Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

25.05.2021

Reconfigurable Antennas for Advanced Wireless Communications: A Review

verfasst von: K. Karthika, K. Kavitha

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern era of wireless communication relies on the evolution of adaptive antennas. This influences the new age antenna designs to adapt themselves to the changing RF environment. Reconfigurable antennas are one such design where the operating frequency, radiation pattern, and polarization can be altered according to the user’s requirement. Numerous research works have been contributed to the design of reconfigurable antennas. In view of that, this work proposes a detailed survey on reconfigurable antennas. The key motivation behind the survey is to provide an elaborate idea on the existing reconfigurable antenna designs so that the antenna researchers can perform possible analysis to overcome shortcomings or can enhance the performance of the existing designs. The evolution of reconfigurable antennas, the need for different reconfigurations and their design specifications are presented in this survey. Further, a comparative study on different switching mechanisms, deployment of various techniques to enhance antenna performance, diverse applications and existing design challenges are also addressed as a part of this review. Hence, this survey will be useful to the researchers in developing futuristic reconfigurable radiating structures that can be well suited for applications like Cognitive Radio, 5G and Multiple Input Multiple Output systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schaubert, D., Farrar, F., Hayes, S., & Sindoris, A. (1983). Frequency-agile, polarization diverse microstrip antennas and frequency scanned arrays. U.S. Patent No. 4,367,474. Washington, DC: U.S. Patent and Trademark Office. Schaubert, D., Farrar, F., Hayes, S., & Sindoris, A. (1983). Frequency-agile, polarization diverse microstrip antennas and frequency scanned arrays. U.S. Patent No. 4,367,474. Washington, DC: U.S. Patent and Trademark Office.
2.
Zurück zum Zitat Bhartia, P., & Bahl, I. (1985). Broadband microstrip antennas with varactor diodes. U.S. Patent No. 4,529,987. Washington, DC: U.S. Patent and Trademark Office. Bhartia, P., & Bahl, I. (1985). Broadband microstrip antennas with varactor diodes. U.S. Patent No. 4,529,987. Washington, DC: U.S. Patent and Trademark Office.
3.
Zurück zum Zitat Daryoush, A., Bontoz, K., & Herczfeld, P. (1986). Optically tuned patch antenna for phased array applications. IEEE AP-S International Symosium Digest, Philadelphia, PA, 361–364. Daryoush, A., Bontoz, K., & Herczfeld, P. (1986). Optically tuned patch antenna for phased array applications. IEEE AP-S International Symosium Digest, Philadelphia, PA, 361–364.
4.
Zurück zum Zitat Van Blaricum, M. L. (2000). A brief history of photonic antenna reconfiguration. In International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No. 00EX430) (pp. 9–12). IEEE. Van Blaricum, M. L. (2000). A brief history of photonic antenna reconfiguration. In International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No. 00EX430) (pp. 9–12). IEEE.
5.
Zurück zum Zitat Elamaran, B., Chio, I. M., Chen, L. Y., & Chiao, J. C. (2000). A beam-steerer using reconfigurable PBG ground plane. In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017) (Vol. 2, pp. 835–838). IEEE. Elamaran, B., Chio, I. M., Chen, L. Y., & Chiao, J. C. (2000). A beam-steerer using reconfigurable PBG ground plane. In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017) (Vol. 2, pp. 835–838). IEEE.
6.
Zurück zum Zitat Ullah, S., Hayat, S., Umar, A., Ali, U., Tahir, F. A., & Flint, J. A. (2017). Design, fabrication and measurement of triple band frequency reconfigurable antennas for portable wireless communications. AEU-International Journal of Electronics and Communications, 81, 236–242 Ullah, S., Hayat, S., Umar, A., Ali, U., Tahir, F. A., & Flint, J. A. (2017). Design, fabrication and measurement of triple band frequency reconfigurable antennas for portable wireless communications. AEU-International Journal of Electronics and Communications, 81, 236–242
7.
Zurück zum Zitat Kunwar, A., Gautam, A. K., & Rambabu, K. (2017). Design of a compact U-shaped slot triple band antenna for WLAN/WiMAX applications. AEU-International Journal of Electronics and Communications, 71, 82–88 Kunwar, A., Gautam, A. K., & Rambabu, K. (2017). Design of a compact U-shaped slot triple band antenna for WLAN/WiMAX applications. AEU-International Journal of Electronics and Communications, 71, 82–88
8.
Zurück zum Zitat Peroulis, D., Sarabandi, K., & Katehi, L. P. (2001, July). A planar VHF reconfigurable slot antenna. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 1, pp. 154–157). IEEE. Peroulis, D., Sarabandi, K., & Katehi, L. P. (2001, July). A planar VHF reconfigurable slot antenna. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 1, pp. 154–157). IEEE.
9.
Zurück zum Zitat Messaoudene, I., Denidni, T. A., & Benghalia, A. (2013). Experimental investigations of ultra-wideband antenna integrated with dielectric resonator antenna for cognitive radio applications. Progress in Electromagnetics Research, 45, 33–42CrossRef Messaoudene, I., Denidni, T. A., & Benghalia, A. (2013). Experimental investigations of ultra-wideband antenna integrated with dielectric resonator antenna for cognitive radio applications. Progress in Electromagnetics Research, 45, 33–42CrossRef
10.
Zurück zum Zitat Chen, Y., Ye, L., Zhuo, J., Liu, Y., Zhang, L., Zhang, M., & Liu, Q. H. (2017). Frequency reconfigurable circular patch antenna with an arc-shaped slot ground controlled by PIN diodes. International Journal of Antennas and Propagation. Chen, Y., Ye, L., Zhuo, J., Liu, Y., Zhang, L., Zhang, M., & Liu, Q. H. (2017). Frequency reconfigurable circular patch antenna with an arc-shaped slot ground controlled by PIN diodes. International Journal of Antennas and Propagation.
11.
Zurück zum Zitat Abutarboush, H. F., Nilavalan, R., Cheung, S. W., Nasr, K. M., Peter, T., Budimir, D., & Al-Raweshidy, H. (2011). A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Transactions on Antennas and Propagation, 60(1), 36–43CrossRef Abutarboush, H. F., Nilavalan, R., Cheung, S. W., Nasr, K. M., Peter, T., Budimir, D., & Al-Raweshidy, H. (2011). A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Transactions on Antennas and Propagation, 60(1), 36–43CrossRef
12.
Zurück zum Zitat Rajeshkumar, V., & Raghavan, S. (2015). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. AEU-International Journal of Electronics and Communications, 69(1), 274–280 Rajeshkumar, V., & Raghavan, S. (2015). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. AEU-International Journal of Electronics and Communications, 69(1), 274–280
13.
Zurück zum Zitat Ali, T., Khaleeq, M. M., & Biradar, R. C. (2018). A multiband reconfigurable slot antenna for wireless applications. AEU-International Journal of Electronics and Communications, 84, 273–280 Ali, T., Khaleeq, M. M., & Biradar, R. C. (2018). A multiband reconfigurable slot antenna for wireless applications. AEU-International Journal of Electronics and Communications, 84, 273–280
14.
Zurück zum Zitat Ali, T., Fatima, N., & Biradar, R. C. (2018). A miniaturized multiband reconfigurable fractal slot antenna for GPS / GNSS / Bluetooth / WiMAX / X-band applications. AEU-International Journal of Electronics and Communications, 94, 234–243 Ali, T., Fatima, N., & Biradar, R. C. (2018). A miniaturized multiband reconfigurable fractal slot antenna for GPS / GNSS / Bluetooth / WiMAX / X-band applications. AEU-International Journal of Electronics and Communications, 94, 234–243
15.
Zurück zum Zitat Idris, I. H., Hamid, M. R., Kamardin, K., & Rahim, M. K. A. (2018). A multi to wideband frequency reconfigurable antenna. International Journal of RF and Microwave Computer-Aided Engineering, 28(4), 21216CrossRef Idris, I. H., Hamid, M. R., Kamardin, K., & Rahim, M. K. A. (2018). A multi to wideband frequency reconfigurable antenna. International Journal of RF and Microwave Computer-Aided Engineering, 28(4), 21216CrossRef
16.
Zurück zum Zitat Augustin, G., Chacko, B. P., & Denidni, T. A. (2013). Electronically reconfigurable uni-planar antenna for cognitive radio applications. IET Microwaves, Antennas & Propagation, 8(5), 367–376CrossRef Augustin, G., Chacko, B. P., & Denidni, T. A. (2013). Electronically reconfigurable uni-planar antenna for cognitive radio applications. IET Microwaves, Antennas & Propagation, 8(5), 367–376CrossRef
18.
Zurück zum Zitat Simons, R.N., Chun, D., & Katehi, L. P. (2001, July). Reconfigurable array antenna using microelectromechanical systems (MEMS) actuators. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 3, pp. 674–677). IEEE. Simons, R.N., Chun, D., & Katehi, L. P. (2001, July). Reconfigurable array antenna using microelectromechanical systems (MEMS) actuators. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 3, pp. 674–677). IEEE.
19.
Zurück zum Zitat Kazemi, A. H., & Mokhtari, A. (2017). Graphene-based patch antenna tunable in the three atmospheric windows. Optik, 142, 475–482CrossRef Kazemi, A. H., & Mokhtari, A. (2017). Graphene-based patch antenna tunable in the three atmospheric windows. Optik, 142, 475–482CrossRef
20.
Zurück zum Zitat Dash, S., & Patnaik, A. (2017, July). Dual band reconfigurable plasmonic antenna using bilayer graphene. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 921–922). IEEE. Dash, S., & Patnaik, A. (2017, July). Dual band reconfigurable plasmonic antenna using bilayer graphene. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 921–922). IEEE.
21.
Zurück zum Zitat Dash, S., & Patnaik, A. (2017, November). Graphene loaded frequency reconfigurable metal antenna. In 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM) (pp. 1–4). IEEE. Dash, S., & Patnaik, A. (2017, November). Graphene loaded frequency reconfigurable metal antenna. In 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM) (pp. 1–4). IEEE.
22.
Zurück zum Zitat Prakash, S., Dash, S., & Patnaik, A. (2018, December). Reconfigurable circular patch THz antenna using graphene stack based SIW technique. In 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (pp. 1–3). IEEE. Prakash, S., Dash, S., & Patnaik, A. (2018, December). Reconfigurable circular patch THz antenna using graphene stack based SIW technique. In 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (pp. 1–3). IEEE.
24.
Zurück zum Zitat Majumder, B., Kandasamy, K., Mukherjee, J., & Ray, K. P. (2015, December). Dual band dual polarized frequency reconfigurable antenna using meta-surface. In 2015 Asia-Pacific Microwave Conference (APMC) (Vol. 1, pp. 1–3). IEEE. Majumder, B., Kandasamy, K., Mukherjee, J., & Ray, K. P. (2015, December). Dual band dual polarized frequency reconfigurable antenna using meta-surface. In 2015 Asia-Pacific Microwave Conference (APMC) (Vol. 1, pp. 1–3). IEEE.
26.
Zurück zum Zitat O, Jin, Choi. A, . (2019). Compact four-port coplanar antenna based on an excitation switching reconfigurable mechanism for cognitive radio applications. Applied Sciences, 9(15), 3157CrossRef O, Jin, Choi. A, . (2019). Compact four-port coplanar antenna based on an excitation switching reconfigurable mechanism for cognitive radio applications. Applied Sciences, 9(15), 3157CrossRef
27.
Zurück zum Zitat Augustin, G., & Denidni, T. A. (2012). An integrated ultra wideband/narrow band antenna in uniplanar configuration for cognitive radio systems. IEEE Transactions on Antennas and Propagation, 60(11), 5479–5484CrossRef Augustin, G., & Denidni, T. A. (2012). An integrated ultra wideband/narrow band antenna in uniplanar configuration for cognitive radio systems. IEEE Transactions on Antennas and Propagation, 60(11), 5479–5484CrossRef
28.
Zurück zum Zitat Hamid, M. R., Gardner, P., Hall, P. S., & Ghanem, F. (2010). Reconfigurable vivaldi antenna. Microwave and Optical Technology Letters, 52(4), 785–787CrossRef Hamid, M. R., Gardner, P., Hall, P. S., & Ghanem, F. (2010). Reconfigurable vivaldi antenna. Microwave and Optical Technology Letters, 52(4), 785–787CrossRef
29.
Zurück zum Zitat Al-Husseini, M., Ramadan, A., El-Hajj, A., Kabalan, K. Y., Tawk, Y., & Christodoulou, C. G. (2011, July). Design based on complementary split-ring resonators of an antenna with controllable band notches for UWB cognitive radio applications. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 1120–1122). IEEE. Al-Husseini, M., Ramadan, A., El-Hajj, A., Kabalan, K. Y., Tawk, Y., & Christodoulou, C. G. (2011, July). Design based on complementary split-ring resonators of an antenna with controllable band notches for UWB cognitive radio applications. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 1120–1122). IEEE.
30.
Zurück zum Zitat Zhao, D., Lan, L., Han, Y., Liang, F., Zhang, Q., & Wang, B. Z. (2014). Optically controlled reconfigurable band-notched UWB antenna for cognitive radio applications. IEEE Photonics Technology Letters, 26(21), 2173–2176CrossRef Zhao, D., Lan, L., Han, Y., Liang, F., Zhang, Q., & Wang, B. Z. (2014). Optically controlled reconfigurable band-notched UWB antenna for cognitive radio applications. IEEE Photonics Technology Letters, 26(21), 2173–2176CrossRef
31.
Zurück zum Zitat Lakrit, S., Das, S., El Alami, A., Barad, D., & Mohapatra, S. (2019). A compact UWB monopole patch antenna with reconfigurable Band-notched characteristics for Wi-MAX and WLAN applications. AEU-International Journal of Electronics and Communications, 105, 106–115 Lakrit, S., Das, S., El Alami, A., Barad, D., & Mohapatra, S. (2019). A compact UWB monopole patch antenna with reconfigurable Band-notched characteristics for Wi-MAX and WLAN applications. AEU-International Journal of Electronics and Communications, 105, 106–115
32.
Zurück zum Zitat Nazeri, A. H., Falahati, A., & Edwards, R. M. (2019). A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications. AEU-International Journal of Electronics and Communications, 101, 1–8 Nazeri, A. H., Falahati, A., & Edwards, R. M. (2019). A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications. AEU-International Journal of Electronics and Communications, 101, 1–8
34.
Zurück zum Zitat Kandasamy, K., Majumder, B., Mukherjee, J & Ray, K. P. (2015, July). Design of SRR loaded reconfigurable antenna for UWB and narrow band applications. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 1192–1193). IEEE. Kandasamy, K., Majumder, B., Mukherjee, J & Ray, K. P. (2015, July). Design of SRR loaded reconfigurable antenna for UWB and narrow band applications. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 1192–1193). IEEE.
35.
Zurück zum Zitat Deng, J., Hou, S., Zhao, L., & Guo, L. (2017). A reconfigurable filtering antenna with integrated bandpass filters for UWB/WLAN applications. IEEE Transactions on Antennas and Propagation, 66(1), 401–404CrossRef Deng, J., Hou, S., Zhao, L., & Guo, L. (2017). A reconfigurable filtering antenna with integrated bandpass filters for UWB/WLAN applications. IEEE Transactions on Antennas and Propagation, 66(1), 401–404CrossRef
36.
Zurück zum Zitat Al-Husseini, M., Ramadan, A., Zamudio, M. E., Christodoulou, C. G., El-Hajj, A., & Kabalan, K. Y. (2011, September). A UWB antenna combined with a reconfigurable bandpass filter for cognitive radio applications. In 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (pp. 902–904). IEEE. Al-Husseini, M., Ramadan, A., Zamudio, M. E., Christodoulou, C. G., El-Hajj, A., & Kabalan, K. Y. (2011, September). A UWB antenna combined with a reconfigurable bandpass filter for cognitive radio applications. In 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (pp. 902–904). IEEE.
37.
Zurück zum Zitat Mansoul, A., Ghanem, F., Hamid, M. R., & Trabelsi, M. (2014). A selective frequency-reconfigurable antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 13, 515–518CrossRef Mansoul, A., Ghanem, F., Hamid, M. R., & Trabelsi, M. (2014). A selective frequency-reconfigurable antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 13, 515–518CrossRef
38.
Zurück zum Zitat Hamid, M. R., Gardner, P., Hall, P. S., & Ghanem, F. (2011). Vivaldi antenna with integrated switchable band pass resonator. IEEE Transactions on Antennas and Propagation, 59(11), 4008–4015CrossRef Hamid, M. R., Gardner, P., Hall, P. S., & Ghanem, F. (2011). Vivaldi antenna with integrated switchable band pass resonator. IEEE Transactions on Antennas and Propagation, 59(11), 4008–4015CrossRef
39.
Zurück zum Zitat Boudaghi, H., Azarmanesh, M., & Mehranpour, M. (2012). A frequency-reconfigurable monopole antenna using switchable slotted ground structure. IEEE Antennas and Wireless Propagation Letters, 11, 655–658CrossRef Boudaghi, H., Azarmanesh, M., & Mehranpour, M. (2012). A frequency-reconfigurable monopole antenna using switchable slotted ground structure. IEEE Antennas and Wireless Propagation Letters, 11, 655–658CrossRef
40.
Zurück zum Zitat Li, Y., Li, W., & Ye, Q. (2013). A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications. International Journal of Antennas and Propagation. Li, Y., Li, W., & Ye, Q. (2013). A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications. International Journal of Antennas and Propagation.
41.
Zurück zum Zitat Koley, S., Bepari, D., & Mitra, D. (2015). Band-reconfigurable monopole antenna for cognitive radio applications. IETE Journal of Research, 61(4), 411–416CrossRef Koley, S., Bepari, D., & Mitra, D. (2015). Band-reconfigurable monopole antenna for cognitive radio applications. IETE Journal of Research, 61(4), 411–416CrossRef
42.
Zurück zum Zitat Abdalla, M. A., Ibrahim, A. A., & Boutejdar, A. (2015). Resonator switching techniques for notched ultra-wideband antenna in wireless applications. IET Microwaves, Antennas & Propagation, 9(13), 1468–1477CrossRef Abdalla, M. A., Ibrahim, A. A., & Boutejdar, A. (2015). Resonator switching techniques for notched ultra-wideband antenna in wireless applications. IET Microwaves, Antennas & Propagation, 9(13), 1468–1477CrossRef
43.
Zurück zum Zitat Hussain, R., & Sharawi, M. S. (2014). A cognitive radio reconfigurable MIMO and sensing antenna system. IEEE Antennas and Wireless Propagation Letters, 14, 257–260CrossRef Hussain, R., & Sharawi, M. S. (2014). A cognitive radio reconfigurable MIMO and sensing antenna system. IEEE Antennas and Wireless Propagation Letters, 14, 257–260CrossRef
44.
Zurück zum Zitat Shome, P. P., Khan, T., Koul, S. K., & Antar, Y. M. (2020). Compact UWB-to-C band reconfigurable filtenna based on elliptical monopole antenna integrated with bandpass filter for cognitive radio systems. IET Microwaves, Antennas & Propagation, 14(10), 1079–1088CrossRef Shome, P. P., Khan, T., Koul, S. K., & Antar, Y. M. (2020). Compact UWB-to-C band reconfigurable filtenna based on elliptical monopole antenna integrated with bandpass filter for cognitive radio systems. IET Microwaves, Antennas & Propagation, 14(10), 1079–1088CrossRef
45.
Zurück zum Zitat Borakhade, D. K., & Pokle, S. B. (2015). Pentagon slot resonator frequency reconfigurable antenna for wideband reconfiguration. AEU-International Journal of Electronics and Communications, 69(10), 1562–1568 Borakhade, D. K., & Pokle, S. B. (2015). Pentagon slot resonator frequency reconfigurable antenna for wideband reconfiguration. AEU-International Journal of Electronics and Communications, 69(10), 1562–1568
46.
Zurück zum Zitat Pazin, L., & Leviatan, Y. (2014). Reconfigurable rotated-T slot antenna for cognitive radio systems. IEEE Transactions on Antennas and Propagation, 62(5), 2382–2387CrossRef Pazin, L., & Leviatan, Y. (2014). Reconfigurable rotated-T slot antenna for cognitive radio systems. IEEE Transactions on Antennas and Propagation, 62(5), 2382–2387CrossRef
47.
Zurück zum Zitat Ge, L., & Luk, K. M. (2016). Band-Reconfigurable Unidirectional Antenna: A simple, efficient magneto-electric antenna for cognitive radio applications. IEEE Antennas and Propagation Magazine, 58(2), 18–27CrossRef Ge, L., & Luk, K. M. (2016). Band-Reconfigurable Unidirectional Antenna: A simple, efficient magneto-electric antenna for cognitive radio applications. IEEE Antennas and Propagation Magazine, 58(2), 18–27CrossRef
48.
Zurück zum Zitat Lago, H., Zakaria, Z., Jamlos, M. F., & Soh, P. J. (2019). A wideband reconfigurable folded planar dipole using MEMS and hybrid polymeric substrates. AEU-International Journal of Electronics and Communications, 99, 347–353 Lago, H., Zakaria, Z., Jamlos, M. F., & Soh, P. J. (2019). A wideband reconfigurable folded planar dipole using MEMS and hybrid polymeric substrates. AEU-International Journal of Electronics and Communications, 99, 347–353
49.
Zurück zum Zitat Erfani, E., Nourinia, J., Ghobadi, C., Niroo-Jazi, M., & Denidni, T. A. (2012). Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 11, 77–80CrossRef Erfani, E., Nourinia, J., Ghobadi, C., Niroo-Jazi, M., & Denidni, T. A. (2012). Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 11, 77–80CrossRef
50.
Zurück zum Zitat Rajagopalan, H., Kovitz, J. M., & Rahmat-Samii, Y. (2013). MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio. IEEE Transactions on Antennas and Propagation, 62(3), 1056–1064CrossRef Rajagopalan, H., Kovitz, J. M., & Rahmat-Samii, Y. (2013). MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio. IEEE Transactions on Antennas and Propagation, 62(3), 1056–1064CrossRef
51.
Zurück zum Zitat Hussain, R., Raza, A., Khan, M. U., Shammim, A., & Sharawi, M. S. (2019). Miniaturized frequency reconfigurable pentagonal MIMO slot antenna for interweave CR applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(9), 21811CrossRef Hussain, R., Raza, A., Khan, M. U., Shammim, A., & Sharawi, M. S. (2019). Miniaturized frequency reconfigurable pentagonal MIMO slot antenna for interweave CR applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(9), 21811CrossRef
52.
Zurück zum Zitat Balanis, C. A. (2003). Smart antennas for future reconfigurable wireless communication networks. IEEE Topical Conference on Wireless Communication Technology, 181–182. Balanis, C. A. (2003). Smart antennas for future reconfigurable wireless communication networks. IEEE Topical Conference on Wireless Communication Technology, 181–182.
53.
Zurück zum Zitat Ji, J. K. (2016). Dual-band pattern reconfigurable antenna for wireless MIMO applications. ICT Express, 2(4), 199–203CrossRef Ji, J. K. (2016). Dual-band pattern reconfigurable antenna for wireless MIMO applications. ICT Express, 2(4), 199–203CrossRef
54.
Zurück zum Zitat Shamsinejad, S., Khalid, N., Monavar, F. M., Shamsadini, S., Mirzavand, R., Moradi, G., & Mousavi, P. (2019). Pattern Reconfigurable Cubic Slot Antenna. IEEE Access, 7, 64401–64410CrossRef Shamsinejad, S., Khalid, N., Monavar, F. M., Shamsadini, S., Mirzavand, R., Moradi, G., & Mousavi, P. (2019). Pattern Reconfigurable Cubic Slot Antenna. IEEE Access, 7, 64401–64410CrossRef
55.
Zurück zum Zitat Khairnar, V. V., Kadam, B. V., Ramesha, C. K., & Gudino, L. J. (2018). A reconfigurable parasitic antenna with continuous beam scanning capability in H-plane. AEU-International Journal of Electronics and Communications, 88, 78–86 Khairnar, V. V., Kadam, B. V., Ramesha, C. K., & Gudino, L. J. (2018). A reconfigurable parasitic antenna with continuous beam scanning capability in H-plane. AEU-International Journal of Electronics and Communications, 88, 78–86
56.
Zurück zum Zitat Yin, B., & Zhang, Z. F. (2018). A novel reconfigurable radiating plasma antenna array based on Yagi antenna technology. AEU-International Journal of Electronics and Communications, 84, 221–224 Yin, B., & Zhang, Z. F. (2018). A novel reconfigurable radiating plasma antenna array based on Yagi antenna technology. AEU-International Journal of Electronics and Communications, 84, 221–224
57.
Zurück zum Zitat Aboufoul, T., Parini, C., Chen, X., & Alomainy, A. (2013). Pattern-reconfigurable planar circular ultra-wideband monopole antenna. IEEE Transactions on Antennas and Propagation, 61(10), 4973–4980CrossRef Aboufoul, T., Parini, C., Chen, X., & Alomainy, A. (2013). Pattern-reconfigurable planar circular ultra-wideband monopole antenna. IEEE Transactions on Antennas and Propagation, 61(10), 4973–4980CrossRef
58.
Zurück zum Zitat Chashmi, M. J., Rezaei, P., & Kiani, N. (2019). Reconfigurable graphene-based V-shaped dipole antenna: From quasi-isotropic to directional radiation pattern. Optik, 184, 421–427CrossRef Chashmi, M. J., Rezaei, P., & Kiani, N. (2019). Reconfigurable graphene-based V-shaped dipole antenna: From quasi-isotropic to directional radiation pattern. Optik, 184, 421–427CrossRef
59.
Zurück zum Zitat Agrawal, T., & Srivastava, S. (2018). Ku band pattern reconfigurable substrate integrated waveguide leaky wave horn antenna. AEU-International Journal of Electronics and Communications, 87, 70–75 Agrawal, T., & Srivastava, S. (2018). Ku band pattern reconfigurable substrate integrated waveguide leaky wave horn antenna. AEU-International Journal of Electronics and Communications, 87, 70–75
60.
Zurück zum Zitat Krishnamoorthy, K., Majumder, B., Mukherjee, J., & Ray, K. P. (2014, July). Reconfigurable zeroth order and half wave length resonator antenna for pattern reconfiguration using tunable EBG structures. In 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM) (pp. 1–2). IEEE. Krishnamoorthy, K., Majumder, B., Mukherjee, J., & Ray, K. P. (2014, July). Reconfigurable zeroth order and half wave length resonator antenna for pattern reconfiguration using tunable EBG structures. In 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM) (pp. 1–2). IEEE.
61.
Zurück zum Zitat Li, K., Cai, Y. M., Yin, Y., & Hu, W. (2019). A wideband E-plane pattern reconfigurable antenna with enhanced gain. International Journal of RF and Microwave Computer-Aided Engineering, 29(2), 21530CrossRef Li, K., Cai, Y. M., Yin, Y., & Hu, W. (2019). A wideband E-plane pattern reconfigurable antenna with enhanced gain. International Journal of RF and Microwave Computer-Aided Engineering, 29(2), 21530CrossRef
63.
Zurück zum Zitat Aboufoul, T., Alomainy, A., & Parini, C. (2013). Polarization reconfigurable ultrawideband antenna for cognitive radio applications. Microwave and Optical Technology Letters, 55(3), 501–506CrossRef Aboufoul, T., Alomainy, A., & Parini, C. (2013). Polarization reconfigurable ultrawideband antenna for cognitive radio applications. Microwave and Optical Technology Letters, 55(3), 501–506CrossRef
64.
Zurück zum Zitat Yang, F., Rahmat-Samii, Y. (2002, June). Patch antenna with switchable slots (PASS): reconfigurable design for wireless communications. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 462–465). IEEE. Yang, F., Rahmat-Samii, Y. (2002, June). Patch antenna with switchable slots (PASS): reconfigurable design for wireless communications. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 462–465). IEEE.
65.
Zurück zum Zitat Al-Yasir, Y. I., Abdullah, A. S., Ojaroudi Parchin, N., Abd-Alhameed, R. A., & Noras, J. M. (2018). A new polarization-reconfigurable antenna for 5G applications. Electronics, 7(11), 293CrossRef Al-Yasir, Y. I., Abdullah, A. S., Ojaroudi Parchin, N., Abd-Alhameed, R. A., & Noras, J. M. (2018). A new polarization-reconfigurable antenna for 5G applications. Electronics, 7(11), 293CrossRef
66.
Zurück zum Zitat dos Santos Silveira, E., Fabiani, B. M., de Pina, M. V. P., & Do Nascimento, D. C. (2018). Polarization reconfigurable microstrip phased array. AEU-International Journal of Electronics and Communications, 97, 220–228 dos Santos Silveira, E., Fabiani, B. M., de Pina, M. V. P., & Do Nascimento, D. C. (2018). Polarization reconfigurable microstrip phased array. AEU-International Journal of Electronics and Communications, 97, 220–228
67.
Zurück zum Zitat Singh, D. K., Kanaujia, B. K., Dwari, S., & Pandey, G. P. (2018). Multi band multi polarized reconfigurable circularly polarized monopole antenna with simple biasing network. AEU-International Journal of Electronics and Communications, 95, 177–188 Singh, D. K., Kanaujia, B. K., Dwari, S., & Pandey, G. P. (2018). Multi band multi polarized reconfigurable circularly polarized monopole antenna with simple biasing network. AEU-International Journal of Electronics and Communications, 95, 177–188
68.
Zurück zum Zitat Sung, Y. (2018). Dual-band reconfigurable antenna for polarization diversity. International Journal of Antennas and Propagation, 2018. Sung, Y. (2018). Dual-band reconfigurable antenna for polarization diversity. International Journal of Antennas and Propagation, 2018.
69.
Zurück zum Zitat Fries, M. K., Gräni, M., & Vahldieck, R. (2003). A reconfigurable slot antenna with switchable polarization. IEEE Microwave and Wireless Components Letters, 13(11), 490–492CrossRef Fries, M. K., Gräni, M., & Vahldieck, R. (2003). A reconfigurable slot antenna with switchable polarization. IEEE Microwave and Wireless Components Letters, 13(11), 490–492CrossRef
70.
Zurück zum Zitat Chen, C. C., Sim, C. Y. D., & Lin, H. L. (2016). Annular ring slot antenna design with reconfigurable polarization. International Journal of RF and Microwave Computer-Aided Engineering, 26(2), 110–120CrossRef Chen, C. C., Sim, C. Y. D., & Lin, H. L. (2016). Annular ring slot antenna design with reconfigurable polarization. International Journal of RF and Microwave Computer-Aided Engineering, 26(2), 110–120CrossRef
71.
Zurück zum Zitat Chen, Q., Li, J. Y., Yang, G., Cao, B., & Zhang, Z. (2019). A polarization-reconfigurable high-gain microstrip antenna. IEEE Transactions on Antennas and Propagation, 67(5), 3461–3466CrossRef Chen, Q., Li, J. Y., Yang, G., Cao, B., & Zhang, Z. (2019). A polarization-reconfigurable high-gain microstrip antenna. IEEE Transactions on Antennas and Propagation, 67(5), 3461–3466CrossRef
72.
Zurück zum Zitat Kishore, N., Prakash, A., & Tripathi, V. S. (2017). A reconfigurable ultra wide band antenna with defected ground structure for ITS application. AEU-International Journal of Electronics and Communications, 72, 210–215 Kishore, N., Prakash, A., & Tripathi, V. S. (2017). A reconfigurable ultra wide band antenna with defected ground structure for ITS application. AEU-International Journal of Electronics and Communications, 72, 210–215
73.
Zurück zum Zitat Rakesh, K., Ray, K. P., & Tamang, M. (2018, December). Design of a polarisation reconfigurable antenna for coastal surveillance radar application. In 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (pp. 1–5). IEEE. Rakesh, K., Ray, K. P., & Tamang, M. (2018, December). Design of a polarisation reconfigurable antenna for coastal surveillance radar application. In 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (pp. 1–5). IEEE.
74.
Zurück zum Zitat Krishnamoorthy, K., Majumder, B., Mukherjee, J., & Ray, K. P. (2014, August). A circular polarization reconfigurable antenna based on reconfigurable electromagnetic band-gap structures. In 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (pp. 151–153). IEEE. Krishnamoorthy, K., Majumder, B., Mukherjee, J., & Ray, K. P. (2014, August). A circular polarization reconfigurable antenna based on reconfigurable electromagnetic band-gap structures. In 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (pp. 151–153). IEEE.
75.
Zurück zum Zitat Tran, H. H., & Park, H. C. (2019). Wideband polarization reconfigurable circularly polarized antenna with omnidirectional radiation pattern. International Journal of RF and Microwave Computer-Aided Engineering, 29(6), 21708CrossRef Tran, H. H., & Park, H. C. (2019). Wideband polarization reconfigurable circularly polarized antenna with omnidirectional radiation pattern. International Journal of RF and Microwave Computer-Aided Engineering, 29(6), 21708CrossRef
77.
Zurück zum Zitat Simons, R. N., Chun, D., & Katehi, L. P. (2002, June). Polarization reconfigurable patch antenna using microelectromechanical systems (MEMS) actuators. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 2, pp. 6–9). IEEE. Simons, R. N., Chun, D., & Katehi, L. P. (2002, June). Polarization reconfigurable patch antenna using microelectromechanical systems (MEMS) actuators. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 2, pp. 6–9). IEEE.
78.
Zurück zum Zitat Yang, L. S., Yang, L., Zhu, Y. A., Yoshitomi, K., & Kanaya, H. (2019). Polarization reconfigurable slot antenna for 5.8 GHz wireless applications. AEU-International Journal of Electronics and Communications, 101, 27–32 Yang, L. S., Yang, L., Zhu, Y. A., Yoshitomi, K., & Kanaya, H. (2019). Polarization reconfigurable slot antenna for 5.8 GHz wireless applications. AEU-International Journal of Electronics and Communications, 101, 27–32
79.
Zurück zum Zitat Wu, Z., Liu, H., & Li, L. (2019). Metasurface-inspired low profile polarization reconfigurable antenna with simple DC controlling circuit. IEEE Access, 7, 45073–45079CrossRef Wu, Z., Liu, H., & Li, L. (2019). Metasurface-inspired low profile polarization reconfigurable antenna with simple DC controlling circuit. IEEE Access, 7, 45073–45079CrossRef
80.
Zurück zum Zitat Schaffner, J. H., Loo, R. Y., Sievenpiper, D. F., Dolezal, F. A., Tangonan, G. L., Colburn, J. S., ... & Wu, M. (2000, July). Reconfigurable aperture antennas using RF MEMS switches for multi-octave tunability and beam steering. In IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C (Vol. 1, pp. 321–324). IEEE. Schaffner, J. H., Loo, R. Y., Sievenpiper, D. F., Dolezal, F. A., Tangonan, G. L., Colburn, J. S., ... & Wu, M. (2000, July). Reconfigurable aperture antennas using RF MEMS switches for multi-octave tunability and beam steering. In IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C (Vol. 1, pp. 321–324). IEEE.
81.
Zurück zum Zitat Huff, G. H., Feng, J., Zhang, S., & Bernhard, J. T. (2003). A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna. IEEE Microwave and Wireless Components Letters, 13(2), 57–59CrossRef Huff, G. H., Feng, J., Zhang, S., & Bernhard, J. T. (2003). A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna. IEEE Microwave and Wireless Components Letters, 13(2), 57–59CrossRef
82.
Zurück zum Zitat Selvam, Y. P., Kanagasabai, M., Alsath, M. G. N., Velan, S., Kingsly, S., Subbaraj, S., Rao, Y. R., Srinivasan, R., Varadhan, A. K., & Karuppiah, M. (2017). A low-profile frequency-and pattern-reconfigurable antenna. IEEE Antennas and Wireless Propagation Letters, 16, 3047–3050CrossRef Selvam, Y. P., Kanagasabai, M., Alsath, M. G. N., Velan, S., Kingsly, S., Subbaraj, S., Rao, Y. R., Srinivasan, R., Varadhan, A. K., & Karuppiah, M. (2017). A low-profile frequency-and pattern-reconfigurable antenna. IEEE Antennas and Wireless Propagation Letters, 16, 3047–3050CrossRef
83.
Zurück zum Zitat Nikolaou, S., Bairavasubramanian, R., Lugo, C., Carrasquillo, I., Thompson, D. C., Ponchak, G. E., Papapolymerou, J., & Tentzeris, M. M. (2006). Pattern and frequency reconfigurable annular slot antenna using PIN diodes. IEEE Transactions on Antennas and Propagation, 54(2), 439–448CrossRef Nikolaou, S., Bairavasubramanian, R., Lugo, C., Carrasquillo, I., Thompson, D. C., Ponchak, G. E., Papapolymerou, J., & Tentzeris, M. M. (2006). Pattern and frequency reconfigurable annular slot antenna using PIN diodes. IEEE Transactions on Antennas and Propagation, 54(2), 439–448CrossRef
84.
Zurück zum Zitat Anantha, B., Merugu, L., & Rao, P. S. (2017). A novel single feed frequency and polarization reconfigurable microstrip patch antenna. AEU-International Journal of Electronics and communications, 72, 8–16 Anantha, B., Merugu, L., & Rao, P. S. (2017). A novel single feed frequency and polarization reconfigurable microstrip patch antenna. AEU-International Journal of Electronics and communications, 72, 8–16
85.
Zurück zum Zitat Bharathi, A., Lakshminarayana, M., & Rao, P. S. (2017). A quad-polarization and frequency reconfigurable square ring slot loaded microstrip patch antenna for WLAN applications. AEU-International Journal of Electronics and Communications, 78, 15–23 Bharathi, A., Lakshminarayana, M., & Rao, P. S. (2017). A quad-polarization and frequency reconfigurable square ring slot loaded microstrip patch antenna for WLAN applications. AEU-International Journal of Electronics and Communications, 78, 15–23
87.
Zurück zum Zitat Ge, L., Li, Y., & Wang, J. (2017). A low-profile reconfigurable cavity-backed slot antenna with frequency, polarization, and radiation pattern agility. IEEE Transactions on Antennas and Propagation, 65(5), 2182–2189CrossRef Ge, L., Li, Y., & Wang, J. (2017). A low-profile reconfigurable cavity-backed slot antenna with frequency, polarization, and radiation pattern agility. IEEE Transactions on Antennas and Propagation, 65(5), 2182–2189CrossRef
88.
Zurück zum Zitat AL-Fadhali, N., Majid, H. A., Omar, R., Dahlan, S. H., Ashyap, A. Y., Shah, S. M., Rahim, M. K., & Esmail, B. A. (2020). Substrate integrated waveguide cavity backed frequency reconfigurable antenna for cognitive radio applies to internet of things applications. International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.22020CrossRef AL-Fadhali, N., Majid, H. A., Omar, R., Dahlan, S. H., Ashyap, A. Y., Shah, S. M., Rahim, M. K., & Esmail, B. A. (2020). Substrate integrated waveguide cavity backed frequency reconfigurable antenna for cognitive radio applies to internet of things applications. International Journal of RF and Microwave Computer-Aided Engineering. https://​doi.​org/​10.​1002/​mmce.​22020CrossRef
89.
Zurück zum Zitat Sharma, S., & Tripathi, C. C. (2016, December). A versatile reconfigurable antenna for cognitive radio. In 2016 Asia-Pacific Microwave Conference (APMC) (pp. 1–4). IEEE. Sharma, S., & Tripathi, C. C. (2016, December). A versatile reconfigurable antenna for cognitive radio. In 2016 Asia-Pacific Microwave Conference (APMC) (pp. 1–4). IEEE.
90.
Zurück zum Zitat Sharma, S., Tripathi, C. C., & Rishi, R. (2018). A versatile reconfigurable antenna with integrated sensing mechanism. International Journal of Microwave and Wireless Technologies, 10(4), 469–478CrossRef Sharma, S., Tripathi, C. C., & Rishi, R. (2018). A versatile reconfigurable antenna with integrated sensing mechanism. International Journal of Microwave and Wireless Technologies, 10(4), 469–478CrossRef
91.
Zurück zum Zitat Sharma, S., Tripathi, C. C., & Rishi, R. (2017, September). An adaptive reconfigurable antenna for cognitive radio system. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1121–1125). IEEE. Sharma, S., Tripathi, C. C., & Rishi, R. (2017, September). An adaptive reconfigurable antenna for cognitive radio system. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1121–1125). IEEE.
92.
Zurück zum Zitat Li, Y., Li, W., & Mittra, R. (2012). Integrated dual-purpose narrow/ultra-wide band antenna for cognitive radio applications. IEEE International Symposium on Antennas and Propagation, 1–2. Li, Y., Li, W., & Mittra, R. (2012). Integrated dual-purpose narrow/ultra-wide band antenna for cognitive radio applications. IEEE International Symposium on Antennas and Propagation, 1–2.
93.
Zurück zum Zitat Ebrahimi, E., Kelly, J. R., & Hall, P. S. (2011). Integrated wide-narrowband antenna for multi-standard radio. IEEE Transactions on Antennas and Propagation, 59(7), 2628–2635CrossRef Ebrahimi, E., Kelly, J. R., & Hall, P. S. (2011). Integrated wide-narrowband antenna for multi-standard radio. IEEE Transactions on Antennas and Propagation, 59(7), 2628–2635CrossRef
94.
Zurück zum Zitat Gardner, P., Hamid, M. R., Hall, P. S., Kelly, J., Glianem, F., & Ebrahimi, E. (2008). Reconfigurable Antennas for Cognitive Radio: Requirements and Potential Design Approaches. Institution of Engineering and Technology Antennas and Propagation Network, 91–94. Gardner, P., Hamid, M. R., Hall, P. S., Kelly, J., Glianem, F., & Ebrahimi, E. (2008). Reconfigurable Antennas for Cognitive Radio: Requirements and Potential Design Approaches. Institution of Engineering and Technology Antennas and Propagation Network, 91–94.
95.
Zurück zum Zitat Oliveri, G., Werner, D. H., & Massa, A. (2015). Reconfigurable electromagnetics through metamaterials—A review. Proceedings of the IEEE, 103(7), 1034–1056CrossRef Oliveri, G., Werner, D. H., & Massa, A. (2015). Reconfigurable electromagnetics through metamaterials—A review. Proceedings of the IEEE, 103(7), 1034–1056CrossRef
96.
Zurück zum Zitat Haupt, R. L., & Lanagan, M. (2013). Reconfigurable antennas. IEEE Antennas and Propagation Magazine, 55(1), 49–61CrossRef Haupt, R. L., & Lanagan, M. (2013). Reconfigurable antennas. IEEE Antennas and Propagation Magazine, 55(1), 49–61CrossRef
97.
Zurück zum Zitat Shah, I. A., Hayat, S., Basir, A., Zada, M., Shah, S. A. A., & Ullah, S. (2019). Design and analysis of a hexa-band frequency reconfigurable antenna for wireless communication. AEU-International Journal of Electronics and Communications, 98, 80–88 Shah, I. A., Hayat, S., Basir, A., Zada, M., Shah, S. A. A., & Ullah, S. (2019). Design and analysis of a hexa-band frequency reconfigurable antenna for wireless communication. AEU-International Journal of Electronics and Communications, 98, 80–88
98.
Zurück zum Zitat Al-Husseini, M., El-Hajj, A., Tawk, Y., Kabalan, K. Y., & Christodoulou, C. G. (2010, June). A simple dual-port antenna system for cognitive radio applications. In 2010 International Conference on High Performance Computing & Simulation (pp. 549–552). IEEE. Al-Husseini, M., El-Hajj, A., Tawk, Y., Kabalan, K. Y., & Christodoulou, C. G. (2010, June). A simple dual-port antenna system for cognitive radio applications. In 2010 International Conference on High Performance Computing & Simulation (pp. 549–552). IEEE.
99.
Zurück zum Zitat Yadav, R., & Patel, P. N. (2017). EBG-inspired reconfigurable patch antenna for frequency diversity application. AEU-International Journal of Electronics and Communications, 76, 52–59 Yadav, R., & Patel, P. N. (2017). EBG-inspired reconfigurable patch antenna for frequency diversity application. AEU-International Journal of Electronics and Communications, 76, 52–59
100.
Zurück zum Zitat Carrasquillo-Rivera, I., Popovic, Z., & Solis, R. R. (2003, June). Tunable slot antenna using varactors and photodiodes. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 4, pp. 532–535). IEEE. Carrasquillo-Rivera, I., Popovic, Z., & Solis, R. R. (2003, June). Tunable slot antenna using varactors and photodiodes. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 4, pp. 532–535). IEEE.
101.
Zurück zum Zitat Mansour, G., Hall, P. S., Gardner, P., & Rahim, M. K. A. (2012, November). Tunable slot-loaded patch antenna for cognitive radio. In 2012 Loughborough Antennas & Propagation Conference (LAPC) (pp. 1–4). IEEE. Mansour, G., Hall, P. S., Gardner, P., & Rahim, M. K. A. (2012, November). Tunable slot-loaded patch antenna for cognitive radio. In 2012 Loughborough Antennas & Propagation Conference (LAPC) (pp. 1–4). IEEE.
102.
Zurück zum Zitat Iannacci, J. (2017). RF-MEMS for high-performance and widely reconfigurable passive components–A review with focus on future telecommunications, Internet of Things (IoT) and 5G applications. Journal of King Saud University-Science, 29(4), 436–443CrossRef Iannacci, J. (2017). RF-MEMS for high-performance and widely reconfigurable passive components–A review with focus on future telecommunications, Internet of Things (IoT) and 5G applications. Journal of King Saud University-Science, 29(4), 436–443CrossRef
103.
Zurück zum Zitat Kiriazi, J., Ghali, H., Ragaie, H., & Haddara, H. (2003, June). Reconfigurable dual-band dipole antenna on silicon using series MEMS switches. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 1, pp. 403–406). IEEE. Kiriazi, J., Ghali, H., Ragaie, H., & Haddara, H. (2003, June). Reconfigurable dual-band dipole antenna on silicon using series MEMS switches. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 1, pp. 403–406). IEEE.
104.
Zurück zum Zitat Anagnostou, D., Chryssomallis, M. T., Lyke, J. C., & Christodoulou, C. G. (2003, June). Re-configurable Sierpinski gasket antenna using RF-MEMS switches. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 1, pp. 375–378). IEEE. Anagnostou, D., Chryssomallis, M. T., Lyke, J. C., & Christodoulou, C. G. (2003, June). Re-configurable Sierpinski gasket antenna using RF-MEMS switches. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 1, pp. 375–378). IEEE.
105.
Zurück zum Zitat Christodoulou, C. G. (2003, September). RF-MEMS and its applications to microwave systems, antennas and wireless communications. In Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference-IMOC 2003.(Cat. No. 03TH8678) (Vol. 1, pp. 525–531). IEEE. Christodoulou, C. G. (2003, September). RF-MEMS and its applications to microwave systems, antennas and wireless communications. In Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference-IMOC 2003.(Cat. No. 03TH8678) (Vol. 1, pp. 525–531). IEEE.
106.
Zurück zum Zitat Wu, T., Li, R. L., Eom, S. Y., Lim, K., Jeon, S. I., Laskar, J., & Tentzeris, M. M. (2008, July). A multiband/scalable reconfigurable antenna for cognitive radio base stations. In 2008 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE. Wu, T., Li, R. L., Eom, S. Y., Lim, K., Jeon, S. I., Laskar, J., & Tentzeris, M. M. (2008, July). A multiband/scalable reconfigurable antenna for cognitive radio base stations. In 2008 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE.
107.
Zurück zum Zitat Saha, R., Maity, S., & Bhunia, C. T. (2016). Design and characterization of a tunable patch antenna loaded with capacitive MEMS switch using CSRRs structure on the patch. Alexandria Engineering Journal, 55(3), 2621–2630CrossRef Saha, R., Maity, S., & Bhunia, C. T. (2016). Design and characterization of a tunable patch antenna loaded with capacitive MEMS switch using CSRRs structure on the patch. Alexandria Engineering Journal, 55(3), 2621–2630CrossRef
108.
Zurück zum Zitat Wu, T., Li, R. L., Eom, S. Y., Myoung, S. S., Lim, K., Laskar, J., & Tentzeris, M. M. (2010). Switchable quad-band antennas for cognitive radio base station applications. IEEE Transactions on Antennas and Propagation, 58(5), 1468–1476CrossRef Wu, T., Li, R. L., Eom, S. Y., Myoung, S. S., Lim, K., Laskar, J., & Tentzeris, M. M. (2010). Switchable quad-band antennas for cognitive radio base station applications. IEEE Transactions on Antennas and Propagation, 58(5), 1468–1476CrossRef
109.
Zurück zum Zitat Tawk, Y., Al-Husseini, M., Hemmady, S., Albrecht, A. R., Balakrishnan, G., & Christodoulou, C. G. (2010, Septemeber). Implementation of a cognitive radio front-end using optically reconfigurable antennas. In 2010 International Conference on Electromagnetics in Advanced Applications (pp. 294–297). IEEE. Tawk, Y., Al-Husseini, M., Hemmady, S., Albrecht, A. R., Balakrishnan, G., & Christodoulou, C. G. (2010, Septemeber). Implementation of a cognitive radio front-end using optically reconfigurable antennas. In 2010 International Conference on Electromagnetics in Advanced Applications (pp. 294–297). IEEE.
110.
Zurück zum Zitat Tawk, Y., Albrecht, A. R., Hemmady, S., Balakrishnan, G., & Christodoulou, C. G. (2010, July). Optically pumped reconfigurable antenna systems (OPRAS). In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE. Tawk, Y., Albrecht, A. R., Hemmady, S., Balakrishnan, G., & Christodoulou, C. G. (2010, July). Optically pumped reconfigurable antenna systems (OPRAS). In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE.
111.
Zurück zum Zitat Jin, G. P., Zhang, D. L., & Li, R. L. (2011). Optically controlled reconfigurable antenna for cognitive radio applications. Electronics Letters, 47(17), 948–950CrossRef Jin, G. P., Zhang, D. L., & Li, R. L. (2011). Optically controlled reconfigurable antenna for cognitive radio applications. Electronics Letters, 47(17), 948–950CrossRef
112.
Zurück zum Zitat Tawk, Y., Costantine, J., & Christodoulou, C. G. (2010, July). A frequency reconfigurable rotatable microstrip antenna design. In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2010, July). A frequency reconfigurable rotatable microstrip antenna design. In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE.
113.
Zurück zum Zitat Li, P. K., You, C. J., Yu, H. F., & Cheng, Y. J. (2017). Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for 2.4/5GHz WLAN application. Microwave and Optical Technology Letters, 59(10), 2526–2531CrossRef Li, P. K., You, C. J., Yu, H. F., & Cheng, Y. J. (2017). Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for 2.4/5GHz WLAN application. Microwave and Optical Technology Letters, 59(10), 2526–2531CrossRef
114.
Zurück zum Zitat Washington, G., Yoon, H. S., Angelino, M., & Theunissen, W. H. (2002). Design, modeling, and optimization of mechanically reconfigurable aperture antennas. IEEE Transactions on Antennas and Propagation, 50(5), 628–637CrossRef Washington, G., Yoon, H. S., Angelino, M., & Theunissen, W. H. (2002). Design, modeling, and optimization of mechanically reconfigurable aperture antennas. IEEE Transactions on Antennas and Propagation, 50(5), 628–637CrossRef
115.
Zurück zum Zitat Tawk, Y., Costantine, J., Avery, K., & Christodoulou, C. G. (2011). Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas. IEEE Transactions on Antennas and Propagation, 59(5), 1773–1778CrossRef Tawk, Y., Costantine, J., Avery, K., & Christodoulou, C. G. (2011). Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas. IEEE Transactions on Antennas and Propagation, 59(5), 1773–1778CrossRef
116.
Zurück zum Zitat Tummas, P., Krachodnok, P., & Wongsan, R. (2014). A frequency reconfigurable antenna design for UWB applications. In 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–4). IEEE. Tummas, P., Krachodnok, P., & Wongsan, R. (2014). A frequency reconfigurable antenna design for UWB applications. In 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–4). IEEE.
117.
Zurück zum Zitat Costantine, J., Tawk, Y., Woodland, J., Flaum, N., & Christodoulou, C. G. (2014). Reconfigurable antenna system with a movable ground plane for cognitive radio. IET Microwaves, Antennas & Propagation, 8(11), 858–863CrossRef Costantine, J., Tawk, Y., Woodland, J., Flaum, N., & Christodoulou, C. G. (2014). Reconfigurable antenna system with a movable ground plane for cognitive radio. IET Microwaves, Antennas & Propagation, 8(11), 858–863CrossRef
118.
Zurück zum Zitat Sievenpiper, D., Schaffner, J., Loo, R., Tangonan, G., Ontiveros, S., & Harold, R. (2002). A tunable impedance surface performing as a reconfigurable beam steering reflector. IEEE Transactions on Antennas and Propagation, 50(3), 384–390CrossRef Sievenpiper, D., Schaffner, J., Loo, R., Tangonan, G., Ontiveros, S., & Harold, R. (2002). A tunable impedance surface performing as a reconfigurable beam steering reflector. IEEE Transactions on Antennas and Propagation, 50(3), 384–390CrossRef
119.
Zurück zum Zitat Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcón, E., & Chigrin, D. N. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures -Fundamentals and Applications, 10(4), 353–358 Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcón, E., & Chigrin, D. N. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures -Fundamentals and Applications, 10(4), 353–358
120.
Zurück zum Zitat Efazat, S. S., Basiri, R., & Makki, S. V. A. D. (2019). The gain enhancement of a graphene loaded reconfigurable antenna with non-uniform metasurface in terahertz band. Optik, 183, 1179–1190CrossRef Efazat, S. S., Basiri, R., & Makki, S. V. A. D. (2019). The gain enhancement of a graphene loaded reconfigurable antenna with non-uniform metasurface in terahertz band. Optik, 183, 1179–1190CrossRef
121.
Zurück zum Zitat Sethi, G. S., Srivastava, A., Chiu, C. Y., Chigrinov, V., & Murch, R. D. (2016, December). Design of a transparent LC based reconfigurable antenna. In 2016 Asia-Pacific Microwave Conference (APMC) (pp. 1–4). IEEE. Sethi, G. S., Srivastava, A., Chiu, C. Y., Chigrinov, V., & Murch, R. D. (2016, December). Design of a transparent LC based reconfigurable antenna. In 2016 Asia-Pacific Microwave Conference (APMC) (pp. 1–4). IEEE.
122.
Zurück zum Zitat Fathy, A. E., Rosen, A., Owen, H. S., McGinty, F., McGee, D. J., Taylor, G. C., Amantea, R., Swain, P. K., Perlow, S. M., & ElSherbiny, M. (2003). Silicon-based reconfigurable antennas - concepts, analysis, implementation, and feasibility. IEEE Transactions on Microwave Theory and Techniques, 51(6), 1650–1661CrossRef Fathy, A. E., Rosen, A., Owen, H. S., McGinty, F., McGee, D. J., Taylor, G. C., Amantea, R., Swain, P. K., Perlow, S. M., & ElSherbiny, M. (2003). Silicon-based reconfigurable antennas - concepts, analysis, implementation, and feasibility. IEEE Transactions on Microwave Theory and Techniques, 51(6), 1650–1661CrossRef
123.
Zurück zum Zitat Langer, J. C., Zou, J., Liu, C., & Bernhard, J. T. (2003). Micromachined reconfigurable out-of-plane microstrip patch antenna using plastic deformation magnetic actuation. IEEE Microwave and Wireless Components Letters, 13(3), 120–122CrossRef Langer, J. C., Zou, J., Liu, C., & Bernhard, J. T. (2003). Micromachined reconfigurable out-of-plane microstrip patch antenna using plastic deformation magnetic actuation. IEEE Microwave and Wireless Components Letters, 13(3), 120–122CrossRef
124.
Zurück zum Zitat El Maleky, O., & Abdelouahab, F. B. (2019). A UWB antenna with reconfigurable rejection band using split ring resonator for radio cognitive technology. Procedia Manufacturing, 32, 694–701CrossRef El Maleky, O., & Abdelouahab, F. B. (2019). A UWB antenna with reconfigurable rejection band using split ring resonator for radio cognitive technology. Procedia Manufacturing, 32, 694–701CrossRef
125.
Zurück zum Zitat Ramadan, A. H., Costantine, J., Al-Husseini, M., Kabalan, K. Y., Tawk, Y., & Christodoulou, C. G. (2014). Tunable filter-antennas for cognitive radio applications. Progress In Electromagnetics Research, 57, 253–265CrossRef Ramadan, A. H., Costantine, J., Al-Husseini, M., Kabalan, K. Y., Tawk, Y., & Christodoulou, C. G. (2014). Tunable filter-antennas for cognitive radio applications. Progress In Electromagnetics Research, 57, 253–265CrossRef
126.
Zurück zum Zitat Tawk, Y., Costantine, J., & Christodoulou, C. G. (2014). Cognitive-radio and antenna functionalities: A tutorial [Wireless Corner]. IEEE Antennas and Propagation Magazine, 56(1), 231–243CrossRef Tawk, Y., Costantine, J., & Christodoulou, C. G. (2014). Cognitive-radio and antenna functionalities: A tutorial [Wireless Corner]. IEEE Antennas and Propagation Magazine, 56(1), 231–243CrossRef
127.
Zurück zum Zitat Hall, P. S., Gardner, P., Kelly, J., Ebrahimi, E., Hamid, M. R., Ghanem, F., Herraiz-Martinez, F. J., & Segovia-Vargas, D. (2009, March). Reconfigurable antenna challenges for future radio systems. In 2009 3rd European Conference on Antennas and Propagation (pp. 949–955). IEEE. Hall, P. S., Gardner, P., Kelly, J., Ebrahimi, E., Hamid, M. R., Ghanem, F., Herraiz-Martinez, F. J., & Segovia-Vargas, D. (2009, March). Reconfigurable antenna challenges for future radio systems. In 2009 3rd European Conference on Antennas and Propagation (pp. 949–955). IEEE.
128.
Zurück zum Zitat Rao, P. H. (2010, January). Antenna configurations for software defined radio and cognitive radio communication architecture. In 2010 International Conference on Wireless Communication and Sensor Computing (ICWCSC) (pp. 1–4). IEEE. Rao, P. H. (2010, January). Antenna configurations for software defined radio and cognitive radio communication architecture. In 2010 International Conference on Wireless Communication and Sensor Computing (ICWCSC) (pp. 1–4). IEEE.
130.
Zurück zum Zitat Cao, Y., Cheung, S. W., Sun, X. L., & Yuk, T. I. (2014). Frequency-reconfigurable monopole antenna with wide tuning range for cognitive radio. Microwave and Optical Technology Letters, 56(1), 145–152CrossRef Cao, Y., Cheung, S. W., Sun, X. L., & Yuk, T. I. (2014). Frequency-reconfigurable monopole antenna with wide tuning range for cognitive radio. Microwave and Optical Technology Letters, 56(1), 145–152CrossRef
131.
Zurück zum Zitat Ebrahimi, E. and Hall, P.S., (2009). A dual port wide-narrowband antenna for cognitive radio. In 2009 3rd European Conference on Antennas and Propagation (pp. 809–812). IEEE. Ebrahimi, E. and Hall, P.S., (2009). A dual port wide-narrowband antenna for cognitive radio. In 2009 3rd European Conference on Antennas and Propagation (pp. 809–812). IEEE.
132.
Zurück zum Zitat Ghanem, F., Hall, P. S., & Kelly, J. R. (2009). Two port frequency reconfigurable antenna for cognitive radios. Electronics Letters, 45(11), 534–536CrossRef Ghanem, F., Hall, P. S., & Kelly, J. R. (2009). Two port frequency reconfigurable antenna for cognitive radios. Electronics Letters, 45(11), 534–536CrossRef
133.
Zurück zum Zitat Tarboush, H. A., Khan, S., Nilavalan, R., Al-Raweshidy, H. S., & Budimir, D. (2009, November). Reconfigurable wideband patch antenna for cognitive radio. In 2009 Loughborough Antennas & Propagation Conference (pp. 141–144). IEEE. Tarboush, H. A., Khan, S., Nilavalan, R., Al-Raweshidy, H. S., & Budimir, D. (2009, November). Reconfigurable wideband patch antenna for cognitive radio. In 2009 Loughborough Antennas & Propagation Conference (pp. 141–144). IEEE.
134.
Zurück zum Zitat Tawk, Y., & Christodoulou, C. G. (2009). A new reconfigurable antenna design for cognitive radio. IEEE Antennas and Wireless Propagation Letters, 8, 1378–1381CrossRef Tawk, Y., & Christodoulou, C. G. (2009). A new reconfigurable antenna design for cognitive radio. IEEE Antennas and Wireless Propagation Letters, 8, 1378–1381CrossRef
135.
Zurück zum Zitat Sharma, S., & Tripathi, C. C. (2016). A wide spectrum sensing and frequency reconfigurable antenna for cognitive radio. Progress in Electromagnetics Research, 67, 11–20CrossRef Sharma, S., & Tripathi, C. C. (2016). A wide spectrum sensing and frequency reconfigurable antenna for cognitive radio. Progress in Electromagnetics Research, 67, 11–20CrossRef
136.
Zurück zum Zitat Srivastava, G., Mohan, A., & Chakrabarty, A. (2016). Compact reconfigurable UWB slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 16, 1139–1142CrossRef Srivastava, G., Mohan, A., & Chakrabarty, A. (2016). Compact reconfigurable UWB slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 16, 1139–1142CrossRef
137.
Zurück zum Zitat Zhao, X., Riaz, S., & Geng, S. (2019). A Reconfigurable MIMO/UWB MIMO Antenna for Cognitive Radio Applications. IEEE Access, 7, 46739–46747CrossRef Zhao, X., Riaz, S., & Geng, S. (2019). A Reconfigurable MIMO/UWB MIMO Antenna for Cognitive Radio Applications. IEEE Access, 7, 46739–46747CrossRef
138.
Zurück zum Zitat Tawk, Y., Hemmady, S., Christodoulou, C. G., Costantine, J., & Balakrishnan, G. (2011, July). A cognitive radio antenna design based on optically pumped reconfigurable antenna system (OPRAS). In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 1116–1119). IEEE. Tawk, Y., Hemmady, S., Christodoulou, C. G., Costantine, J., & Balakrishnan, G. (2011, July). A cognitive radio antenna design based on optically pumped reconfigurable antenna system (OPRAS). In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 1116–1119). IEEE.
139.
Zurück zum Zitat Al-Husseini, M., Tawk, Y., Christodoulou, C. G., Kabalan, K. Y., & El Hajj, A. (2010, July). A reconfigurable cognitive radio antenna design. In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE. Al-Husseini, M., Tawk, Y., Christodoulou, C. G., Kabalan, K. Y., & El Hajj, A. (2010, July). A reconfigurable cognitive radio antenna design. In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE.
140.
Zurück zum Zitat Heydari, S., Pedram, K., Ahmed, Z., & Zarrabi, F. B. (2017). Dual band monopole antenna based on metamaterial structure with narrowband and UWB resonances with reconfigurable quality. AEU-International Journal of Electronics and Communications, 81, 92–98 Heydari, S., Pedram, K., Ahmed, Z., & Zarrabi, F. B. (2017). Dual band monopole antenna based on metamaterial structure with narrowband and UWB resonances with reconfigurable quality. AEU-International Journal of Electronics and Communications, 81, 92–98
141.
Zurück zum Zitat Jilani, S. F., Rahimian, A., Alfadhl, Y., & Alomainy, A. (2018). Low-profile flexible frequency-reconfigurable millimetre-wave antenna for G applications. Flexible and Printed Electronics, 3(3), 035003CrossRef Jilani, S. F., Rahimian, A., Alfadhl, Y., & Alomainy, A. (2018). Low-profile flexible frequency-reconfigurable millimetre-wave antenna for G applications. Flexible and Printed Electronics, 3(3), 035003CrossRef
142.
Zurück zum Zitat Parchin, N. O., Basherlou, H. J., Al-Yasir, Y. I., Ullah, A., Abd-Alhameed, R. A., & Noras, J. M. (2019). Frequency reconfigurable antenna array with compact end-fire radiators for 4G/5G mobile handsets. In 2019 IEEE 2nd 5G World Forum (5GWF) (pp. 204–207). IEEE. Parchin, N. O., Basherlou, H. J., Al-Yasir, Y. I., Ullah, A., Abd-Alhameed, R. A., & Noras, J. M. (2019). Frequency reconfigurable antenna array with compact end-fire radiators for 4G/5G mobile handsets. In 2019 IEEE 2nd 5G World Forum (5GWF) (pp. 204–207). IEEE.
143.
Zurück zum Zitat Ikram, M., Al Abbas, E., Nguyen-Trong, N., Sayidmarie, K. H., & Abbosh, A. (2019). Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets. IEEE Transactions on Antennas and Propagation, 67(12), 7225–7233CrossRef Ikram, M., Al Abbas, E., Nguyen-Trong, N., Sayidmarie, K. H., & Abbosh, A. (2019). Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets. IEEE Transactions on Antennas and Propagation, 67(12), 7225–7233CrossRef
144.
Zurück zum Zitat Jin, G., Deng, C., Yang, J., Xu, Y., & Liao, S. (2019). A New Differentially-Fed Frequency Reconfigurable Antenna for WLAN and Sub-6GHz 5G Applications. IEEE Access, 7, 56539–56546CrossRef Jin, G., Deng, C., Yang, J., Xu, Y., & Liao, S. (2019). A New Differentially-Fed Frequency Reconfigurable Antenna for WLAN and Sub-6GHz 5G Applications. IEEE Access, 7, 56539–56546CrossRef
145.
Zurück zum Zitat Liu, D., Hong, W., Rappaport, T. S., Luxey, C., & Hong, W. (2017). What will 5G antennas and propagation be? IEEE Transactions on Antennas and Propagation, 65(12), 6205–6212CrossRef Liu, D., Hong, W., Rappaport, T. S., Luxey, C., & Hong, W. (2017). What will 5G antennas and propagation be? IEEE Transactions on Antennas and Propagation, 65(12), 6205–6212CrossRef
146.
Zurück zum Zitat Hussain, R., & Sharawi, M. S. (2016). Planar meandered-F-shaped 4-element reconfigurable multiple-input–multiple-output antenna system with isolation enhancement for cognitive radio platforms. IET Microwaves, Antennas & Propagation, 10(1), 45–52CrossRef Hussain, R., & Sharawi, M. S. (2016). Planar meandered-F-shaped 4-element reconfigurable multiple-input–multiple-output antenna system with isolation enhancement for cognitive radio platforms. IET Microwaves, Antennas & Propagation, 10(1), 45–52CrossRef
147.
Zurück zum Zitat Sharawi, M. S. (2013). Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine, 55(5), 218–232CrossRef Sharawi, M. S. (2013). Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine, 55(5), 218–232CrossRef
148.
Zurück zum Zitat Fathy, A., Rosen, A., Owen, H., Kanamaluru, S., McGinty, F., McGee, D., Taylor, G., Swain, P. K., Perlow, S., & ElSherbiny, M. (2001). Silicon based reconfigurable antennas. In 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157) (Vol. 1, pp. 377–380). IEEE. Fathy, A., Rosen, A., Owen, H., Kanamaluru, S., McGinty, F., McGee, D., Taylor, G., Swain, P. K., Perlow, S., & ElSherbiny, M. (2001). Silicon based reconfigurable antennas. In 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157) (Vol. 1, pp. 377–380). IEEE.
149.
Zurück zum Zitat Sievenpiper, D., Schaffner, J., Loo, R., & Tangonan, G. (2001, September). Reconfigurable antennas based on electrically tunable impedance surfaces. In 2001 31st European Microwave Conference (pp. 1–4). IEEE. Sievenpiper, D., Schaffner, J., Loo, R., & Tangonan, G. (2001, September). Reconfigurable antennas based on electrically tunable impedance surfaces. In 2001 31st European Microwave Conference (pp. 1–4). IEEE.
150.
Zurück zum Zitat Costantine, J., Tawk, Y., Barbin, S. E., & Christodoulou, C. G. (2015). Reconfigurable antennas: Design and applications. Proceedings of the IEEE, 103(3), 424–437CrossRef Costantine, J., Tawk, Y., Barbin, S. E., & Christodoulou, C. G. (2015). Reconfigurable antennas: Design and applications. Proceedings of the IEEE, 103(3), 424–437CrossRef
151.
Zurück zum Zitat Christodoulou, C. G., Tawk, Y., Lane, S. A., & Erwin, S. R. (2012). Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 100(7), 2250–2261CrossRef Christodoulou, C. G., Tawk, Y., Lane, S. A., & Erwin, S. R. (2012). Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 100(7), 2250–2261CrossRef
152.
Zurück zum Zitat Del Barrio, S. C., Pelosi, M., Pedersen, G. F., & Morris, A. (2012, September). Challenges for frequency-reconfigurable antennas in small terminals. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). IEEE. Del Barrio, S. C., Pelosi, M., Pedersen, G. F., & Morris, A. (2012, September). Challenges for frequency-reconfigurable antennas in small terminals. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). IEEE.
153.
Zurück zum Zitat Erdemli, Y. E., Volakis, J. L., Wright, D. E., & Gilbert, R. A. (2001, July). Reconfigurable conformal slot arrays on artificial substrates. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 2, pp. 338–341). IEEE. Erdemli, Y. E., Volakis, J. L., Wright, D. E., & Gilbert, R. A. (2001, July). Reconfigurable conformal slot arrays on artificial substrates. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 2, pp. 338–341). IEEE.
154.
Zurück zum Zitat Majidzadeh, M., Ghobadi, C., & Nourinia, J. (2016). Novel single layer reconfigurable frequency selective surface with UWB and multi-band modes of operation. AEU-International Journal of Electronics and Communications, 70(2), 151–161 Majidzadeh, M., Ghobadi, C., & Nourinia, J. (2016). Novel single layer reconfigurable frequency selective surface with UWB and multi-band modes of operation. AEU-International Journal of Electronics and Communications, 70(2), 151–161
155.
Zurück zum Zitat Chacko, B. P., Augustin, G., & Denidni, T. A. (2014). Electronically reconfigurable uniplanar antenna with polarization diversity for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 14, 213–216CrossRef Chacko, B. P., Augustin, G., & Denidni, T. A. (2014). Electronically reconfigurable uniplanar antenna with polarization diversity for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 14, 213–216CrossRef
156.
Zurück zum Zitat Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU-International Journal of Electronics and Communications, 83, 213–221 Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU-International Journal of Electronics and Communications, 83, 213–221
157.
Zurück zum Zitat Chen, X., & Zhao, Y. (2018). Dual-band polarization and frequency reconfigurable antenna using double layer metasurface. AEU-International Journal of Electronics and Communications, 95, 82–87 Chen, X., & Zhao, Y. (2018). Dual-band polarization and frequency reconfigurable antenna using double layer metasurface. AEU-International Journal of Electronics and Communications, 95, 82–87
158.
Zurück zum Zitat Zhu, M., & Sun, L. (2017). Design of frequency reconfigurable antenna based on metasurface. In 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 1785–1788). IEEE Zhu, M., & Sun, L. (2017). Design of frequency reconfigurable antenna based on metasurface. In 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 1785–1788). IEEE
159.
Zurück zum Zitat Hall, P. S., Gardner, P., & Faraone, A. (2012). Antenna requirements for software defined and cognitive radios. Proceedings of the IEEE, 100(7), 2262–2270CrossRef Hall, P. S., Gardner, P., & Faraone, A. (2012). Antenna requirements for software defined and cognitive radios. Proceedings of the IEEE, 100(7), 2262–2270CrossRef
160.
Zurück zum Zitat Vinoy, K. J., Jose, K. A., Varadan, V. K., & Varadan, V. V. (2001, May). Hilbert curve fractal antennas with reconfigurable characteristics. In 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157) (Vol. 1, pp. 381–384). IEEE. Vinoy, K. J., Jose, K. A., Varadan, V. K., & Varadan, V. V. (2001, May). Hilbert curve fractal antennas with reconfigurable characteristics. In 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157) (Vol. 1, pp. 381–384). IEEE.
161.
Zurück zum Zitat Tawk, Y., Bkassiny, M., El-Howayek, G., Jayaweera, S. K., Avery, K., & Christodoulou, C. G. (2011). Reconfigurable front-end antennas for cognitive radio applications. IET Microwaves, Antennas & Propagation, 5(8), 985–992CrossRef Tawk, Y., Bkassiny, M., El-Howayek, G., Jayaweera, S. K., Avery, K., & Christodoulou, C. G. (2011). Reconfigurable front-end antennas for cognitive radio applications. IET Microwaves, Antennas & Propagation, 5(8), 985–992CrossRef
162.
Zurück zum Zitat Christodoulou, C. G. (2009). Cognitive radio: the new frontier for antenna design?. IEEE Antennas Propagation Society Feature Article. Christodoulou, C. G. (2009). Cognitive radio: the new frontier for antenna design?. IEEE Antennas Propagation Society Feature Article.
Metadaten
Titel
Reconfigurable Antennas for Advanced Wireless Communications: A Review
verfasst von
K. Karthika
K. Kavitha
Publikationsdatum
25.05.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08555-4

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt