applications,“ Bioprinting, vol. 24, p. e00166, 2021/12/01/
5.
Zurück zum Zitat Xue P et al (2021) Near-infrared light‐driven shape‐morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew Chem Int Ed 60(7):3390–3396CrossRef Xue P et al (2021) Near-infrared light‐driven shape‐morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew Chem Int Ed 60(7):3390–3396CrossRef
6.
Zurück zum Zitat Joshi S, Choudhury SB, Gugulothu SS, Visweswariah, Chatterjee K “Strategies to Promote Vascularization in 3D Printed Tissue Scaffolds: Trends and Challenges,“ Biomacromolecules, vol. 23, no. 7, pp. 2730–2751, 2022/07/11 2022 Joshi S, Choudhury SB, Gugulothu SS, Visweswariah, Chatterjee K “Strategies to Promote Vascularization in 3D Printed Tissue Scaffolds: Trends and Challenges,“ Biomacromolecules, vol. 23, no. 7, pp. 2730–2751, 2022/07/11 2022
7.
Zurück zum Zitat Kirchmajer DM, Gorkin Iii R (2015) An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B 3(20):4105–4117CrossRef Kirchmajer DM, Gorkin Iii R (2015) An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B 3(20):4105–4117CrossRef
8.
Zurück zum Zitat Wang H, Li X, Li M, Wang S, Zuo A, Guo J (2022) “Bioadhesion design of hydrogels: adhesion strategies and evaluation methods for biological interfaces,“ J Adhes Sci Technol, pp. 1–35, Wang H, Li X, Li M, Wang S, Zuo A, Guo J (2022) “Bioadhesion design of hydrogels: adhesion strategies and evaluation methods for biological interfaces,“ J Adhes Sci Technol, pp. 1–35,
9.
Zurück zum Zitat Vázquez-González M, Willner I (2020) Stimuli-Responsive Biomolecule-Based hydrogels and their applications. Angew Chem Int Ed 59(36):15342–15377CrossRef Vázquez-González M, Willner I (2020) Stimuli-Responsive Biomolecule-Based hydrogels and their applications. Angew Chem Int Ed 59(36):15342–15377CrossRef
10.
Zurück zum Zitat Díaz-Payno PJ et al (2022) “Swelling-Dependent Shape-Based Transformation of a Human Mesenchymal Stromal Cells-Laden 4D Bioprinted Construct for Cartilage Tissue Engineering,“ (in eng), Adv Healthc Mater, p. e2201891, Oct 29 Díaz-Payno PJ et al (2022) “Swelling-Dependent Shape-Based Transformation of a Human Mesenchymal Stromal Cells-Laden 4D Bioprinted Construct for Cartilage Tissue Engineering,“ (in eng), Adv Healthc Mater, p. e2201891, Oct 29
11.
Zurück zum Zitat Ding et al (2022) “Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting,“ (in eng), Advanced materials (Deerfield Beach, Fla.), vol. 34, no. 15, p. e2109394, Ding et al (2022) “Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting,“ (in eng), Advanced materials (Deerfield Beach, Fla.), vol. 34, no. 15, p. e2109394,
12.
Zurück zum Zitat Fonseca C et al “Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine,“ Chem Rev, vol. 120, no. 19, pp. 11093–11139, 2020/10/14 2020. Fonseca C et al “Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine,“ Chem Rev, vol. 120, no. 19, pp. 11093–11139, 2020/10/14 2020.
13.
Zurück zum Zitat Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M (2022) “4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives,“ Reactive and Functional Polymers, p. 105374, Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M (2022) “4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives,“ Reactive and Functional Polymers, p. 105374,
14.
Zurück zum Zitat Ding SJ, Lee S, Ayyagari R, Tang CT, Huynh, Alsberg E (Jan 2022) 4D biofabrication via instantly generated graded hydrogel scaffolds,“ (in eng). Bioact Mater 7:324–332 Ding SJ, Lee S, Ayyagari R, Tang CT, Huynh, Alsberg E (Jan 2022) 4D biofabrication via instantly generated graded hydrogel scaffolds,“ (in eng). Bioact Mater 7:324–332
15.
Zurück zum Zitat Aytac Z et al (2022) “Innovations in Craniofacial Bone and Periodontal Tissue Engineering - From Electrospinning to Converged Biofabrication,“ (in eng), International materials reviews, vol. 67, no. 4, pp. 347–384, Aytac Z et al (2022) “Innovations in Craniofacial Bone and Periodontal Tissue Engineering - From Electrospinning to Converged Biofabrication,“ (in eng), International materials reviews, vol. 67, no. 4, pp. 347–384,
16.
Zurück zum Zitat Bedell ML, Navara AM, Du Y, Zhang S, Mikos AG (2020) “Polymeric Syst bioprinting " Chem reviews 120(19):10744–10792 Bedell ML, Navara AM, Du Y, Zhang S, Mikos AG (2020) “Polymeric Syst bioprinting " Chem reviews 120(19):10744–10792
17.
Zurück zum Zitat Li X et al “Inkjet Bioprinting of Biomaterials,“ (in eng), Chem Rev, vol. 120, no. 19, pp. 10793–10833, Oct 14 2020. Li X et al “Inkjet Bioprinting of Biomaterials,“ (in eng), Chem Rev, vol. 120, no. 19, pp. 10793–10833, Oct 14 2020.
18.
Zurück zum Zitat Dasgupta Q, Black LD III (2019) A fresh slate for 3D bioprinting. Science 365(6452):446–447CrossRef Dasgupta Q, Black LD III (2019) A fresh slate for 3D bioprinting. Science 365(6452):446–447CrossRef
19.
Zurück zum Zitat Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):1–14CrossRef Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):1–14CrossRef
20.
Zurück zum Zitat Duocastella M, Colina M, Fernández-Pradas JM, Serra P, Morenza JL (2007) “Study of the laser-induced forward transfer of liquids for laser bioprinting,“ Applied Surface Science, vol. 253, no. 19, pp. 7855–7859, /07/31/ 2007 Duocastella M, Colina M, Fernández-Pradas JM, Serra P, Morenza JL (2007) “Study of the laser-induced forward transfer of liquids for laser bioprinting,“ Applied Surface Science, vol. 253, no. 19, pp. 7855–7859, /07/31/ 2007
21.
Zurück zum Zitat Keriquel V et al (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep 7(1):1–10CrossRef Keriquel V et al (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep 7(1):1–10CrossRef
22.
Zurück zum Zitat Gao Q, Yang X, Zhao G, Jin Y, Ma, Xu F (2016) 4D bioprinting for biomedical applications. Trends Biotechnol 34(9):746–756CrossRef Gao Q, Yang X, Zhao G, Jin Y, Ma, Xu F (2016) 4D bioprinting for biomedical applications. Trends Biotechnol 34(9):746–756CrossRef
23.
Zurück zum Zitat Murphy SV, De Coppi P, Atala A (Apr 2020) Opportunities and challenges of translational 3D bioprinting,“ (in eng). Nat biomedical Eng 4(4):370–380 Murphy SV, De Coppi P, Atala A (Apr 2020) Opportunities and challenges of translational 3D bioprinting,“ (in eng). Nat biomedical Eng 4(4):370–380
24.
Zurück zum Zitat Yang F, Tadepalli V, Wiley BJ “3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage,“ (in eng), ACS biomaterials science & engineering, vol. 3, no. 5, pp. 863–869, May 8 2017. Yang F, Tadepalli V, Wiley BJ “3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage,“ (in eng), ACS biomaterials science & engineering, vol. 3, no. 5, pp. 863–869, May 8 2017.
25.
Zurück zum Zitat Liu W et al (2017) Extrusion bioprinting of Shear-Thinning gelatin methacryloyl Bioinks. Adv Healthc Mater 6(12):1601451CrossRef Liu W et al (2017) Extrusion bioprinting of Shear-Thinning gelatin methacryloyl Bioinks. Adv Healthc Mater 6(12):1601451CrossRef
26.
Zurück zum Zitat Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T (2017) “Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability,“ Biofabrication, vol. 9, no. 4, p. 044107, Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T (2017) “Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability,“ Biofabrication, vol. 9, no. 4, p. 044107,
27.
Zurück zum Zitat Chopin-Doroteo M, Mandujano-Tinoco EA, Krötzsch E (2021) “Tailoring of the rheological properties of bioinks to improve bioprinting and bioassembly for tissue replacement,“ Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1865, no. 2, p. 129782, /02/01/ 2021 Chopin-Doroteo M, Mandujano-Tinoco EA, Krötzsch E (2021) “Tailoring of the rheological properties of bioinks to improve bioprinting and bioassembly for tissue replacement,“ Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1865, no. 2, p. 129782, /02/01/ 2021
28.
Zurück zum Zitat Ning L et al (Dec 2020) Biomechanical factors in three-dimensional tissue bioprinting,“ (in eng). Appl Phys Rev 7(4):041319 Ning L et al (Dec 2020) Biomechanical factors in three-dimensional tissue bioprinting,“ (in eng). Appl Phys Rev 7(4):041319
29.
Zurück zum Zitat Negro T, Cherbuin, Lutolf MP (2018) 3D inkjet printing of complex, cell-laden hydrogel structures. Sci Rep 8(1):1–9CrossRef Negro T, Cherbuin, Lutolf MP (2018) 3D inkjet printing of complex, cell-laden hydrogel structures. Sci Rep 8(1):1–9CrossRef
30.
Zurück zum Zitat Rakin RH et al (2021) “Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting,“ Biofabrication, vol. 13, no. 4, p. 044109, Rakin RH et al (2021) “Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting,“ Biofabrication, vol. 13, no. 4, p. 044109,
31.
Zurück zum Zitat Zheng Z, Eglin D, Alini M, Richards GR, Qin L, Lai Y (2021) “Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review,“ Engineering, vol. 7, no. 7, pp. 966–978, Zheng Z, Eglin D, Alini M, Richards GR, Qin L, Lai Y (2021) “Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review,“ Engineering, vol. 7, no. 7, pp. 966–978,
32.
Zurück zum Zitat Dou V, Perez J, Qu A, Tsin B, Xu, Li J (2021) A state-of‐the‐art review of laser‐assisted bioprinting and its future research trends. ChemBioEng Reviews 8(5):517–534CrossRef Dou V, Perez J, Qu A, Tsin B, Xu, Li J (2021) A state-of‐the‐art review of laser‐assisted bioprinting and its future research trends. ChemBioEng Reviews 8(5):517–534CrossRef
33.
Zurück zum Zitat Murphy SV, Atala A “3D bioprinting of tissues and organs,“ Nat Biotechnol, vol. 32, no. 8, pp. 773–785, 2014/08/01 2014. Murphy SV, Atala A “3D bioprinting of tissues and organs,“ Nat Biotechnol, vol. 32, no. 8, pp. 773–785, 2014/08/01 2014.
34.
Zurück zum Zitat Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B (2019) 3D bioprinting of cardiac tissue and cardiac stem cell therapy. Translational Res 211:64–83 2019/09/01/CrossRef Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B (2019) 3D bioprinting of cardiac tissue and cardiac stem cell therapy. Translational Res 211:64–83 2019/09/01/CrossRef
35.
Zurück zum Zitat Kim S, Lee JS, Gao G, Cho DW (2017) “Direct 3D cell-printing of human skin with functional transwell system,“ (in eng), Biofabrication, vol. 9, no. 2, p. 025034, Jun 6 Kim S, Lee JS, Gao G, Cho DW (2017) “Direct 3D cell-printing of human skin with functional transwell system,“ (in eng), Biofabrication, vol. 9, no. 2, p. 025034, Jun 6
36.
Zurück zum Zitat Xiong S et al (Jun 27 2017) A Gelatin-sulfonated Silk Composite Scaffold based on 3D Printing Technology Enhances Skin Regeneration by Stimulating Epidermal Growth and Dermal Neovascularization,“ (in eng). Sci Rep 7(1):4288 Xiong S et al (Jun 27 2017) A Gelatin-sulfonated Silk Composite Scaffold based on 3D Printing Technology Enhances Skin Regeneration by Stimulating Epidermal Growth and Dermal Neovascularization,“ (in eng). Sci Rep 7(1):4288
37.
Zurück zum Zitat Farina M et al (2018) “Transcutaneously refillable, 3D-printed biopolymeric encapsulation system for the transplantation of endocrine cells,“ (in eng), Biomaterials, vol. 177, pp. 125–138, Sep Farina M et al (2018) “Transcutaneously refillable, 3D-printed biopolymeric encapsulation system for the transplantation of endocrine cells,“ (in eng), Biomaterials, vol. 177, pp. 125–138, Sep
38.
Zurück zum Zitat Ho L, Hsu SH (2018) “Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs,“ (in eng), Acta Biomater, vol. 70, pp. 57–70, Apr 1 Ho L, Hsu SH (2018) “Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs,“ (in eng), Acta Biomater, vol. 70, pp. 57–70, Apr 1
39.
Zurück zum Zitat Zou F, Jiang J, Lv F, Xia X, Ma X (Feb 27 2020) Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair,“ (in eng). J Nanobiotechnol 18(1):39 Zou F, Jiang J, Lv F, Xia X, Ma X (Feb 27 2020) Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair,“ (in eng). J Nanobiotechnol 18(1):39
40.
Zurück zum Zitat Byambaa et al (2017) Bioprinted osteogenic and vasculogenic patterns for Engineering 3D bone tissue. Adv Healthc Mater 6(16):1700015CrossRef Byambaa et al (2017) Bioprinted osteogenic and vasculogenic patterns for Engineering 3D bone tissue. Adv Healthc Mater 6(16):1700015CrossRef
41.
Zurück zum Zitat Golafshan N et al (2020) “Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model,“ (in eng), Biomaterials, vol. 261, p. 120302, Dec Golafshan N et al (2020) “Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model,“ (in eng), Biomaterials, vol. 261, p. 120302, Dec
42.
Zurück zum Zitat Liu B et al (2020) “3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model,“ (in eng), Materials science & engineering. C, Materials for biological applications, vol. 112, p. 110905, Jul Liu B et al (2020) “3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model,“ (in eng), Materials science & engineering. C, Materials for biological applications, vol. 112, p. 110905, Jul
43.
Zurück zum Zitat Vijayavenkataraman S, Lu WF, Fuh JY “3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes,“ (in eng), Biofabrication, vol. 8, no. 3, p. 032001, Sep 8 2016 Vijayavenkataraman S, Lu WF, Fuh JY “3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes,“ (in eng), Biofabrication, vol. 8, no. 3, p. 032001, Sep 8 2016
44.
Zurück zum Zitat Alluri R et al (Apr 2018) 3D printed hyperelastic “bone” scaffolds and regional gene therapy: A novel approach to bone healing,“ (in eng). J Biomed Mater Res A 106(4):1104–1110 Alluri R et al (Apr 2018) 3D printed hyperelastic “bone” scaffolds and regional gene therapy: A novel approach to bone healing,“ (in eng). J Biomed Mater Res A 106(4):1104–1110
45.
Zurück zum Zitat Dhawan PM, Kennedy EB, Rizk, Ozbolat IT (2019) “Three-dimensional Bioprinting for Bone and Cartilage Restoration in Orthopaedic Surgery,“ (in eng), The Journal of the American Academy of Orthopaedic Surgeons, vol. 27, no. 5, pp. e215-e226, Mar 1 Dhawan PM, Kennedy EB, Rizk, Ozbolat IT (2019) “Three-dimensional Bioprinting for Bone and Cartilage Restoration in Orthopaedic Surgery,“ (in eng), The Journal of the American Academy of Orthopaedic Surgeons, vol. 27, no. 5, pp. e215-e226, Mar 1
46.
Zurück zum Zitat Li Y et al (Jul 2020) An effective dual-factor modified 3D-printed PCL scaffold for bone defect repair,“ (in eng). J Biomed Mater Res B 108(5):2167–2179 Li Y et al (Jul 2020) An effective dual-factor modified 3D-printed PCL scaffold for bone defect repair,“ (in eng). J Biomed Mater Res B 108(5):2167–2179
47.
Zurück zum Zitat Chaudhari VS, Malakar TK, Murty US, Banerjee S (2021) “Extruded filaments derived 3D printed medicated skin patch to mitigate destructive pulmonary tuberculosis: design to delivery,“ (in eng), Expert opinion on drug delivery, vol. 18, no. 2, pp. 301–313, Feb Chaudhari VS, Malakar TK, Murty US, Banerjee S (2021) “Extruded filaments derived 3D printed medicated skin patch to mitigate destructive pulmonary tuberculosis: design to delivery,“ (in eng), Expert opinion on drug delivery, vol. 18, no. 2, pp. 301–313, Feb
48.
Zurück zum Zitat Ostrovidov S et al (2019) “3D Bioprinting in Skeletal Muscle Tissue Engineering,“ Small, vol. 15, no. 24, p. 1805530, Ostrovidov S et al (2019) “3D Bioprinting in Skeletal Muscle Tissue Engineering,“ Small, vol. 15, no. 24, p. 1805530,
49.
Zurück zum Zitat Tijore JM, Behr SA, Irvine V, Baisane, Venkatraman S (2018) “Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance,“ (in eng), Biomed Microdevices, vol. 20, no. 2, p. 32, Mar 28 Tijore JM, Behr SA, Irvine V, Baisane, Venkatraman S (2018) “Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance,“ (in eng), Biomed Microdevices, vol. 20, no. 2, p. 32, Mar 28
50.
Zurück zum Zitat Merceron TK et al (2015) “A 3D bioprinted complex structure for engineering the muscle-tendon unit,“ (in eng), Biofabrication, vol. 7, no. 3, p. 035003, Jun 17 Merceron TK et al (2015) “A 3D bioprinted complex structure for engineering the muscle-tendon unit,“ (in eng), Biofabrication, vol. 7, no. 3, p. 035003, Jun 17
51.
Zurück zum Zitat Laternser S, Keller H, Leupin O, Rausch M, Graf-Hausner U, Rimann M (2018) “A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues,“ (in eng), SLAS technology, vol. 23, no. 6, pp. 599–613, Dec Laternser S, Keller H, Leupin O, Rausch M, Graf-Hausner U, Rimann M (2018) “A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues,“ (in eng), SLAS technology, vol. 23, no. 6, pp. 599–613, Dec
52.
Zurück zum Zitat Alaee F et al (2014) “Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model,“ (in eng), Journal of orthopaedic research: official publication of the Orthopaedic Research Society, vol. 32, no. 2, pp. 197–203, Feb Alaee F et al (2014) “Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model,“ (in eng), Journal of orthopaedic research: official publication of the Orthopaedic Research Society, vol. 32, no. 2, pp. 197–203, Feb
53.
Zurück zum Zitat Dhawan PM, Kennedy EB, Rizk, Ozbolat IT “Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery,“ JAAOS-Journal of the American Academy of Orthopaedic Surgeons, vol. 27, no. 5, pp. e215-e226, 2019. Dhawan PM, Kennedy EB, Rizk, Ozbolat IT “Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery,“ JAAOS-Journal of the American Academy of Orthopaedic Surgeons, vol. 27, no. 5, pp. e215-e226, 2019.
54.
Zurück zum Zitat Gao G et al (2015) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37(11):2349–2355CrossRef Gao G et al (2015) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37(11):2349–2355CrossRef
55.
Zurück zum Zitat Dang TT, Hwang CH, Back SH, Koo K-i (2020) “Coaxial printing of double-layered and free-standing blood vessel analogues without ultraviolet illumination for high-volume vascularised tissue,“ Biofabrication, vol. 12, no. 4, p. 045033, Dang TT, Hwang CH, Back SH, Koo K-i (2020) “Coaxial printing of double-layered and free-standing blood vessel analogues without ultraviolet illumination for high-volume vascularised tissue,“ Biofabrication, vol. 12, no. 4, p. 045033,
56.
Zurück zum Zitat Cho J et al (2016) “Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 8 (1),“ ed: IOP Publishing, Cho J et al (2016) “Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 8 (1),“ ed: IOP Publishing,
57.
Zurück zum Zitat Lee H et al “Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering,“ Biomacromolecules, vol. 18, no. 4, pp. 1229–1237, 2017/04/10 2017 Lee H et al “Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering,“ Biomacromolecules, vol. 18, no. 4, pp. 1229–1237, 2017/04/10 2017
58.
Zurück zum Zitat Heo N, Lee S-J, Timsina R, Qiu X, Castro NJ, Zhang LG (2019) Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering. Mater Sci Engineering: C 99:582–590CrossRef Heo N, Lee S-J, Timsina R, Qiu X, Castro NJ, Zhang LG (2019) Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering. Mater Sci Engineering: C 99:582–590CrossRef
59.
Zurück zum Zitat Zhu W, Harris BT, Zhang LG (2016) “Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting,“ in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016: IEEE, pp. 4185–4188 Zhu W, Harris BT, Zhang LG (2016) “Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting,“ in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016: IEEE, pp. 4185–4188
60.
Zurück zum Zitat Wang Z et al “Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting,“ ACS Appl Mater Interfaces, vol. 10, no. 32, pp. 26859–26869, 2018/08/15 2018. Wang Z et al “Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting,“ ACS Appl Mater Interfaces, vol. 10, no. 32, pp. 26859–26869, 2018/08/15 2018.
61.
Zurück zum Zitat Feng Z et al (2019) “Graphene-reinforced biodegradable resin composites for stereolithographic 3D printing of bone structure scaffolds,“ Journal of Nanomaterials, vol. 2019 Feng Z et al (2019) “Graphene-reinforced biodegradable resin composites for stereolithographic 3D printing of bone structure scaffolds,“ Journal of Nanomaterials, vol. 2019
62.
Zurück zum Zitat Melchels P, Feijen J, Grijpma DW (2010) “A review on stereolithography and its applications in biomedical engineering,“ Biomaterials, vol. 31, no. 24, pp. 6121–6130, Melchels P, Feijen J, Grijpma DW (2010) “A review on stereolithography and its applications in biomedical engineering,“ Biomaterials, vol. 31, no. 24, pp. 6121–6130,
63.
Zurück zum Zitat Vijayavenkataraman S, Lu W, Fuh J (2016) “3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes,“ Biofabrication, vol. 8, no. 3, p. 032001, Vijayavenkataraman S, Lu W, Fuh J (2016) “3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes,“ Biofabrication, vol. 8, no. 3, p. 032001,
64.
Zurück zum Zitat Liu H et al (2020) Delivering proangiogenic factors from 3D-printed polycaprolactone scaffolds for vascularized bone regeneration. Adv Healthc Mater 9(23):2000727CrossRef Liu H et al (2020) Delivering proangiogenic factors from 3D-printed polycaprolactone scaffolds for vascularized bone regeneration. Adv Healthc Mater 9(23):2000727CrossRef
65.
Zurück zum Zitat Li N, Guo R, Zhang ZJ (2021) Bioink formulations for bone tissue regeneration. Front Bioeng Biotechnol 9:630488CrossRef Li N, Guo R, Zhang ZJ (2021) Bioink formulations for bone tissue regeneration. Front Bioeng Biotechnol 9:630488CrossRef
66.
Zurück zum Zitat Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X “Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water,“ Nat Commun, vol. 8, no. 1, p. 14230, 2017/02/01 2017. Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X “Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water,“ Nat Commun, vol. 8, no. 1, p. 14230, 2017/02/01 2017.
67.
Zurück zum Zitat Jeon S-J, Hauser AW, Hayward RC (2017) Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc Chem Res 50(2):161–169CrossRef Jeon S-J, Hauser AW, Hayward RC (2017) Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc Chem Res 50(2):161–169CrossRef
68.
Zurück zum Zitat Zhao Q, Liang Y, Ren L, Yu Z, Zhang Z, Ren L (2018) Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano Energy 51:621–631 2018/09/01/CrossRef Zhao Q, Liang Y, Ren L, Yu Z, Zhang Z, Ren L (2018) Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano Energy 51:621–631 2018/09/01/CrossRef
69.
Zurück zum Zitat Zhang L, Chizhik S, Wen Y, Naumov P (2016) Directed Motility of Hygroresponsive Biomimetic Actuators. Adv Funct Mater 26(7):1040–1053CrossRef Zhang L, Chizhik S, Wen Y, Naumov P (2016) Directed Motility of Hygroresponsive Biomimetic Actuators. Adv Funct Mater 26(7):1040–1053CrossRef
70.
Zurück zum Zitat Yasa C, Tabak AF, Yasa O, Ceylan H, Sitti M (2019) 3D-Printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv Funct Mater 29(17):1808992CrossRef Yasa C, Tabak AF, Yasa O, Ceylan H, Sitti M (2019) 3D-Printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv Funct Mater 29(17):1808992CrossRef
71.
Zurück zum Zitat Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M “3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release,“ ACS Nano, vol. 13, no. 3, pp. 3353–3362, 2019/03/26 2019. Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M “3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release,“ ACS Nano, vol. 13, no. 3, pp. 3353–3362, 2019/03/26 2019.
72.
Zurück zum Zitat Gao et al “Synergistic pH and Temperature-Driven Actuation of Poly(NIPAM-co-DMAPMA)/Clay Nanocomposite Hydrogel Bilayers,“ ACS Omega, vol. 3, no. 12, pp. 17914–17921, 2018/12/31 2018. Gao et al “Synergistic pH and Temperature-Driven Actuation of Poly(NIPAM-co-DMAPMA)/Clay Nanocomposite Hydrogel Bilayers,“ ACS Omega, vol. 3, no. 12, pp. 17914–17921, 2018/12/31 2018.
73.
Zurück zum Zitat Cao Y et al (2020) Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Translation 23:89–100 2020/07/01/CrossRef Cao Y et al (2020) Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Translation 23:89–100 2020/07/01/CrossRef
74.
Zurück zum Zitat Ionov L (2014) Hydrogel-based actuators: possibilities and limitations. Mater Today 17(10):494–503 2014/12/01/CrossRef Ionov L (2014) Hydrogel-based actuators: possibilities and limitations. Mater Today 17(10):494–503 2014/12/01/CrossRef
75.
Zurück zum Zitat Morales E, Palleau MD, Dickey, Velev OD (2014) Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10(9):1337–1348CrossRef Morales E, Palleau MD, Dickey, Velev OD (2014) Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10(9):1337–1348CrossRef
76.
Zurück zum Zitat Yue M, Hoshino Y, Ohshiro Y, Imamura K, Miura Y (2014) “Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment,“ Angewandte Chemie International Edition, vol. 53, no. 10, pp. 2654–2657, Yue M, Hoshino Y, Ohshiro Y, Imamura K, Miura Y (2014) “Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment,“ Angewandte Chemie International Edition, vol. 53, no. 10, pp. 2654–2657,
77.
Zurück zum Zitat Shang, Theato P (2018) Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation,“ (in eng). Soft Matter 14(41):8401–8407CrossRef Shang, Theato P (2018) Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation,“ (in eng). Soft Matter 14(41):8401–8407CrossRef
78.
Zurück zum Zitat Mishra K et al (2020) Autonomic perspiration in 3D-printed hydrogel actuators. Sci Rob 5(38):eaaz3918CrossRef Mishra K et al (2020) Autonomic perspiration in 3D-printed hydrogel actuators. Sci Rob 5(38):eaaz3918CrossRef
79.
Zurück zum Zitat Chen T, Bakhshi H, Liu L, Ji J, Agarwal S (2018) Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators. Adv Funct Mater 28(19):1800514CrossRef Chen T, Bakhshi H, Liu L, Ji J, Agarwal S (2018) Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators. Adv Funct Mater 28(19):1800514CrossRef
80.
Zurück zum Zitat Shin M, Song KH, Burrell JC, Cullen DK, Burdick JA (2019) Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive tissue support. Adv Sci 6(20):1901229CrossRef Shin M, Song KH, Burrell JC, Cullen DK, Burdick JA (2019) Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive tissue support. Adv Sci 6(20):1901229CrossRef
81.
Zurück zum Zitat Rosales CAG et al (2018) 3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement. Mater Res Express 5(6):065704CrossRef Rosales CAG et al (2018) 3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement. Mater Res Express 5(6):065704CrossRef
82.
Zurück zum Zitat Sayyar S et al “UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds,“ ACS Appl Mater Interfaces, vol. 8, no. 46, pp. 31916–31925, 2016/11/23 2016. Sayyar S et al “UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds,“ ACS Appl Mater Interfaces, vol. 8, no. 46, pp. 31916–31925, 2016/11/23 2016.
83.
Zurück zum Zitat Servant C, Bussy K, Al-Jamal, Kostarelos K (2013) Design, engineering and structural integrity of electro-responsive carbon nanotube-based hydrogels for pulsatile drug release. J Mater Chem B 1(36):4593–4600CrossRef Servant C, Bussy K, Al-Jamal, Kostarelos K (2013) Design, engineering and structural integrity of electro-responsive carbon nanotube-based hydrogels for pulsatile drug release. J Mater Chem B 1(36):4593–4600CrossRef
84.
Zurück zum Zitat Ahadian S et al (2017) Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater 52:81–91CrossRef Ahadian S et al (2017) Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater 52:81–91CrossRef
85.
Zurück zum Zitat Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S, Tafazzoli-Shadpour M, Baharvand H, Aghdami N (2016) Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater Sci Engineering: C 63:131–141CrossRef Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S, Tafazzoli-Shadpour M, Baharvand H, Aghdami N (2016) Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater Sci Engineering: C 63:131–141CrossRef
86.
Zurück zum Zitat Dong S-L, Han L, Du C-X, Wang X-Y, Li L-H, Wei Y (2017) 3D Printing of Aniline Tetramer-Grafted-polyethylenimine and Pluronic F127 Composites for Electroactive Scaffolds. Macromol Rapid Commun 38(4):1600551CrossRef Dong S-L, Han L, Du C-X, Wang X-Y, Li L-H, Wei Y (2017) 3D Printing of Aniline Tetramer-Grafted-polyethylenimine and Pluronic F127 Composites for Electroactive Scaffolds. Macromol Rapid Commun 38(4):1600551CrossRef
87.
Zurück zum Zitat "Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application,“ (2019) Tissue Eng Part B: Reviews 25(5):398–411CrossRef "Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application,“ (2019) Tissue Eng Part B: Reviews 25(5):398–411CrossRef
88.
Zurück zum Zitat Maraveas C, Bayer IS, Bartzanas T (2022) “4D printing: Perspectives for the production of sustainable plastics for agriculture,“ Biotechnology Advances, vol. 54, p. 107785, /01/01/ 2022 Maraveas C, Bayer IS, Bartzanas T (2022) “4D printing: Perspectives for the production of sustainable plastics for agriculture,“ Biotechnology Advances, vol. 54, p. 107785, /01/01/ 2022
89.
Zurück zum Zitat de Haan T, Verjans JM, Broer DJ, Bastiaansen CW, Schenning AP (2014) Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J Am Chem Soc 136(30):10585–10588CrossRef de Haan T, Verjans JM, Broer DJ, Bastiaansen CW, Schenning AP (2014) Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J Am Chem Soc 136(30):10585–10588CrossRef
90.
Zurück zum Zitat Zhang Y, Yin X-Y, Zheng M, Moorlag C, Yang J, Wang ZL (2019) 3D printing of thermoreversible polyurethanes with targeted shape memory and precise in situ self-healing properties. J Mater Chem A 7(12):6972–6984CrossRef Zhang Y, Yin X-Y, Zheng M, Moorlag C, Yang J, Wang ZL (2019) 3D printing of thermoreversible polyurethanes with targeted shape memory and precise in situ self-healing properties. J Mater Chem A 7(12):6972–6984CrossRef
91.
Zurück zum Zitat Gelebart H, Mulder DJ, Vantomme G, Schenning AP, Broer DJ (2017) “A Rewritable, Reprogrammable, Dual Light-Responsive Polymer Actuator,“ Angewandte Chemie International Edition, vol. 56, no. 43, pp. 13436–13439, Gelebart H, Mulder DJ, Vantomme G, Schenning AP, Broer DJ (2017) “A Rewritable, Reprogrammable, Dual Light-Responsive Polymer Actuator,“ Angewandte Chemie International Edition, vol. 56, no. 43, pp. 13436–13439,
92.
Zurück zum Zitat Leist SK, Zhou J (2016) Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual and Physical Prototyping 11(4):249–262CrossRef Leist SK, Zhou J (2016) Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual and Physical Prototyping 11(4):249–262CrossRef
93.
Zurück zum Zitat Brown TE, Anseth KS (2017) Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev 46(21):6532–6552CrossRef Brown TE, Anseth KS (2017) Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev 46(21):6532–6552CrossRef
94.
Zurück zum Zitat Wei Q, Zhang Y, Yao L, Liu Y, Liu, Leng J “Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite,“ ACS Appl Mater Interfaces, vol. 9, no. 1, pp. 876–883, 2017/01/11 2017. Wei Q, Zhang Y, Yao L, Liu Y, Liu, Leng J “Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite,“ ACS Appl Mater Interfaces, vol. 9, no. 1, pp. 876–883, 2017/01/11 2017.
95.
Zurück zum Zitat Zhao Z, Wu J, Mu X, Chen H, Qi HJ, Fang D (2017) Origami by frontal photopolymerization. Sci Adv 3(4):e1602326CrossRef Zhao Z, Wu J, Mu X, Chen H, Qi HJ, Fang D (2017) Origami by frontal photopolymerization. Sci Adv 3(4):e1602326CrossRef
96.
Zurück zum Zitat Cui et al (2020) 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv 6(26):eabb5067CrossRef Cui et al (2020) 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv 6(26):eabb5067CrossRef
97.
Zurück zum Zitat Miao S et al (2018) Stereolithographic 4D bioprinting of Multiresponsive Architectures for neural Engineering. Adv Biosystems 2(9):1800101CrossRef Miao S et al (2018) Stereolithographic 4D bioprinting of Multiresponsive Architectures for neural Engineering. Adv Biosystems 2(9):1800101CrossRef
98.
Zurück zum Zitat Rajabi M, McConnell J, Cabral, Ali MA (2021) Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym 260:117768 2021/05/15/CrossRef Rajabi M, McConnell J, Cabral, Ali MA (2021) Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym 260:117768 2021/05/15/CrossRef
99.
Zurück zum Zitat Yu C, Zhu W, Sun B, Mei D, Gou M, Chen S (2018) Modulating physical, chemical, and biological properties in 3D printing for tissue engineering applications. Appl Phys reviews 5(4):041107CrossRef Yu C, Zhu W, Sun B, Mei D, Gou M, Chen S (2018) Modulating physical, chemical, and biological properties in 3D printing for tissue engineering applications. Appl Phys reviews 5(4):041107CrossRef
100.
Zurück zum Zitat Li Y-C, Zhang YS, Akpek A, Shin SR, Khademhosseini A (2016) “4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials,“ Biofabrication, vol. 9, no. 1, p. 012001, Li Y-C, Zhang YS, Akpek A, Shin SR, Khademhosseini A (2016) “4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials,“ Biofabrication, vol. 9, no. 1, p. 012001,
101.
Zurück zum Zitat Cui C et al (2020) “4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications,“ Biofabrication, vol. 12, no. 4, p. 045018, Cui C et al (2020) “4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications,“ Biofabrication, vol. 12, no. 4, p. 045018,
102.
Zurück zum Zitat Cui H et al (2019) A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Res 12(6):1381–1388CrossRef Cui H et al (2019) A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Res 12(6):1381–1388CrossRef
103.
Zurück zum Zitat Kirillova R, Maxson G, Stoychev CT, Gomillion, Ionov L (2017) 4D biofabrication using shape-morphing hydrogels. Adv Mater 29(46):1703443CrossRef Kirillova R, Maxson G, Stoychev CT, Gomillion, Ionov L (2017) 4D biofabrication using shape-morphing hydrogels. Adv Mater 29(46):1703443CrossRef
104.
Zurück zum Zitat Zhao W, Zhang F, Leng J, Liu Y (2019) “Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites,“ Composites Science and Technology, vol. 184, p. 107866, /11/10/ 2019 Zhao W, Zhang F, Leng J, Liu Y (2019) “Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites,“ Composites Science and Technology, vol. 184, p. 107866, /11/10/ 2019
105.
Zurück zum Zitat Lee YB, Jeon O, Lee SJ, Ding A, Wells D, Alsberg E (2021) Induction of Four-Dimensional Spatiotemporal geometric transformations in high cell density tissues via shape‐changing hydrogels. Adv Funct Mater 31(24):2010104CrossRef Lee YB, Jeon O, Lee SJ, Ding A, Wells D, Alsberg E (2021) Induction of Four-Dimensional Spatiotemporal geometric transformations in high cell density tissues via shape‐changing hydrogels. Adv Funct Mater 31(24):2010104CrossRef
106.
Zurück zum Zitat Ding SJ, Lee S, Ayyagari R, Tang CT, Huynh, Alsberg E (2022) 4D biofabrication via instantly generated graded hydrogel scaffolds. Bioactive Mater 7:324–332 2022/01/01/CrossRef Ding SJ, Lee S, Ayyagari R, Tang CT, Huynh, Alsberg E (2022) 4D biofabrication via instantly generated graded hydrogel scaffolds. Bioactive Mater 7:324–332 2022/01/01/CrossRef
107.
Zurück zum Zitat Hendrikson WJ, Rouwkema J, Clementi F, Van Blitterswijk CA, Farè S, Moroni L (2017) “Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells,“ Biofabrication, vol. 9, no. 3, p. 031001, Hendrikson WJ, Rouwkema J, Clementi F, Van Blitterswijk CA, Farè S, Moroni L (2017) “Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells,“ Biofabrication, vol. 9, no. 3, p. 031001,
108.
Zurück zum Zitat Zhang C et al (2021) 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater 122:101–110 2021/03/01/CrossRef Zhang C et al (2021) 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater 122:101–110 2021/03/01/CrossRef
109.
Zurück zum Zitat Miao S, Zhu W, Castro NJ, Leng J, Zhang LG (2016) Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng Part C: Methods 22(10):952–963CrossRef Miao S, Zhu W, Castro NJ, Leng J, Zhang LG (2016) Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng Part C: Methods 22(10):952–963CrossRef
110.
Zurück zum Zitat Liu et al “Dual-Gel 4D Printing of Bioinspired Tubes,“ ACS Appl Mater Interfaces, vol. 11, no. 8, pp. 8492–8498, 2019/02/27 2019. Liu et al “Dual-Gel 4D Printing of Bioinspired Tubes,“ ACS Appl Mater Interfaces, vol. 11, no. 8, pp. 8492–8498, 2019/02/27 2019.
111.
Zurück zum Zitat Narupai B, Smith PT, Nelson A (2021) 4D Printing of Multi-Stimuli Responsive protein-based hydrogels for Autonomous shape transformations. Adv Funct Mater 31(23):2011012CrossRef Narupai B, Smith PT, Nelson A (2021) 4D Printing of Multi-Stimuli Responsive protein-based hydrogels for Autonomous shape transformations. Adv Funct Mater 31(23):2011012CrossRef
112.
Zurück zum Zitat Cui H et al (2020) 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv 6(26):eabb5067CrossRef Cui H et al (2020) 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv 6(26):eabb5067CrossRef
113.
Zurück zum Zitat Seo W, Shin SR, Park YJ, Bae H “Hydrogel Production Platform with Dynamic Movement Using Photo-Crosslinkable/Temperature Reversible Chitosan Polymer and Stereolithography 4D Printing Technology,“ Tissue Eng Regenerative Med, vol. 17, no. 4, pp. 423–431, 2020/08/01 2020. Seo W, Shin SR, Park YJ, Bae H “Hydrogel Production Platform with Dynamic Movement Using Photo-Crosslinkable/Temperature Reversible Chitosan Polymer and Stereolithography 4D Printing Technology,“ Tissue Eng Regenerative Med, vol. 17, no. 4, pp. 423–431, 2020/08/01 2020.
114.
Zurück zum Zitat Ji Z et al (2019) 3D Printing of Hydrogel Architectures with Complex and controllable shape deformation. Adv Mater Technol 4(4):1800713CrossRef Ji Z et al (2019) 3D Printing of Hydrogel Architectures with Complex and controllable shape deformation. Adv Mater Technol 4(4):1800713CrossRef
115.
Zurück zum Zitat Fang J-H et al “4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting,“ NPG Asia Materials, vol. 12, no. 1, p. 61, 2020/09/11 2020. Fang J-H et al “4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting,“ NPG Asia Materials, vol. 12, no. 1, p. 61, 2020/09/11 2020.
116.
Zurück zum Zitat Devillard CD, Mandon CA, Lambert SA, Blum LJ, Marquette CA (2018) Bioinspired Multi-Activities 4D Printing Objects: a New Approach toward Complex tissue Engineering. Biotechnol J 13(12):1800098CrossRef Devillard CD, Mandon CA, Lambert SA, Blum LJ, Marquette CA (2018) Bioinspired Multi-Activities 4D Printing Objects: a New Approach toward Complex tissue Engineering. Biotechnol J 13(12):1800098CrossRef
117.
Zurück zum Zitat Le Fer G, Becker ML “4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds,“ ACS Appl Mater Interfaces, vol. 12, no. 20, pp. 22444–22452, 2020/05/20 2020. Le Fer G, Becker ML “4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds,“ ACS Appl Mater Interfaces, vol. 12, no. 20, pp. 22444–22452, 2020/05/20 2020.
118.
Zurück zum Zitat Shinoda S, Azukizawa K, Maeda, Tsumori F “Bio-Mimic Motion of 3D-Printed Gel Structures Dispersed with Magnetic Particles,“ J Electrochem Soc, vol. 166, no. 9, p. B3235, 2019/05/16 2019. Shinoda S, Azukizawa K, Maeda, Tsumori F “Bio-Mimic Motion of 3D-Printed Gel Structures Dispersed with Magnetic Particles,“ J Electrochem Soc, vol. 166, no. 9, p. B3235, 2019/05/16 2019.
119.
Zurück zum Zitat Wu J et al (2019) Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater 91:60–71CrossRef Wu J et al (2019) Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater 91:60–71CrossRef
120.
Zurück zum Zitat Senatov S, Niaza KV, Zadorozhnyy MY, Maksimkin A, Kaloshkin S, Estrin Y (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 57:139–148CrossRef Senatov S, Niaza KV, Zadorozhnyy MY, Maksimkin A, Kaloshkin S, Estrin Y (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 57:139–148CrossRef
121.
Zurück zum Zitat Szpalski C, Wetterau M, Barr J, Warren SM (2012) Bone tissue engineering: current strategies and techniques—part I: scaffolds. Tissue Eng Part B: Reviews 18(4):246–257CrossRef Szpalski C, Wetterau M, Barr J, Warren SM (2012) Bone tissue engineering: current strategies and techniques—part I: scaffolds. Tissue Eng Part B: Reviews 18(4):246–257CrossRef
122.
Zurück zum Zitat Cavadas PC (1998) Tracheal reconstruction using a free jejunal flap with cartilage skeleton: experimental study. Plast Reconstr Surg 101(4):937–942CrossRef Cavadas PC (1998) Tracheal reconstruction using a free jejunal flap with cartilage skeleton: experimental study. Plast Reconstr Surg 101(4):937–942CrossRef
123.
Zurück zum Zitat Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25 2017/07/15/CrossRef Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25 2017/07/15/CrossRef
124.
Zurück zum Zitat Kim SH et al (2020) “4D-bioprinted silk hydrogels for tissue engineering,“ Biomaterials, vol. 260, p. 120281, 2020/11/01/ Kim SH et al (2020) “4D-bioprinted silk hydrogels for tissue engineering,“ Biomaterials, vol. 260, p. 120281, 2020/11/01/
125.
Zurück zum Zitat Mao Q et al (2020) Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Engineering: C 109:110625CrossRef Mao Q et al (2020) Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Engineering: C 109:110625CrossRef
126.
Zurück zum Zitat Ionov “4D, Biofabrication (2018) Materials, methods, and applications. Adv Healthc Mater 7:1800412CrossRef Ionov “4D, Biofabrication (2018) Materials, methods, and applications. Adv Healthc Mater 7:1800412CrossRef
127.
Zurück zum Zitat Grigoryan B et al (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364(6439):458–464CrossRef Grigoryan B et al (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364(6439):458–464CrossRef
128.
Zurück zum Zitat Hwangbo H, Kim W, Kim GH (2020) Lotus-root-like microchanneled collagen scaffold. ACS Appl Mater Interfaces 13(11):12656–12667CrossRef Hwangbo H, Kim W, Kim GH (2020) Lotus-root-like microchanneled collagen scaffold. ACS Appl Mater Interfaces 13(11):12656–12667CrossRef
129.
Zurück zum Zitat Apsite JM, Uribe AF, Posada S, Rosenfeldt S, Salehi, Ionov L (2019) “4D biofabrication of skeletal muscle microtissues,“ Biofabrication, vol. 12, no. 1, p. 015016, Apsite JM, Uribe AF, Posada S, Rosenfeldt S, Salehi, Ionov L (2019) “4D biofabrication of skeletal muscle microtissues,“ Biofabrication, vol. 12, no. 1, p. 015016,
130.
Zurück zum Zitat Jiang X et al (2020) 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioactive Mater 5(3):636–643MathSciNetCrossRef Jiang X et al (2020) 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioactive Mater 5(3):636–643MathSciNetCrossRef
131.
Zurück zum Zitat Lin C, Zhang L, Liu Y, Liu L, Leng J “4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: A preliminary study,“ Sci China Technological Sci, vol. 63, no. 4, pp. 578–588, 2020/04/01 2020. Lin C, Zhang L, Liu Y, Liu L, Leng J “4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: A preliminary study,“ Sci China Technological Sci, vol. 63, no. 4, pp. 578–588, 2020/04/01 2020.
132.
Zurück zum Zitat Zarek N, Mansour S, Shapira, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 38(2):1600628CrossRef Zarek N, Mansour S, Shapira, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 38(2):1600628CrossRef
133.
Zurück zum Zitat Kim D, Kim T, Lee Y-G (2019) 4D printed bifurcated stents with kirigami-inspired structures. JoVE (Journal of Visualized Experiments) no 149:e59746 Kim D, Kim T, Lee Y-G (2019) 4D printed bifurcated stents with kirigami-inspired structures. JoVE (Journal of Visualized Experiments) no 149:e59746
134.
Zurück zum Zitat Song Z et al “Biomimetic Nonuniform, Dual-Stimuli Self-Morphing Enabled by Gradient Four-Dimensional Printing,“ ACS Appl Mater Interfaces, vol. 12, no. 5, pp. 6351–6361, 2020/02/05 2020. Song Z et al “Biomimetic Nonuniform, Dual-Stimuli Self-Morphing Enabled by Gradient Four-Dimensional Printing,“ ACS Appl Mater Interfaces, vol. 12, no. 5, pp. 6351–6361, 2020/02/05 2020.
135.
Zurück zum Zitat Wang Y et al (2018) Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater Sci Engineering: C 84:44–51 2018/03/01/CrossRef Wang Y et al (2018) Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater Sci Engineering: C 84:44–51 2018/03/01/CrossRef
136.
Zurück zum Zitat Melocchi et al (2019) Retentive device for intravesical drug delivery based on water-induced shape memory response of poly (vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm 559:299–311CrossRef Melocchi et al (2019) Retentive device for intravesical drug delivery based on water-induced shape memory response of poly (vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm 559:299–311CrossRef
137.
Zurück zum Zitat Jiang Y et al (2020) Multifunctional load-bearing hybrid hydrogel with combined drug release and photothermal conversion functions. NPG Asia Materials 12(1):1–11CrossRef Jiang Y et al (2020) Multifunctional load-bearing hybrid hydrogel with combined drug release and photothermal conversion functions. NPG Asia Materials 12(1):1–11CrossRef
138.
Zurück zum Zitat Zhao Y-D, Lai J-H, Wang M (2021) 4D Printing of self-folding hydrogel tubes for potential tissue Engineering Applications. Nano LIFE 11(04):2141001CrossRef Zhao Y-D, Lai J-H, Wang M (2021) 4D Printing of self-folding hydrogel tubes for potential tissue Engineering Applications. Nano LIFE 11(04):2141001CrossRef
139.
Zurück zum Zitat Zu S et al (2022) A bioinspired 4D printed hydrogel capsule for smart controlled drug release. Mater Today Chem 24:100789CrossRef Zu S et al (2022) A bioinspired 4D printed hydrogel capsule for smart controlled drug release. Mater Today Chem 24:100789CrossRef
140.
Zurück zum Zitat Han D et al (2020) 4D Printing of a Bioinspired Microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater 30(11):1909197CrossRef Han D et al (2020) 4D Printing of a Bioinspired Microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater 30(11):1909197CrossRef
141.
Zurück zum Zitat Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M “Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers,“ ACS Nano, vol. 12, no. 9, pp. 9617–9625, 2018/09/25 2018. Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M “Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers,“ ACS Nano, vol. 12, no. 9, pp. 9617–9625, 2018/09/25 2018.
142.
Zurück zum Zitat Fang J-H “4D printing of stretchable nanocookie@ conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting,“ et al (2020) Peppas, P. Bures, W. Leobandung, and H. Ichikawa, “Hydrogels in pharmaceutical formulations,“ European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 1, pp. 27–46, 2000/07/03/ 2000 Fang J-H “4D printing of stretchable nanocookie@ conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting,“ et al (2020) Peppas, P. Bures, W. Leobandung, and H. Ichikawa, “Hydrogels in pharmaceutical formulations,“ European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 1, pp. 27–46, 2000/07/03/ 2000
143.
Zurück zum Zitat Su X et al (2020) “Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping,“ Chemical Engineering Journal, vol. 389, p. 124503, /06/01/ 2020 Su X et al (2020) “Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping,“ Chemical Engineering Journal, vol. 389, p. 124503, /06/01/ 2020
144.
Zurück zum Zitat Yin X-Y, Zhang Y, Cai X, Guo Q, Yang J, Wang ZL (2019) 3D printing of ionic conductors for high-sensitivity wearable sensors. Mater Horiz 6(4):767–780CrossRef Yin X-Y, Zhang Y, Cai X, Guo Q, Yang J, Wang ZL (2019) 3D printing of ionic conductors for high-sensitivity wearable sensors. Mater Horiz 6(4):767–780CrossRef
145.
Zurück zum Zitat Song TH, da Costa, Choi J-W “A chemiresistive glucose sensor fabricated by inkjet printing,“ Microsyst Technol, vol. 23, no. 8, pp. 3505–3511, 2017/08/01 2017. Song TH, da Costa, Choi J-W “A chemiresistive glucose sensor fabricated by inkjet printing,“ Microsyst Technol, vol. 23, no. 8, pp. 3505–3511, 2017/08/01 2017.
146.
Zurück zum Zitat Mazutis J, Gilbert WL, Ung DA, Weitz AD, Griffiths, Heyman JA (2013) “Single-cell analysis and sorting using droplet-based microfluidics,“ (in eng), Nature protocols, vol. 8, no. 5, pp. 870 – 91, May Mazutis J, Gilbert WL, Ung DA, Weitz AD, Griffiths, Heyman JA (2013) “Single-cell analysis and sorting using droplet-based microfluidics,“ (in eng), Nature protocols, vol. 8, no. 5, pp. 870 – 91, May
Metadaten
Titel
Recent advances in 4D printing hydrogel for biological interfaces
verfasst von
Huanhui Wang
Jianpeng Guo
Publikationsdatum
01.09.2023
Verlag
Springer Paris
Erschienen in
International Journal of Material Forming / Ausgabe 5/2023
Print ISSN: 1960-6206
Elektronische ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-023-01778-9

Weitere Artikel der Ausgabe 5/2023

International Journal of Material Forming 5/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.