Skip to main content

2022 | OriginalPaper | Buchkapitel

10. Recent Developments in Electrolyte Materials for Rechargeable Batteries

verfasst von : Syed Mehfooz Ali, Nadeem Ahmad Arif, Mohammad Mudassir Hashmi, Mohd Bilal Khan, Zishan H. Khan

Erschienen in: Nanomaterials for Innovative Energy Systems and Devices

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Battery technology is continuously improving to meet out the demands of energy storage systems. The performance of the battery plays an important role; hence drastic enhancement in its performance is needed. There is a lot of scope for the improvement in the performance of the batteries with applications of nano-structured materials, which offer extraordinary physiochemical properties. The proper selection and the functional development of electrolyte is one of the effective ways to enhance the performance of the battery. The function of electrolytes is to prevent any unwanted chemical reaction during the Faradaic reaction at the electrodes in rechargeable batteries. Thus, the design of superior electrolytes is contingent upon a number of variables, including the nature of electrolyte, stability window, temperature stability, inertness, abundance, non-hazardousness and economical. There are variety of electrolytes available such as organic, aqueous, non-aqueous, polymer, ionic liquid and hybrid electrolytes. The use of nanomaterials and other additives in the electrolyte enhance the performance of the battery. Along with the general concept, this chapter discusses the role of different electrolytes and nanomaterials as additives for improved performance of the batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu J, Xu C, Chen Z, Ni S, Shen ZX (2018) Progress in aqueous rechargeable batteries. Green Energy Environ 3(1):20–41CrossRef Liu J, Xu C, Chen Z, Ni S, Shen ZX (2018) Progress in aqueous rechargeable batteries. Green Energy Environ 3(1):20–41CrossRef
2.
Zurück zum Zitat Li Q, Chen J, Fan L, Kong X, Lu Y (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 1(1):18–42CrossRef Li Q, Chen J, Fan L, Kong X, Lu Y (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 1(1):18–42CrossRef
3.
Zurück zum Zitat Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF 5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid State Lett 4(4):A42CrossRef Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF 5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid State Lett 4(4):A42CrossRef
4.
Zurück zum Zitat Kang K, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763):977–980CrossRef Kang K, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763):977–980CrossRef
5.
Zurück zum Zitat Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Xiao R (2015) Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin Phys B, 25(1):018212 Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Xiao R (2015) Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin Phys B, 25(1):018212
6.
Zurück zum Zitat Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRef
7.
Zurück zum Zitat Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114(23):11788–11827CrossRef Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114(23):11788–11827CrossRef
8.
Zurück zum Zitat Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418CrossRef Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418CrossRef
9.
Zurück zum Zitat Chen J, Naveed A, Nuli Y, Yang J, Wang J (2020) Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Mater Chen J, Naveed A, Nuli Y, Yang J, Wang J (2020) Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Mater
10.
Zurück zum Zitat Borah R, Hughson FR, Johnston J, Nann T (2020) On battery materials and methods. Mater Today Adv 6:100046 Borah R, Hughson FR, Johnston J, Nann T (2020) On battery materials and methods. Mater Today Adv 6:100046
11.
Zurück zum Zitat Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264(5162):1115–1118CrossRef Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264(5162):1115–1118CrossRef
12.
Zurück zum Zitat Li W, McKinnon WR, Dahn JR (1994) Lithium intercalation from aqueous solutions. J Electrochem Soc 141(9):2310CrossRef Li W, McKinnon WR, Dahn JR (1994) Lithium intercalation from aqueous solutions. J Electrochem Soc 141(9):2310CrossRef
13.
Zurück zum Zitat Zhao M, Zhang B, Huang G, Zhang H, Song X (2013) Excellent rate capabilities of (LiFePO4/C)//LiV3O8 in an optimized aqueous solution electrolyte. J Power Sources 232:181–186CrossRef Zhao M, Zhang B, Huang G, Zhang H, Song X (2013) Excellent rate capabilities of (LiFePO4/C)//LiV3O8 in an optimized aqueous solution electrolyte. J Power Sources 232:181–186CrossRef
14.
Zurück zum Zitat Winter M, Barnett B, Xu K (2018) Before Li ion batteries. Chem Rev 118(23):11433–11456CrossRef Winter M, Barnett B, Xu K (2018) Before Li ion batteries. Chem Rev 118(23):11433–11456CrossRef
15.
Zurück zum Zitat Liu J, Wang J, Ku Z, Wang H, Chen S, Zhang L, Shen ZX (2016) Aqueous rechargeable alkaline Co x Ni2–x S2/TiO2 battery. ACS Nano 10(1):1007–1016CrossRef Liu J, Wang J, Ku Z, Wang H, Chen S, Zhang L, Shen ZX (2016) Aqueous rechargeable alkaline Co x Ni2–x S2/TiO2 battery. ACS Nano 10(1):1007–1016CrossRef
16.
Zurück zum Zitat Xu JJ, Ye H, Huang J (2006) Zinc polymer gel electrolytes based on oligomeric polyethers and ionic liquids. In: ECS meeting abstracts (no 3). IOP Publishing, p 116 Xu JJ, Ye H, Huang J (2006) Zinc polymer gel electrolytes based on oligomeric polyethers and ionic liquids. In: ECS meeting abstracts (no 3). IOP Publishing, p 116
17.
Zurück zum Zitat Pei P, Wang K, Ma Z (2014) Technologies for extending zinc–air battery’s cyclelife: a review. Appl Energy 128:315–324CrossRef Pei P, Wang K, Ma Z (2014) Technologies for extending zinc–air battery’s cyclelife: a review. Appl Energy 128:315–324CrossRef
18.
Zurück zum Zitat Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Amine K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 6(6):1806–1810CrossRef Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Amine K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 6(6):1806–1810CrossRef
19.
Zurück zum Zitat Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Func Mater 23(26):3353–3360CrossRef Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Func Mater 23(26):3353–3360CrossRef
20.
Zurück zum Zitat Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540CrossRef Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540CrossRef
21.
Zurück zum Zitat Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618CrossRef Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618CrossRef
22.
Zurück zum Zitat Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly (vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186CrossRef Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly (vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186CrossRef
23.
Zurück zum Zitat Karuppasamy K, Kim HS, Kim D, Vikraman D, Prasanna K, Kathalingam A, Rhee HW (2017) An enhanced electrochemical and cycling properties of novel boronic Ionic liquid based ternary gel polymer electrolytes for rechargeable Li/LiCOO2 cells. Sci Rep 7(1):1–11CrossRef Karuppasamy K, Kim HS, Kim D, Vikraman D, Prasanna K, Kathalingam A, Rhee HW (2017) An enhanced electrochemical and cycling properties of novel boronic Ionic liquid based ternary gel polymer electrolytes for rechargeable Li/LiCOO2 cells. Sci Rep 7(1):1–11CrossRef
24.
Zurück zum Zitat Christie AM, Lilley SJ, Staunton E, Andreev YG, Bruce PG (2005) Increasing the conductivity of crystalline polymer electrolytes. Nature 433(7021):50–53CrossRef Christie AM, Lilley SJ, Staunton E, Andreev YG, Bruce PG (2005) Increasing the conductivity of crystalline polymer electrolytes. Nature 433(7021):50–53CrossRef
25.
Zurück zum Zitat Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sourc 195(4):939–954CrossRef Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sourc 195(4):939–954CrossRef
26.
Zurück zum Zitat Karuppasamy K, Reddy PA, Srinivas G, Sharma R, Tewari A, Kumar GH, Gupta D (2017) An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based ionic liquid gel polymer electrolytes (ILGPEs) for rechargeable lithium ion batteries. J Solid State Electrochem 21(4):1145–1155CrossRef Karuppasamy K, Reddy PA, Srinivas G, Sharma R, Tewari A, Kumar GH, Gupta D (2017) An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based ionic liquid gel polymer electrolytes (ILGPEs) for rechargeable lithium ion batteries. J Solid State Electrochem 21(4):1145–1155CrossRef
27.
Zurück zum Zitat Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sourc 195(11):3668–3675CrossRef Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sourc 195(11):3668–3675CrossRef
28.
Zurück zum Zitat Gerbaldi C, Nair JR, Ahmad S, Meligrana G, Bongiovanni R, Bodoardo S, Penazzi N (2010) UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sourc 195(6):1706–1713CrossRef Gerbaldi C, Nair JR, Ahmad S, Meligrana G, Bongiovanni R, Bodoardo S, Penazzi N (2010) UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sourc 195(6):1706–1713CrossRef
29.
Zurück zum Zitat Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochimica Acta 51(26):5567–5580 Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochimica Acta 51(26):5567–5580
30.
Zurück zum Zitat Hueso KB, Palomares V, Armand M, Rojo T (2017) Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res 10(12):4082–4114CrossRef Hueso KB, Palomares V, Armand M, Rojo T (2017) Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res 10(12):4082–4114CrossRef
31.
Zurück zum Zitat Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1(10):3807–3835CrossRef Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1(10):3807–3835CrossRef
32.
Zurück zum Zitat Flieger J, Feder-Kubis J, Tatarczak-Michalewska M (2020) Chiral ionic liquids: Structural diversity, properties and applications in selected separation techniques. Int J Mol Sci 21(12):4253 Flieger J, Feder-Kubis J, Tatarczak-Michalewska M (2020) Chiral ionic liquids: Structural diversity, properties and applications in selected separation techniques. Int J Mol Sci 21(12):4253
33.
Zurück zum Zitat Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2(9):956–961CrossRef Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2(9):956–961CrossRef
34.
Zurück zum Zitat Srour H, Chancelier L, Bolimowska E, Gutel T, Mailley S, Rouault H, Santini CC (2016) Ionic liquid-based electrolytes for lithium-ion batteries: review of performances of various electrode systems. J Appl Electrochem 46(2):149–155CrossRef Srour H, Chancelier L, Bolimowska E, Gutel T, Mailley S, Rouault H, Santini CC (2016) Ionic liquid-based electrolytes for lithium-ion batteries: review of performances of various electrode systems. J Appl Electrochem 46(2):149–155CrossRef
35.
Zurück zum Zitat Plashnitsa LS, Kobayashi E, Noguchi Y, Okada S, Yamaki JI (2010) Performance of NASICON symmetric cell with ionic liquid electrolyte. J Electrochem Soc 157(4):A536CrossRef Plashnitsa LS, Kobayashi E, Noguchi Y, Okada S, Yamaki JI (2010) Performance of NASICON symmetric cell with ionic liquid electrolyte. J Electrochem Soc 157(4):A536CrossRef
36.
Zurück zum Zitat Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181(8–10):416–423CrossRef Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181(8–10):416–423CrossRef
37.
Zurück zum Zitat Duluard S, Grondin J, Bruneel JL, Pianet I, Grélard A, Campet G, Lassègues JC (2008) Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid. J Raman Spectrosc Int J Original Work Aspects Raman Spectrosc Including Higher Order Process Brillouin and Rayleigh Scattering 39(5):627–632 Duluard S, Grondin J, Bruneel JL, Pianet I, Grélard A, Campet G, Lassègues JC (2008) Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid. J Raman Spectrosc Int J Original Work Aspects Raman Spectrosc Including Higher Order Process Brillouin and Rayleigh Scattering 39(5):627–632
38.
Zurück zum Zitat Saito Y, Umecky T, Niwa J, Sakai T, Maeda S (2007) Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. J Phys Chem B 111(40):11794–11802CrossRef Saito Y, Umecky T, Niwa J, Sakai T, Maeda S (2007) Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. J Phys Chem B 111(40):11794–11802CrossRef
39.
Zurück zum Zitat Rangasamy E, Sahu G, Keum JK, Rondinone AJ, Dudney NJ, Liang C (2014) A high conductivity oxide–sulfide composite lithium superionic conductor. J Mater Chem A 2(12):4111–4116CrossRef Rangasamy E, Sahu G, Keum JK, Rondinone AJ, Dudney NJ, Liang C (2014) A high conductivity oxide–sulfide composite lithium superionic conductor. J Mater Chem A 2(12):4111–4116CrossRef
40.
Zurück zum Zitat Keller M, Appetecchi GB, Kim GT, Sharova V, Schneider M, Schuhmacher J, Passerini S (2017) Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P (EO) 15LiTFSI. J Power Sourc 353:287–297CrossRef Keller M, Appetecchi GB, Kim GT, Sharova V, Schneider M, Schuhmacher J, Passerini S (2017) Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P (EO) 15LiTFSI. J Power Sourc 353:287–297CrossRef
41.
Zurück zum Zitat Kim HW, Manikandan P, Lim YJ, Kim JH, Nam SC, Kim Y (2016) Hybrid solid electrolyte with the combination of Li-La-Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J Mater Chem A Kim HW, Manikandan P, Lim YJ, Kim JH, Nam SC, Kim Y (2016) Hybrid solid electrolyte with the combination of Li-La-Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J Mater Chem A
42.
Zurück zum Zitat Baek SW, Honma I, Kim J, Rangappa D (2017) Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery. J Power Sourc 343:22–29CrossRef Baek SW, Honma I, Kim J, Rangappa D (2017) Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery. J Power Sourc 343:22–29CrossRef
43.
Zurück zum Zitat Oh DY, Nam YJ, Park KH, Jung SH, Cho SJ, Kim YK, Jung YS (2015) Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv Energy Mater 5(22):1500865CrossRef Oh DY, Nam YJ, Park KH, Jung SH, Cho SJ, Kim YK, Jung YS (2015) Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv Energy Mater 5(22):1500865CrossRef
44.
Zurück zum Zitat Moganty SS, Srivastava S, Lu Y, Schaefer JL, Rizvi SA, Archer LA (2012) Ionic liquid-tethered nanoparticle suspensions: a novel class of ionogels. Chem Mater 24(7):1386–1392CrossRef Moganty SS, Srivastava S, Lu Y, Schaefer JL, Rizvi SA, Archer LA (2012) Ionic liquid-tethered nanoparticle suspensions: a novel class of ionogels. Chem Mater 24(7):1386–1392CrossRef
45.
Zurück zum Zitat Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB (2016) Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 138(30):9385–9388CrossRef Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB (2016) Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 138(30):9385–9388CrossRef
46.
Zurück zum Zitat Che H, Chen S, Xie Y, Wang H, Amine K, Liao XZ, Ma ZF (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10(5):1075–1101CrossRef Che H, Chen S, Xie Y, Wang H, Amine K, Liao XZ, Ma ZF (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10(5):1075–1101CrossRef
47.
Zurück zum Zitat Zhang J, Yao X, Misra RK, Cai Q, Zhao Y (2020) Progress in electrolytes for beyond-lithium-ion batteries. J Mater Sci Technol 44:237–257CrossRef Zhang J, Yao X, Misra RK, Cai Q, Zhao Y (2020) Progress in electrolytes for beyond-lithium-ion batteries. J Mater Sci Technol 44:237–257CrossRef
48.
Zurück zum Zitat Logan ER, Tonita EM, Gering KL, Li J, Ma X, Beaulieu LY, Dahn JR (2018) A study of the physical properties of Li-ion battery electrolytes containing esters. J Electrochem Soc 165(2):A21CrossRef Logan ER, Tonita EM, Gering KL, Li J, Ma X, Beaulieu LY, Dahn JR (2018) A study of the physical properties of Li-ion battery electrolytes containing esters. J Electrochem Soc 165(2):A21CrossRef
49.
Zurück zum Zitat Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, Watanabe M (2011) Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes. J Am Chem Soc 133(33):13121–13129CrossRef Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, Watanabe M (2011) Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes. J Am Chem Soc 133(33):13121–13129CrossRef
50.
Zurück zum Zitat Flamme B, Garcia GR, Weil M, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A (2017) Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties. Green Chem 19(8):1828–1849 Flamme B, Garcia GR, Weil M, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A (2017) Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties. Green Chem 19(8):1828–1849
51.
Zurück zum Zitat Perricone E, Chamas M, Leprêtre JC, Judeinstein P, Azais P, Raymundo-Pinero E, Alloin F (2013) Safe and performant electrolytes for supercapacitor. Investigation of esters/carbonate mixtures. J Power Sources 239:217–224CrossRef Perricone E, Chamas M, Leprêtre JC, Judeinstein P, Azais P, Raymundo-Pinero E, Alloin F (2013) Safe and performant electrolytes for supercapacitor. Investigation of esters/carbonate mixtures. J Power Sources 239:217–224CrossRef
52.
Zurück zum Zitat Koch VR, Young JH (1978) The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J Electrochem Soc 125(9):1371CrossRef Koch VR, Young JH (1978) The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J Electrochem Soc 125(9):1371CrossRef
53.
Zurück zum Zitat Wang J, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A (2018) Fire-extinguishing organic electrolytes for safe batteries. Nat Energy 3(1):22–29CrossRef Wang J, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A (2018) Fire-extinguishing organic electrolytes for safe batteries. Nat Energy 3(1):22–29CrossRef
54.
Zurück zum Zitat Luo JY, Cui WJ, He P, Xia YY (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2(9):760–765CrossRef Luo JY, Cui WJ, He P, Xia YY (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2(9):760–765CrossRef
55.
Zurück zum Zitat Chen S, Zheng J, Mei D, Han KS, Engelhard MH, Zhao W, Zhang JG (2018) High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater 30(21):1706102CrossRef Chen S, Zheng J, Mei D, Han KS, Engelhard MH, Zhao W, Zhang JG (2018) High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater 30(21):1706102CrossRef
56.
Zurück zum Zitat Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360CrossRef Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360CrossRef
57.
Zurück zum Zitat Whitacre JF, Tevar A, Sharma S (2010) Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 12(3):463–466CrossRef Whitacre JF, Tevar A, Sharma S (2010) Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 12(3):463–466CrossRef
58.
Zurück zum Zitat Wang Y, Mu L, Liu J, Yang Z, Yu X, Gu L, Huang X (2015) A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5(22):1501005CrossRef Wang Y, Mu L, Liu J, Yang Z, Yu X, Gu L, Huang X (2015) A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5(22):1501005CrossRef
59.
Zurück zum Zitat Kumar PR, Jung YH, Moorthy B, Kim DK (2016) Effect of electrolyte additives on NaTi2 (PO4) 3-C//Na3V2O2X (PO4) 2F3-2X-MWCNT aqueous rechargeable sodium ion battery performance. J Electrochem Soc 163(7):A1484CrossRef Kumar PR, Jung YH, Moorthy B, Kim DK (2016) Effect of electrolyte additives on NaTi2 (PO4) 3-C//Na3V2O2X (PO4) 2F3-2X-MWCNT aqueous rechargeable sodium ion battery performance. J Electrochem Soc 163(7):A1484CrossRef
60.
Zurück zum Zitat You Y, Sang Z, Liu J (2016) Recent developments on aqueous sodium-ion batteries. Mater Technol 31(9):501–509CrossRef You Y, Sang Z, Liu J (2016) Recent developments on aqueous sodium-ion batteries. Mater Technol 31(9):501–509CrossRef
61.
Zurück zum Zitat Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer AA, Aurbach D (2015) Catalytic behavior of lithium nitrate in Li-O2 cells. ACS Appl Mater Interfaces 7(30):16590–16600CrossRef Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer AA, Aurbach D (2015) Catalytic behavior of lithium nitrate in Li-O2 cells. ACS Appl Mater Interfaces 7(30):16590–16600CrossRef
62.
Zurück zum Zitat Miao R, Yang J, Xu Z, Wang J, Nuli Y, Sun L (2016) A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Sci Rep 6(1):1–9 Miao R, Yang J, Xu Z, Wang J, Nuli Y, Sun L (2016) A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Sci Rep 6(1):1–9
63.
Zurück zum Zitat Giordani V, Uddin J, Bryantsev VS, Chase GV, Addison D (2016) High concentration lithium nitrate/dimethylacetamide electrolytes for lithium/oxygen cells. J Electrochem Soc 163(13):A2673CrossRef Giordani V, Uddin J, Bryantsev VS, Chase GV, Addison D (2016) High concentration lithium nitrate/dimethylacetamide electrolytes for lithium/oxygen cells. J Electrochem Soc 163(13):A2673CrossRef
64.
Zurück zum Zitat Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147(4):1274CrossRef Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147(4):1274CrossRef
65.
Zurück zum Zitat Jin H, Liu H, Cheng H, Zhang P, Wang M (2020) The synergistic effect of lithium bis (fluorosulfonyl) imide and lithium nitrate for high-performance lithium metal anode. J Electroanal Chem 874:114484 Jin H, Liu H, Cheng H, Zhang P, Wang M (2020) The synergistic effect of lithium bis (fluorosulfonyl) imide and lithium nitrate for high-performance lithium metal anode. J Electroanal Chem 874:114484
66.
Zurück zum Zitat Imanishi N, Yamamoto O (2014) Rechargeable lithium–air batteries: characteristics and prospects. Mater Today 17(1):24–30CrossRef Imanishi N, Yamamoto O (2014) Rechargeable lithium–air batteries: characteristics and prospects. Mater Today 17(1):24–30CrossRef
67.
Zurück zum Zitat Shimonishi Y, Zhang T, Imanishi N, Im D, Lee DJ, Hirano A, Sammes N (2011) A study on lithium/air secondary batteries—stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources 196(11):5128–5132CrossRef Shimonishi Y, Zhang T, Imanishi N, Im D, Lee DJ, Hirano A, Sammes N (2011) A study on lithium/air secondary batteries—stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources 196(11):5128–5132CrossRef
68.
Zurück zum Zitat Li H, Wang Y, Na H, Liu H, Zhou H (2009) Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J Am Chem Soc 131(42):15098–15099CrossRef Li H, Wang Y, Na H, Liu H, Zhou H (2009) Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J Am Chem Soc 131(42):15098–15099CrossRef
69.
Zurück zum Zitat Pang G, Yuan C, Nie P, Ding B, Zhu J, Zhang X (2014) Synthesis of NASICON-type structured NaTi2(PO4)3–graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6(12):6328–6334CrossRef Pang G, Yuan C, Nie P, Ding B, Zhu J, Zhang X (2014) Synthesis of NASICON-type structured NaTi2(PO4)3–graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6(12):6328–6334CrossRef
70.
Zurück zum Zitat Qin H, Song ZP, Zhan H, Zhou YH (2014) Aqueous rechargeable alkali-ion batteries with polyimide anode. J Power Sources 249:367–372CrossRef Qin H, Song ZP, Zhan H, Zhou YH (2014) Aqueous rechargeable alkali-ion batteries with polyimide anode. J Power Sources 249:367–372CrossRef
71.
Zurück zum Zitat Minakshi M, Meyrick D, Appadoo D (2013) Maricite (NaMn1/3Ni1/3Co1/3PO4)/activated carbon: hybrid capacitor. Energy Fuels 27(6):3516–3522CrossRef Minakshi M, Meyrick D, Appadoo D (2013) Maricite (NaMn1/3Ni1/3Co1/3PO4)/activated carbon: hybrid capacitor. Energy Fuels 27(6):3516–3522CrossRef
72.
Zurück zum Zitat Xu Y, Zhu J, Feng J, Wang Y, Wu X, Ma P, Yan X (2021) A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Materials 38:299–308CrossRef Xu Y, Zhu J, Feng J, Wang Y, Wu X, Ma P, Yan X (2021) A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Materials 38:299–308CrossRef
73.
Zurück zum Zitat Mainar A, Leonet O, Bengoechea M, Boyano I, de Meatza I, Kvasha A, Alberto Blázquez J (2016) Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview. Int J Energy Res 40(8):1032–1049 Mainar A, Leonet O, Bengoechea M, Boyano I, de Meatza I, Kvasha A, Alberto Blázquez J (2016) Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview. Int J Energy Res 40(8):1032–1049
74.
Zurück zum Zitat Sapkota P, Kim H (2009) Zinc–air fuel cell, a potential candidate for alternative energy. J Ind Eng Chem 15(4):445–450CrossRef Sapkota P, Kim H (2009) Zinc–air fuel cell, a potential candidate for alternative energy. J Ind Eng Chem 15(4):445–450CrossRef
75.
Zurück zum Zitat Xu JJ, Ye H, Huang J (2005) Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochem Commun 7(12):1309–1317CrossRef Xu JJ, Ye H, Huang J (2005) Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochem Commun 7(12):1309–1317CrossRef
76.
Zurück zum Zitat McLarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138(2):645CrossRef McLarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138(2):645CrossRef
77.
Zurück zum Zitat Gilliam RJ, Graydon JW, Kirk DW, Thorpe SJ (2007) A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int J Hydrogen Energy 32(3):359–364CrossRef Gilliam RJ, Graydon JW, Kirk DW, Thorpe SJ (2007) A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int J Hydrogen Energy 32(3):359–364CrossRef
78.
Zurück zum Zitat Sumboja A, Ge X, Zheng G, Goh FT, Hor TA, Zong Y, Liu Z (2016) Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. J Power Sources 332:330–336CrossRef Sumboja A, Ge X, Zheng G, Goh FT, Hor TA, Zong Y, Liu Z (2016) Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. J Power Sources 332:330–336CrossRef
79.
Zurück zum Zitat Jindra J, Mrha J, Musilová M (1973) Zinc-air cell with neutral electrolyte. J Appl Electrochem 3(4):297–301CrossRef Jindra J, Mrha J, Musilová M (1973) Zinc-air cell with neutral electrolyte. J Appl Electrochem 3(4):297–301CrossRef
80.
Zurück zum Zitat Jörissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155(1):23–32CrossRef Jörissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155(1):23–32CrossRef
81.
Zurück zum Zitat Daniel C, Besenhard JO (eds) (2012) Handbook of battery materials. Wiley & Sons Daniel C, Besenhard JO (eds) (2012) Handbook of battery materials. Wiley & Sons
82.
Zurück zum Zitat Lee JS, Tai Kim S, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 1(1):34–50CrossRef Lee JS, Tai Kim S, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 1(1):34–50CrossRef
83.
Zurück zum Zitat An L, Zhang Z, Feng J, Lv F, Li Y, Wang R, Zhang S (2018) Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc–air battery with neutral aqueous electrolyte. J Am Chem Soc 140(50):17624–17631CrossRef An L, Zhang Z, Feng J, Lv F, Li Y, Wang R, Zhang S (2018) Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc–air battery with neutral aqueous electrolyte. J Am Chem Soc 140(50):17624–17631CrossRef
84.
Zurück zum Zitat Goh FT, Liu Z, Hor TA, Zhang J, Ge X, Zong Y, Khoo W (2014) A near-neutral chloride electrolyte for electrically rechargeable zinc-air batteries. J Electrochem Soc 161(14):A2080CrossRef Goh FT, Liu Z, Hor TA, Zhang J, Ge X, Zong Y, Khoo W (2014) A near-neutral chloride electrolyte for electrically rechargeable zinc-air batteries. J Electrochem Soc 161(14):A2080CrossRef
85.
Zurück zum Zitat Pande N, Jambhale A, Jaspal D, Ambekar J, Patil H (2020) Poly (N-methyl aniline)-Li nanocomposite as an electrolyte for rechargeable battery: in-situ recipe. In: E3S web of conferences (vol 170). EDP Sciences, p 01018 Pande N, Jambhale A, Jaspal D, Ambekar J, Patil H (2020) Poly (N-methyl aniline)-Li nanocomposite as an electrolyte for rechargeable battery: in-situ recipe. In: E3S web of conferences (vol 170). EDP Sciences, p 01018
86.
Zurück zum Zitat Li T, Cui Y, Fan L, Zhou X, Ren Y, De Andrade V, Zhu L (2020) A self-healing liquid metal anode with PEO-Based polymer electrolytes for rechargeable lithium batteries. Appl Mater Today 21:100802 Li T, Cui Y, Fan L, Zhou X, Ren Y, De Andrade V, Zhu L (2020) A self-healing liquid metal anode with PEO-Based polymer electrolytes for rechargeable lithium batteries. Appl Mater Today 21:100802
87.
Zurück zum Zitat Qu QT, Liu LL, Wu YP, Holze R (2013) Electrochemical behavior of V2O5·0.6 H2O nanoribbons in neutral aqueous electrolyte solution. Electrochim Acta 96:8–12CrossRef Qu QT, Liu LL, Wu YP, Holze R (2013) Electrochemical behavior of V2O5·0.6 H2O nanoribbons in neutral aqueous electrolyte solution. Electrochim Acta 96:8–12CrossRef
88.
Zurück zum Zitat Vestergaard B, Bjerrum NJ, Petrushina I, Hjuler HA, Berg RW, Begtrup M (1993) Molten triazolium chloride systems as new aluminium battery electrolytes. J Electrochem Soc 140(11):3108CrossRef Vestergaard B, Bjerrum NJ, Petrushina I, Hjuler HA, Berg RW, Begtrup M (1993) Molten triazolium chloride systems as new aluminium battery electrolytes. J Electrochem Soc 140(11):3108CrossRef
89.
Zurück zum Zitat Hu Y, Sun D, Luo B, Wang L (2019) Recent progress and future trends of aluminium batteries. Energ Technol 7(1):86–106CrossRef Hu Y, Sun D, Luo B, Wang L (2019) Recent progress and future trends of aluminium batteries. Energ Technol 7(1):86–106CrossRef
90.
Zurück zum Zitat Holland A, Mckerracher RD, Cruden A, Wills RGA (2018) An aluminium battery operating with an aqueous electrolyte. J Appl Electrochem 48(3):243–250CrossRef Holland A, Mckerracher RD, Cruden A, Wills RGA (2018) An aluminium battery operating with an aqueous electrolyte. J Appl Electrochem 48(3):243–250CrossRef
91.
Zurück zum Zitat Dominko R, Demir-Cakan R, Morcrette M, Tarascon JM (2011) Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochem Commun 13(2):117–120 Dominko R, Demir-Cakan R, Morcrette M, Tarascon JM (2011) Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochem Commun 13(2):117–120
92.
Zurück zum Zitat Ma ZF, Yang XQ, Liao XZ, Sun X, McBreen J (2001) Electrochemical evaluation of composite cathodes base on blends of LiMn2O4 and LiNi0.8Co0.2O2. Electrochem Commun 3(8):425–428 Ma ZF, Yang XQ, Liao XZ, Sun X, McBreen J (2001) Electrochemical evaluation of composite cathodes base on blends of LiMn2O4 and LiNi0.8Co0.2O2. Electrochem Commun 3(8):425–428
93.
Zurück zum Zitat Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chemsuschem 8(13):2154–2175CrossRef Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chemsuschem 8(13):2154–2175CrossRef
94.
Zurück zum Zitat Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10CrossRef Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10CrossRef
95.
Zurück zum Zitat Inman D (1974). In: Braunstein J, Mamantov G, Smith GP (eds) Advances in molten salt chemistry, vol 2. Plenum Press, New York, London Inman D (1974). In: Braunstein J, Mamantov G, Smith GP (eds) Advances in molten salt chemistry, vol 2. Plenum Press, New York, London
96.
Zurück zum Zitat Schulze K, Hoff H (1972) Electrode kinetics of aluminium in chloride melts with respect to electrocrystallization. Electrochim Acta 17(1):119–133CrossRef Schulze K, Hoff H (1972) Electrode kinetics of aluminium in chloride melts with respect to electrocrystallization. Electrochim Acta 17(1):119–133CrossRef
97.
Zurück zum Zitat Schulze K, Hoff H (1972) Austauschstromdichte und komplexbildung von aluminium in alkalitetrachloroaluminaten. Electrochim Acta 17(10):1783–1788CrossRef Schulze K, Hoff H (1972) Austauschstromdichte und komplexbildung von aluminium in alkalitetrachloroaluminaten. Electrochim Acta 17(10):1783–1788CrossRef
98.
Zurück zum Zitat Grjotheim K, Matiasovsky K (1980) Some problems concerning aluminium electro-plating in molten salts. Acta Chem Scand 34(9):666–670CrossRef Grjotheim K, Matiasovsky K (1980) Some problems concerning aluminium electro-plating in molten salts. Acta Chem Scand 34(9):666–670CrossRef
99.
Zurück zum Zitat Takami N, Koura N (1988) Improvement of the positive electrode for the Al/FeS/sub 2/secondary cell with a basic AlCl/sub 3/-NaCl melt. Denki Kagaku Oyobi Kogyo Butsuri Kagaku;(Japan) 56(1) Takami N, Koura N (1988) Improvement of the positive electrode for the Al/FeS/sub 2/secondary cell with a basic AlCl/sub 3/-NaCl melt. Denki Kagaku Oyobi Kogyo Butsuri Kagaku;(Japan) 56(1)
100.
Zurück zum Zitat Hjuler HA, Von Winbush S, Berg RW, Bjerrum NJ (1989) A novel inorganic low melting electrolyte for secondary aluminium-nickel sulfide batteries. J Electrochem Soc 136(4):901CrossRef Hjuler HA, Von Winbush S, Berg RW, Bjerrum NJ (1989) A novel inorganic low melting electrolyte for secondary aluminium-nickel sulfide batteries. J Electrochem Soc 136(4):901CrossRef
101.
Zurück zum Zitat Das SK, Mahapatra S, Lahan H (2017) Aluminium-ion batteries: developments and challenges. J Mater Chem A 5(14):6347–6367CrossRef Das SK, Mahapatra S, Lahan H (2017) Aluminium-ion batteries: developments and challenges. J Mater Chem A 5(14):6347–6367CrossRef
102.
Zurück zum Zitat Takami N, Koura N (1989) Al/FeS2 secondary cells using molten AlCl3-MCl-l-butylpyridinium chloride electrolytes operated around 100 °C. J Electrochem Soc 136(3):730CrossRef Takami N, Koura N (1989) Al/FeS2 secondary cells using molten AlCl3-MCl-l-butylpyridinium chloride electrolytes operated around 100 °C. J Electrochem Soc 136(3):730CrossRef
103.
Zurück zum Zitat Gale RJ, Osteryoung RA (1979) Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Inorg Chem 18(6):1603–1605CrossRef Gale RJ, Osteryoung RA (1979) Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Inorg Chem 18(6):1603–1605CrossRef
104.
Zurück zum Zitat Wu F, Zhu N, Bai Y, Gao Y, Wu C (2018) An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances. Green Energy Environ 3(1):71–77CrossRef Wu F, Zhu N, Bai Y, Gao Y, Wu C (2018) An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances. Green Energy Environ 3(1):71–77CrossRef
105.
Zurück zum Zitat Wang H, Gu S, Bai Y, Chen S, Zhu N, Wu C, Wu F (2015) Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J Mater Chem A 3(45):22677–22686CrossRef Wang H, Gu S, Bai Y, Chen S, Zhu N, Wu C, Wu F (2015) Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J Mater Chem A 3(45):22677–22686CrossRef
106.
Zurück zum Zitat Zafar ZA, Imtiaz S, Li R, Zhang J, Razaq R, Xin Y, Huang Y (2018) A super-long life rechargeable aluminium battery. Solid State Ionics 320:70–75CrossRef Zafar ZA, Imtiaz S, Li R, Zhang J, Razaq R, Xin Y, Huang Y (2018) A super-long life rechargeable aluminium battery. Solid State Ionics 320:70–75CrossRef
107.
Zurück zum Zitat Xia S, Zhang XM, Huang K, Chen YL, Wu YT (2015) Ionic liquid electrolytes for aluminium secondary battery: influence of organic solvents. J Electroanal Chem 757:167–175CrossRef Xia S, Zhang XM, Huang K, Chen YL, Wu YT (2015) Ionic liquid electrolytes for aluminium secondary battery: influence of organic solvents. J Electroanal Chem 757:167–175CrossRef
108.
Zurück zum Zitat Schötz T, de Leon CP, Ueda M, Bund A (2017) Perspective—state of the art of rechargeable aluminium batteries in non-aqueous systems. J Electrochem Soc 164(14):A3499CrossRef Schötz T, de Leon CP, Ueda M, Bund A (2017) Perspective—state of the art of rechargeable aluminium batteries in non-aqueous systems. J Electrochem Soc 164(14):A3499CrossRef
109.
Zurück zum Zitat Wang H, Gu S, Bai Y, Chen S, Wu F, Wu C (2016) High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminium battery. ACS Appl Mater Interfaces 8(41):27444–27448CrossRef Wang H, Gu S, Bai Y, Chen S, Wu F, Wu C (2016) High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminium battery. ACS Appl Mater Interfaces 8(41):27444–27448CrossRef
110.
Zurück zum Zitat Kitada A, Nakamura K, Fukami K, Murase K (2014) AlCl3-dissolved diglyme as electrolyte for room-temperature aluminium electrodeposition. Electrochemistry 82(11):946–948CrossRef Kitada A, Nakamura K, Fukami K, Murase K (2014) AlCl3-dissolved diglyme as electrolyte for room-temperature aluminium electrodeposition. Electrochemistry 82(11):946–948CrossRef
111.
Zurück zum Zitat Kitada A, Nakamura K, Fukami K, Murase K (2016) Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions. Electrochim Acta 211:561–567CrossRef Kitada A, Nakamura K, Fukami K, Murase K (2016) Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions. Electrochim Acta 211:561–567CrossRef
112.
Zurück zum Zitat Reed LD, Arteaga A, Menke EJ (2015) A combined experimental and computational study of an aluminum triflate/diglyme electrolyte. J Phys Chem B 119(39):12677–12681CrossRef Reed LD, Arteaga A, Menke EJ (2015) A combined experimental and computational study of an aluminum triflate/diglyme electrolyte. J Phys Chem B 119(39):12677–12681CrossRef
113.
Zurück zum Zitat Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, Hahn R (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28(35):7564–7579CrossRef Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, Hahn R (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28(35):7564–7579CrossRef
114.
Zurück zum Zitat Guerfi A, Trottier J, Boyano I, De Meatza I, Blazquez JA, Brewer S, Zaghib K (2014) High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. J Power Sources 248:1099–1104CrossRef Guerfi A, Trottier J, Boyano I, De Meatza I, Blazquez JA, Brewer S, Zaghib K (2014) High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. J Power Sources 248:1099–1104CrossRef
115.
Zurück zum Zitat Kumar GG, Sampath S (2003) Electrochemical characterization of a zinc-based gel-polymer electrolyte and its application in rechargeable batteries. J Electrochem Soc 150(5):A608CrossRef Kumar GG, Sampath S (2003) Electrochemical characterization of a zinc-based gel-polymer electrolyte and its application in rechargeable batteries. J Electrochem Soc 150(5):A608CrossRef
116.
Zurück zum Zitat Rezaei B, Taki M (2008) Effects of tetrabutylammonium hydrogen sulfate as an electrolyte additive on the electrochemical behavior of lead acid battery. J Solid State Electrochem 12(12):1663–1671CrossRef Rezaei B, Taki M (2008) Effects of tetrabutylammonium hydrogen sulfate as an electrolyte additive on the electrochemical behavior of lead acid battery. J Solid State Electrochem 12(12):1663–1671CrossRef
117.
Zurück zum Zitat Padbury R, Zhang X (2011) Lithium–oxygen batteries—limiting factors that affect performance. J Power Sources 196(10):4436–4444CrossRef Padbury R, Zhang X (2011) Lithium–oxygen batteries—limiting factors that affect performance. J Power Sources 196(10):4436–4444CrossRef
118.
Zurück zum Zitat Zhang SS (2015) The redox mechanism of FeS2 in non-aqueous electrolytes for lithium and sodium batteries. J Mater Chem A 3(15):7689–7694CrossRef Zhang SS (2015) The redox mechanism of FeS2 in non-aqueous electrolytes for lithium and sodium batteries. J Mater Chem A 3(15):7689–7694CrossRef
119.
Zurück zum Zitat Mizuno F, Nakanishi S, Shirasawa A, Takechi K, Shiga T, Nishikoori H, Iba H (2011) Design of non-aqueous liquid electrolytes for rechargeable Li-O2 batteries. Electrochemistry 79(11):876–881CrossRef Mizuno F, Nakanishi S, Shirasawa A, Takechi K, Shiga T, Nishikoori H, Iba H (2011) Design of non-aqueous liquid electrolytes for rechargeable Li-O2 batteries. Electrochemistry 79(11):876–881CrossRef
120.
Zurück zum Zitat Song M, Zhu D, Zhang L, Wang X, Chen Y, Mi R, Lau LW (2013) Improved charging performances of Li2O2 cathodes in non-aqueous electrolyte lithium-air batteries at high test temperatures. In: 2013 international conference on materials for renewable energy and environment (vol 2). IEEE, pp 513–515 Song M, Zhu D, Zhang L, Wang X, Chen Y, Mi R, Lau LW (2013) Improved charging performances of Li2O2 cathodes in non-aqueous electrolyte lithium-air batteries at high test temperatures. In: 2013 international conference on materials for renewable energy and environment (vol 2). IEEE, pp 513–515
121.
Zurück zum Zitat Gwak G, Ju H (2016) Three-dimensional transient modeling of a non-aqueous electrolyte lithium-air battery. Electrochim Acta 201:395–409CrossRef Gwak G, Ju H (2016) Three-dimensional transient modeling of a non-aqueous electrolyte lithium-air battery. Electrochim Acta 201:395–409CrossRef
122.
Zurück zum Zitat Wang H, Xie K, Wang L, Han Y (2012) N-methyl-2-pyrrolidone as a solvent for the non-aqueous electrolyte of rechargeable Li-air batteries. J Power Sources 219:263–271CrossRef Wang H, Xie K, Wang L, Han Y (2012) N-methyl-2-pyrrolidone as a solvent for the non-aqueous electrolyte of rechargeable Li-air batteries. J Power Sources 219:263–271CrossRef
123.
Zurück zum Zitat Wang F, Borodin O, Ding MS, Gobet M, Vatamanu J, Fan X, Wang C (2018) Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2(5):927–937CrossRef Wang F, Borodin O, Ding MS, Gobet M, Vatamanu J, Fan X, Wang C (2018) Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2(5):927–937CrossRef
124.
Zurück zum Zitat Zhang SS, Xu K, Read J (2011) A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources 196(8):3906–3910CrossRef Zhang SS, Xu K, Read J (2011) A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources 196(8):3906–3910CrossRef
125.
Zurück zum Zitat Kolomoiets OV, Kirsanova IV, Lysytsya IS, Shembel EM (2019) Conductivity and electrochemical stability of non-aqueous electrolytes for magnesium power sources. Mater Today: Proc 6:95–100 Kolomoiets OV, Kirsanova IV, Lysytsya IS, Shembel EM (2019) Conductivity and electrochemical stability of non-aqueous electrolytes for magnesium power sources. Mater Today: Proc 6:95–100
126.
Zurück zum Zitat Liu Z, El Abedin SZ, Endres F (2013) Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures. Electrochim Acta 89:635–643CrossRef Liu Z, El Abedin SZ, Endres F (2013) Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures. Electrochim Acta 89:635–643CrossRef
127.
Zurück zum Zitat Li Y, Dai H (2014) Recent advances in zinc–air batteries. Chem Soc Rev 43(15):5257–5275CrossRef Li Y, Dai H (2014) Recent advances in zinc–air batteries. Chem Soc Rev 43(15):5257–5275CrossRef
128.
Zurück zum Zitat Li Q, Zuo X, Liu J, Xiao X, Shu D, Nan J (2011) The preparation and properties of a novel electrolyte of electrochemical double layer capacitors based on LiPF6 and acetamide. Electrochim Acta 58:330–335CrossRef Li Q, Zuo X, Liu J, Xiao X, Shu D, Nan J (2011) The preparation and properties of a novel electrolyte of electrochemical double layer capacitors based on LiPF6 and acetamide. Electrochim Acta 58:330–335CrossRef
129.
Zurück zum Zitat Amendola S, Johnson L, Binder M, Kunz M, Black PJ, Oster M, Johnson R (2012) Electrically rechargeable, metal-air battery systems and methods. Google Patents Amendola S, Johnson L, Binder M, Kunz M, Black PJ, Oster M, Johnson R (2012) Electrically rechargeable, metal-air battery systems and methods. Google Patents
130.
Zurück zum Zitat Zhang S, Xu CK (2013) U.S. Patent Application No. 13/418,395 Zhang S, Xu CK (2013) U.S. Patent Application No. 13/418,395
131.
Zurück zum Zitat Bruce PG, Vincent CA (1993) Polymer electrolytes. J Chem Soc, Faraday Trans 89(17):3187–3203CrossRef Bruce PG, Vincent CA (1993) Polymer electrolytes. J Chem Soc, Faraday Trans 89(17):3187–3203CrossRef
132.
Zurück zum Zitat Fenton DE (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14:589 Fenton DE (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14:589
133.
Zurück zum Zitat Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279CrossRef Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279CrossRef
134.
Zurück zum Zitat Ramesh S, Lu SC (2012) Enhancement of ionic conductivity and structural properties by BMIMTf ionic liquid in P (VdF-HFP)-based polymer electrolytes. J Appl Polym Sci 126:484–492CrossRef Ramesh S, Lu SC (2012) Enhancement of ionic conductivity and structural properties by BMIMTf ionic liquid in P (VdF-HFP)-based polymer electrolytes. J Appl Polym Sci 126:484–492CrossRef
135.
Zurück zum Zitat Bruce PG (ed) (1997) Solid state electrochemistry (no 5). Cambridge University Press Bruce PG (ed) (1997) Solid state electrochemistry (no 5). Cambridge University Press
136.
Zurück zum Zitat Hallinan DT Jr, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43:503–525CrossRef Hallinan DT Jr, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43:503–525CrossRef
137.
Zurück zum Zitat Osman Z, Arof AK (2003) FTIR studies of chitosan acetate based polymer electrolytes. Electrochim Acta 48(8):993–999CrossRef Osman Z, Arof AK (2003) FTIR studies of chitosan acetate based polymer electrolytes. Electrochim Acta 48(8):993–999CrossRef
138.
Zurück zum Zitat Idris NK, Aziz NN, Zambri MSM, Zakaria NA, Isa MIN (2009) Ionic conductivity studies of chitosan-based polymer electrolytes doped with adipic acid. Ionics 15(5):643–646CrossRef Idris NK, Aziz NN, Zambri MSM, Zakaria NA, Isa MIN (2009) Ionic conductivity studies of chitosan-based polymer electrolytes doped with adipic acid. Ionics 15(5):643–646CrossRef
139.
Zurück zum Zitat Khanmirzaei MH, Ramesh S (2013) Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. Int J Electrochem Sci 8(7):9977–9991 Khanmirzaei MH, Ramesh S (2013) Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. Int J Electrochem Sci 8(7):9977–9991
140.
Zurück zum Zitat Khanmirzaei MH, Ramesh S (2014) Nanocomposite polymer electrolyte based on rice starch/ionic liquid/TiO2 nanoparticles for solar cell application. Measurement 58:68–72CrossRef Khanmirzaei MH, Ramesh S (2014) Nanocomposite polymer electrolyte based on rice starch/ionic liquid/TiO2 nanoparticles for solar cell application. Measurement 58:68–72CrossRef
141.
Zurück zum Zitat Liew CW, Ramesh S, Ramesh K, Arof AK (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16(5):1869–1875CrossRef Liew CW, Ramesh S, Ramesh K, Arof AK (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16(5):1869–1875CrossRef
142.
Zurück zum Zitat Liew CW, Ramesh S (2013) Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number. Cellulose 20(6):3227–3237CrossRef Liew CW, Ramesh S (2013) Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number. Cellulose 20(6):3227–3237CrossRef
143.
Zurück zum Zitat Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5(1):63–69CrossRef Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5(1):63–69CrossRef
144.
Zurück zum Zitat Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234(1–3):24–32CrossRef Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234(1–3):24–32CrossRef
145.
Zurück zum Zitat Zhang J, Sun B, Huang X, Chen S, Wang G (2014) Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep 4(1):1–7 Zhang J, Sun B, Huang X, Chen S, Wang G (2014) Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep 4(1):1–7
146.
Zurück zum Zitat Idris NH, Rahman MM, Wang JZ, Liu HK (2012) Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 201:294–300CrossRef Idris NH, Rahman MM, Wang JZ, Liu HK (2012) Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 201:294–300CrossRef
147.
Zurück zum Zitat Yang CL, Li ZH, Li WJ, Liu HY, Xiao QZ, Lei GT, Ding YH (2015) Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF–SiO2 nanocomposite fibers for lithium-ion batteries. J Membr Sci 495:341–350CrossRef Yang CL, Li ZH, Li WJ, Liu HY, Xiao QZ, Lei GT, Ding YH (2015) Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF–SiO2 nanocomposite fibers for lithium-ion batteries. J Membr Sci 495:341–350CrossRef
148.
Zurück zum Zitat Balo L, Gupta H, Singh VK, Singh RK (2017) Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim Acta 230:123–131CrossRef Balo L, Gupta H, Singh VK, Singh RK (2017) Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim Acta 230:123–131CrossRef
149.
Zurück zum Zitat Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J 7(5):319–327CrossRef Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J 7(5):319–327CrossRef
150.
Zurück zum Zitat Vashishta P, Mundy JN, Shenoy G (1979) Fast ion transport in solids: electrodes and electrolytes Vashishta P, Mundy JN, Shenoy G (1979) Fast ion transport in solids: electrodes and electrolytes
151.
Zurück zum Zitat Ramesh S, Liew CW (2012) Exploration on nano-composite fumed silica-based composite polymer electrolytes with doping of ionic liquid. J Non-Cryst Solids 358(5):931–940CrossRef Ramesh S, Liew CW (2012) Exploration on nano-composite fumed silica-based composite polymer electrolytes with doping of ionic liquid. J Non-Cryst Solids 358(5):931–940CrossRef
152.
Zurück zum Zitat Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569CrossRef Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569CrossRef
153.
Zurück zum Zitat Zhu Z, Hong M, Guo D, Shi J, Tao Z, Chen J (2014) All-solid-state lithium organic battery with composite polymer electrolyte and pillar [5] quinone cathode. J Am Chem Soc 136(47):16461–16464CrossRef Zhu Z, Hong M, Guo D, Shi J, Tao Z, Chen J (2014) All-solid-state lithium organic battery with composite polymer electrolyte and pillar [5] quinone cathode. J Am Chem Soc 136(47):16461–16464CrossRef
154.
Zurück zum Zitat Sarangika HNM, Dissanayake MAKL, Senadeera GKR, Rathnayake RRDV, Pitawala HMJC (2017) Polyethylene oxide and ionic liquid-based solid polymer electrolyte for rechargeable magnesium batteries. Ionics 23(10):2829–2835CrossRef Sarangika HNM, Dissanayake MAKL, Senadeera GKR, Rathnayake RRDV, Pitawala HMJC (2017) Polyethylene oxide and ionic liquid-based solid polymer electrolyte for rechargeable magnesium batteries. Ionics 23(10):2829–2835CrossRef
155.
Zurück zum Zitat Ramesh S, Liew CW, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes. Thermochim Acta 511(1–2):140–146CrossRef Ramesh S, Liew CW, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes. Thermochim Acta 511(1–2):140–146CrossRef
156.
Zurück zum Zitat Liew CW, Durairaj R, Ramesh S (2014) Rheological studies of PMMA–PVC based polymer blend electrolytes with LiTFSI as doping salt. PloS one 9(7):e102815 Liew CW, Durairaj R, Ramesh S (2014) Rheological studies of PMMA–PVC based polymer blend electrolytes with LiTFSI as doping salt. PloS one 9(7):e102815
157.
Zurück zum Zitat Walls HJ, Zhou J, Yerian JA, Fedkiw PS, Khan SA, Stowe MK, Baker GL (2000) Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry. J Power Sources 89(2):156–162CrossRef Walls HJ, Zhou J, Yerian JA, Fedkiw PS, Khan SA, Stowe MK, Baker GL (2000) Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry. J Power Sources 89(2):156–162CrossRef
158.
Zurück zum Zitat Wen Z, Itoh T, Uno T, Kubo M, Yamamoto O (2003) Thermal, electrical, and mechanical properties of composite polymer electrolytes based on cross-linked poly (ethylene oxide-co-propylene oxide) and ceramic filler. Solid State Ionics 160(1–2):141–148CrossRef Wen Z, Itoh T, Uno T, Kubo M, Yamamoto O (2003) Thermal, electrical, and mechanical properties of composite polymer electrolytes based on cross-linked poly (ethylene oxide-co-propylene oxide) and ceramic filler. Solid State Ionics 160(1–2):141–148CrossRef
159.
Zurück zum Zitat Ramesh S, Bing KN (2012) Conductivity, mechanical and thermal studies on poly (methyl methacrylate)-based polymer electrolytes complexed with lithium tetraborate and propylene carbonate. J Mater Eng Perform 21(1):89–94CrossRef Ramesh S, Bing KN (2012) Conductivity, mechanical and thermal studies on poly (methyl methacrylate)-based polymer electrolytes complexed with lithium tetraborate and propylene carbonate. J Mater Eng Perform 21(1):89–94CrossRef
160.
Zurück zum Zitat Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly (ethylene oxide)(PEO)-based polymer electrolytes. Solid State Ionics 118(1–2):73–79CrossRef Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly (ethylene oxide)(PEO)-based polymer electrolytes. Solid State Ionics 118(1–2):73–79CrossRef
161.
Zurück zum Zitat Liew CW, Ramesh S, Durairaj R (2012) Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics. J Mater Res 27(23):2996–3004CrossRef Liew CW, Ramesh S, Durairaj R (2012) Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics. J Mater Res 27(23):2996–3004CrossRef
162.
Zurück zum Zitat Luo J, Conrad O, Vankelecom IF (2013) Imidazolium methanesulfonate as a high temperature proton conductor. J Mater Chem A 1(6):2238–2247CrossRef Luo J, Conrad O, Vankelecom IF (2013) Imidazolium methanesulfonate as a high temperature proton conductor. J Mater Chem A 1(6):2238–2247CrossRef
163.
Zurück zum Zitat Kim JK, Cheruvally G, Li X, Ahn JH, Kim KW, Ahn HJ (2008) Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources 178(2):815–820CrossRef Kim JK, Cheruvally G, Li X, Ahn JH, Kim KW, Ahn HJ (2008) Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources 178(2):815–820CrossRef
164.
Zurück zum Zitat Dai Y, Wang Y, Greenbaum SG, Bajue SA, Golodnitsky D, Ardel G, Peled E (1998) Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim Acta 43(10–11):1557–1561CrossRef Dai Y, Wang Y, Greenbaum SG, Bajue SA, Golodnitsky D, Ardel G, Peled E (1998) Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim Acta 43(10–11):1557–1561CrossRef
165.
Zurück zum Zitat Tan SJ, Zeng XX, Ma Q, Wu XW, Guo YG (2018) Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem Energy Rev 1(2):113–138CrossRef Tan SJ, Zeng XX, Ma Q, Wu XW, Guo YG (2018) Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem Energy Rev 1(2):113–138CrossRef
166.
Zurück zum Zitat Riley M, Fedkiw PS, Khan SA (2002) Transport properties of lithium hectorite-based composite electrolytes. J Electrochem Soc 149(6):A667CrossRef Riley M, Fedkiw PS, Khan SA (2002) Transport properties of lithium hectorite-based composite electrolytes. J Electrochem Soc 149(6):A667CrossRef
167.
Zurück zum Zitat Patel M, Bhattacharyya AJ (2008) Plastic–polymer composite electrolytes: Novel soft matter electrolytes for rechargeable lithium batteries. Electrochem Commun 10(12):1912–1915CrossRef Patel M, Bhattacharyya AJ (2008) Plastic–polymer composite electrolytes: Novel soft matter electrolytes for rechargeable lithium batteries. Electrochem Commun 10(12):1912–1915CrossRef
168.
Zurück zum Zitat Pandey GP, Agrawal RC, Hashmi SA (2011) Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J Phys Chem Solids 72(12):1408–1413CrossRef Pandey GP, Agrawal RC, Hashmi SA (2011) Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J Phys Chem Solids 72(12):1408–1413CrossRef
169.
Zurück zum Zitat Kumar B, Scanlon LG (2000) Composite electrolytes for lithium rechargeable batteries. J Electroceram 5(2):127–139CrossRef Kumar B, Scanlon LG (2000) Composite electrolytes for lithium rechargeable batteries. J Electroceram 5(2):127–139CrossRef
170.
Zurück zum Zitat Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M (2014) Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J Alloy Compd 591:247–250CrossRef Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M (2014) Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J Alloy Compd 591:247–250CrossRef
171.
Zurück zum Zitat Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46:176–184CrossRef Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46:176–184CrossRef
172.
Zurück zum Zitat Dai Z, Yu J, Liu J, Liu R, Sun Q, Chen D, Ciucci F (2020) Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. J Power Sources 464:228182 Dai Z, Yu J, Liu J, Liu R, Sun Q, Chen D, Ciucci F (2020) Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. J Power Sources 464:228182
173.
Zurück zum Zitat Shi X, Ma N, Wu Y, Lu Y, Xiao Q, Li Z, Lei G (2018) Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery. Solid State Ionics 325:112–119CrossRef Shi X, Ma N, Wu Y, Lu Y, Xiao Q, Li Z, Lei G (2018) Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery. Solid State Ionics 325:112–119CrossRef
174.
Zurück zum Zitat Kataria S, Verma YL, Gupta H, Singh SK, Srivastava N, Dhar R, Singh RK (2020) Ionic liquid mediated nano-composite polymer gel electrolyte for rechargeable battery application. Polym-Plastics Technol Mater 59(9):952–958CrossRef Kataria S, Verma YL, Gupta H, Singh SK, Srivastava N, Dhar R, Singh RK (2020) Ionic liquid mediated nano-composite polymer gel electrolyte for rechargeable battery application. Polym-Plastics Technol Mater 59(9):952–958CrossRef
175.
Zurück zum Zitat Guo Q, Han Y, Wang H, Xiong S, Sun W, Zheng C, Xie K (2018) Flame retardant and stable Li1.5Al0.5Ge1.5 (PO4) 3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J Phys Chem C 122(19):10334–10342 Guo Q, Han Y, Wang H, Xiong S, Sun W, Zheng C, Xie K (2018) Flame retardant and stable Li1.5Al0.5Ge1.5 (PO4) 3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J Phys Chem C 122(19):10334–10342
176.
Zurück zum Zitat Dong H, Li J, Zhao S, Zhao F, Xiong S, Brett DJ, Parkin IP (2020) An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. J Mater Chem A 8(43):22637–22644CrossRef Dong H, Li J, Zhao S, Zhao F, Xiong S, Brett DJ, Parkin IP (2020) An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. J Mater Chem A 8(43):22637–22644CrossRef
177.
Zurück zum Zitat Tran TNT, Chung HJ, Ivey DG (2019) A study of alkaline gel polymer electrolytes for rechargeable zinc–air batteries. Electrochimica Acta 327:135021 Tran TNT, Chung HJ, Ivey DG (2019) A study of alkaline gel polymer electrolytes for rechargeable zinc–air batteries. Electrochimica Acta 327:135021
178.
Zurück zum Zitat Song A, Huang Y, Zhong X, Cao H, Liu B, Lin Y, Li X (2018) Novel lignocellulose based gel polymer electrolyte with higher comprehensive performances for rechargeable lithium–sulfur battery. J Membr Sci 556:203–213CrossRef Song A, Huang Y, Zhong X, Cao H, Liu B, Lin Y, Li X (2018) Novel lignocellulose based gel polymer electrolyte with higher comprehensive performances for rechargeable lithium–sulfur battery. J Membr Sci 556:203–213CrossRef
179.
Zurück zum Zitat Srivastava N, Singh SK, Gupta H, Meghnani D, Mishra R, Tiwari RK, Singh RK (2020) Electrochemical performance of Li-rich NMC cathode material using ionic liquid based blend polymer electrolyte for rechargeable Li-ion batteries. J Alloys Compounds 843:155615 Srivastava N, Singh SK, Gupta H, Meghnani D, Mishra R, Tiwari RK, Singh RK (2020) Electrochemical performance of Li-rich NMC cathode material using ionic liquid based blend polymer electrolyte for rechargeable Li-ion batteries. J Alloys Compounds 843:155615
180.
Zurück zum Zitat Lei Z, Chen B, Koo YM, MacFarlane DR (2017) Introduction: ionic liquids. Chem Rev 117(10):6633–6635CrossRef Lei Z, Chen B, Koo YM, MacFarlane DR (2017) Introduction: ionic liquids. Chem Rev 117(10):6633–6635CrossRef
181.
Zurück zum Zitat Banerjee P, Franco Jr A, Xiao RZ, Naidu KCB, Rao RM, Pothu R, Boddula R (2020) Advancement in electrolytes for rechargeable batteries. Rechargeable Batteries Hist Progress Appl 87–98 Banerjee P, Franco Jr A, Xiao RZ, Naidu KCB, Rao RM, Pothu R, Boddula R (2020) Advancement in electrolytes for rechargeable batteries. Rechargeable Batteries Hist Progress Appl 87–98
182.
Zurück zum Zitat Meng T, Young KH, Wong DF, Nei J (2017) Ionic liquid-based non-aqueous electrolytes for nickel/metal hydride batteries. Batteries 3(1):4CrossRef Meng T, Young KH, Wong DF, Nei J (2017) Ionic liquid-based non-aqueous electrolytes for nickel/metal hydride batteries. Batteries 3(1):4CrossRef
183.
Zurück zum Zitat Nakamoto H, Watanabe M (2007) Brønsted acid–base ionic liquids for fuel cell electrolytes. Chem Commun 24:2539–2541CrossRef Nakamoto H, Watanabe M (2007) Brønsted acid–base ionic liquids for fuel cell electrolytes. Chem Commun 24:2539–2541CrossRef
184.
Zurück zum Zitat Yasuda T, Nakamura SI, Honda Y, Kinugawa K, Lee SY, Watanabe M (2012) Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl Mater Interfaces 4(3):1783–1790CrossRef Yasuda T, Nakamura SI, Honda Y, Kinugawa K, Lee SY, Watanabe M (2012) Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl Mater Interfaces 4(3):1783–1790CrossRef
185.
Zurück zum Zitat Li C, Patra J, Li J, Rath PC, Lin MH, Chang JK (2020) A novel moisture-insensitive and low-corrosivity ionic liquid electrolyte for rechargeable aluminum batteries. Adv Func Mater 30(12):1909565CrossRef Li C, Patra J, Li J, Rath PC, Lin MH, Chang JK (2020) A novel moisture-insensitive and low-corrosivity ionic liquid electrolyte for rechargeable aluminum batteries. Adv Func Mater 30(12):1909565CrossRef
186.
Zurück zum Zitat Li J, Tu J, Jiao H, Wang C, Jiao S (2017) Ternary AlCl3-urea-[EMIm] Cl ionic liquid electrolyte for rechargeable aluminum-ion batteries. J Electrochem Soc 164(13):A3093CrossRef Li J, Tu J, Jiao H, Wang C, Jiao S (2017) Ternary AlCl3-urea-[EMIm] Cl ionic liquid electrolyte for rechargeable aluminum-ion batteries. J Electrochem Soc 164(13):A3093CrossRef
187.
Zurück zum Zitat Kao YT, Patil SB, An CY, Huang SK, Lin JC, Lee TS, Wang DY (2020) A quinone-based electrode for high-performance rechargeable aluminum-ion batteries with a low-cost AlCl3/urea ionic liquid electrolyte. ACS Appl Mater Interfaces 12(23):25853–25860CrossRef Kao YT, Patil SB, An CY, Huang SK, Lin JC, Lee TS, Wang DY (2020) A quinone-based electrode for high-performance rechargeable aluminum-ion batteries with a low-cost AlCl3/urea ionic liquid electrolyte. ACS Appl Mater Interfaces 12(23):25853–25860CrossRef
188.
Zurück zum Zitat Pan M, Zou J, Laine R, Khan D, Guo R, Zeng X, Ding W (2019) Using CoS cathode materials with 3D hierarchical porosity and an ionic liquid (IL) as an electrolyte additive for high capacity rechargeable magnesium batteries. J Mater Chem A 7(32):18880–18888CrossRef Pan M, Zou J, Laine R, Khan D, Guo R, Zeng X, Ding W (2019) Using CoS cathode materials with 3D hierarchical porosity and an ionic liquid (IL) as an electrolyte additive for high capacity rechargeable magnesium batteries. J Mater Chem A 7(32):18880–18888CrossRef
189.
Zurück zum Zitat Chellappan LK, Kvello J, Tolchard JR, Dahl PI, Hanetho SM, Berthelot R, Jayasayee K (2020) Non-nucleophilic electrolyte based on ionic liquid and magnesium bis (diisopropyl) amide for rechargeable magnesium-ion batteries. ACS Appl Energy Mater 3(10):9585–9593CrossRef Chellappan LK, Kvello J, Tolchard JR, Dahl PI, Hanetho SM, Berthelot R, Jayasayee K (2020) Non-nucleophilic electrolyte based on ionic liquid and magnesium bis (diisopropyl) amide for rechargeable magnesium-ion batteries. ACS Appl Energy Mater 3(10):9585–9593CrossRef
190.
Zurück zum Zitat Guo Q, Han Y, Wang H, Sun W, Jiang H, Zhu Y, Xie K (2018) Thermo and electrochemical-stable composite gel polymer electrolytes derived from core-shell silica nanoparticles and ionic liquid for rechargeable lithium metal batteries. Electrochim Acta 288:101–107CrossRef Guo Q, Han Y, Wang H, Sun W, Jiang H, Zhu Y, Xie K (2018) Thermo and electrochemical-stable composite gel polymer electrolytes derived from core-shell silica nanoparticles and ionic liquid for rechargeable lithium metal batteries. Electrochim Acta 288:101–107CrossRef
191.
Zurück zum Zitat Singh SK, Balo L, Gupta H, Singh VK, Tripathi AK, Verma YL, Singh RK (2018) Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery. Energy 150:890–900CrossRef Singh SK, Balo L, Gupta H, Singh VK, Tripathi AK, Verma YL, Singh RK (2018) Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery. Energy 150:890–900CrossRef
192.
Zurück zum Zitat Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRef Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRef
193.
Zurück zum Zitat Zhou ZB, Matsumoto H, Tatsumi K (2006) Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J 12(8):2196–2212 Zhou ZB, Matsumoto H, Tatsumi K (2006) Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J 12(8):2196–2212
194.
Zurück zum Zitat Appetecchi GB, Montanino M, Balducci A, Lux SF, Winterb M, Passerini S (2009) Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. electrochemical characterization of the electrolytes. J Power Sources 192(2):599–605 Appetecchi GB, Montanino M, Balducci A, Lux SF, Winterb M, Passerini S (2009) Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. electrochemical characterization of the electrolytes. J Power Sources 192(2):599–605
195.
Zurück zum Zitat Ma Z, Forsyth M, MacFarlane DR, Kar M (2019) Ionic liquid/tetraglyme hybrid Mg [TFSI] 2 electrolytes for rechargeable Mg batteries. Green Energy Environ 4(2):146–153CrossRef Ma Z, Forsyth M, MacFarlane DR, Kar M (2019) Ionic liquid/tetraglyme hybrid Mg [TFSI] 2 electrolytes for rechargeable Mg batteries. Green Energy Environ 4(2):146–153CrossRef
196.
Zurück zum Zitat Zheng J, Wang P, Liu H, Hu YY (2019) Interface-enabled ion conduction in Li10GeP2S12–poly (ethylene oxide) hybrid electrolytes. ACS Appl Energy Mater 2(2):1452–1459CrossRef Zheng J, Wang P, Liu H, Hu YY (2019) Interface-enabled ion conduction in Li10GeP2S12–poly (ethylene oxide) hybrid electrolytes. ACS Appl Energy Mater 2(2):1452–1459CrossRef
197.
Zurück zum Zitat Zhang Y, Li H, Huang S, Fan S, Sun L, Tian B, Yang HY (2020) Rechargeable aqueous zinc-ion batteries in MgSO4/ZnSO4 hybrid electrolytes. Nano-micro letters 12(1):1–16CrossRef Zhang Y, Li H, Huang S, Fan S, Sun L, Tian B, Yang HY (2020) Rechargeable aqueous zinc-ion batteries in MgSO4/ZnSO4 hybrid electrolytes. Nano-micro letters 12(1):1–16CrossRef
198.
Zurück zum Zitat Pagot G, Vezzù K, Greenbaum SG, Di Noto V (2021) Hybrid twin-metal aluminum–magnesium electrolytes for rechargeable batteries. J Power Sources 493:229681 Pagot G, Vezzù K, Greenbaum SG, Di Noto V (2021) Hybrid twin-metal aluminum–magnesium electrolytes for rechargeable batteries. J Power Sources 493:229681
Metadaten
Titel
Recent Developments in Electrolyte Materials for Rechargeable Batteries
verfasst von
Syed Mehfooz Ali
Nadeem Ahmad Arif
Mohammad Mudassir Hashmi
Mohd Bilal Khan
Zishan H. Khan
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-0553-7_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.