Skip to main content
Erschienen in: International Journal of Computer Vision 4/2021

06.01.2021

Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation

verfasst von: Zhedong Zheng, Yi Yang

Erschienen in: International Journal of Computer Vision | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper focuses on the unsupervised domain adaptation of transferring the knowledge from the source domain to the target domain in the context of semantic segmentation. Existing approaches usually regard the pseudo label as the ground truth to fully exploit the unlabeled target-domain data. Yet the pseudo labels of the target-domain data are usually predicted by the model trained on the source domain. Thus, the generated labels inevitably contain the incorrect prediction due to the discrepancy between the training domain and the test domain, which could be transferred to the final adapted model and largely compromises the training process. To overcome the problem, this paper proposes to explicitly estimate the prediction uncertainty during training to rectify the pseudo label learning for unsupervised semantic segmentation adaptation. Given the input image, the model outputs the semantic segmentation prediction as well as the uncertainty of the prediction. Specifically, we model the uncertainty via the prediction variance and involve the uncertainty into the optimization objective. To verify the effectiveness of the proposed method, we evaluate the proposed method on two prevalent synthetic-to-real semantic segmentation benchmarks, i.e., GTA5 \(\rightarrow \) Cityscapes and SYNTHIA \(\rightarrow \) Cityscapes, as well as one cross-city benchmark, i.e., Cityscapes \(\rightarrow \) Oxford RobotCar. We demonstrate through extensive experiments that the proposed approach (1) dynamically sets different confidence thresholds according to the prediction variance, (2) rectifies the learning from noisy pseudo labels, and (3) achieves significant improvements over the conventional pseudo label learning and yields competitive performance on all three benchmarks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In COLT. Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In COLT.
Zurück zum Zitat Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848.CrossRef Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848.CrossRef
Zurück zum Zitat Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In CVPR. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In CVPR.
Zurück zum Zitat Fu, Y., Hospedales, T. M., Xiang, T., & Gong, S. (2015). Transductive multi-view zero-shot learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(11), 2332–2345.CrossRef Fu, Y., Hospedales, T. M., Xiang, T., & Gong, S. (2015). Transductive multi-view zero-shot learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(11), 2332–2345.CrossRef
Zurück zum Zitat Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML. Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML.
Zurück zum Zitat Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. In ICML. Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. In ICML.
Zurück zum Zitat Grandvalet, Y., & Bengio, Y. (2005). Semi-supervised learning by entropy minimization. In NeurIPS. Grandvalet, Y., & Bengio, Y. (2005). Semi-supervised learning by entropy minimization. In NeurIPS.
Zurück zum Zitat Han, L., Zou, Y., Gao, R., Wang, L., & Metaxas, D. (2019). Unsupervised domain adaptation via calibrating uncertainties. In CVPR Workshops. Han, L., Zou, Y., Gao, R., Wang, L., & Metaxas, D. (2019). Unsupervised domain adaptation via calibrating uncertainties. In CVPR Workshops.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In CVPR. He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In CVPR.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual networks. In ECCV. He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual networks. In ECCV.
Zurück zum Zitat Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. In ICLR. Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. In ICLR.
Zurück zum Zitat Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A. A., & Darrell, T. (2018). Cycada: Cycle-consistent adversarial domain adaptation. In ICML. Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A. A., & Darrell, T. (2018). Cycada: Cycle-consistent adversarial domain adaptation. In ICML.
Zurück zum Zitat Huang, H., Huang, Q., & Krahenbuhl, P. (2018). Domain transfer through deep activation matching. In ECCV. Huang, H., Huang, Q., & Krahenbuhl, P. (2018). Domain transfer through deep activation matching. In ECCV.
Zurück zum Zitat Kang, G., Wei, Y., Yang, Y., & Hauptmann, A. (2020). Pixel-level cycle association: A new perspective for domain adaptive semantic segmentation. In NeurIPS. Kang, G., Wei, Y., Yang, Y., & Hauptmann, A. (2020). Pixel-level cycle association: A new perspective for domain adaptive semantic segmentation. In NeurIPS.
Zurück zum Zitat Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision? In NeurIPS. Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision? In NeurIPS.
Zurück zum Zitat Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. ICML: In Workshop on challenges in representation learning. Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. ICML: In Workshop on challenges in representation learning.
Zurück zum Zitat Li, G., Kang, G., Liu, W., Wei, Y., & Yang, Y. (2020a). Content-consistent matching for domain adaptive semantic segmentation. In ECCV. Li, G., Kang, G., Liu, W., Wei, Y., & Yang, Y. (2020a). Content-consistent matching for domain adaptive semantic segmentation. In ECCV.
Zurück zum Zitat Li, P., Wei, Y., & Yang, Y. (2020). Consistent structural relation learning for zero-shot segmentationg. In NeurIPS. Li, P., Wei, Y., & Yang, Y. (2020). Consistent structural relation learning for zero-shot segmentationg. In NeurIPS.
Zurück zum Zitat Li, P., Wei, Y., & Yang, Y. (2020). Meta parsing networks: Towards generalized few-shot scene parsing with adaptive metric learning. In ACM Multimedia. Li, P., Wei, Y., & Yang, Y. (2020). Meta parsing networks: Towards generalized few-shot scene parsing with adaptive metric learning. In ACM Multimedia.
Zurück zum Zitat Liang, X., Lin, L., Wei, Y., Shen, X., Yang, J., & Yan, S. (2017). Proposal-free network for instance-level object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12), 2978–2991.CrossRef Liang, X., Lin, L., Wei, Y., Shen, X., Yang, J., & Yan, S. (2017). Proposal-free network for instance-level object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12), 2978–2991.CrossRef
Zurück zum Zitat Luo, Y., Liu, P., Guan, T., Yu, J., & Yang, Y. (2019a). Significance-aware information bottleneck for domain adaptive semantic segmentation. In ICCV. Luo, Y., Liu, P., Guan, T., Yu, J., & Yang, Y. (2019a). Significance-aware information bottleneck for domain adaptive semantic segmentation. In ICCV.
Zurück zum Zitat Luo, Y., Liu, P., Guan, T., Yu, J., & Yang, Y. (2020). Adversarial style mining for one-shot unsupervised domain adaptation. In NeurIPS. Luo, Y., Liu, P., Guan, T., Yu, J., & Yang, Y. (2020). Adversarial style mining for one-shot unsupervised domain adaptation. In NeurIPS.
Zurück zum Zitat Luo, Y., Zheng, L., Guan, T., Yu, J., & Yang, Y. (2019b). Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. In CVPR. Luo, Y., Zheng, L., Guan, T., Yu, J., & Yang, Y. (2019b). Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. In CVPR.
Zurück zum Zitat Maddern, W., Pascoe, G., Linegar, C., & Newman, P. (2017). 1 Year, 1000 km: The Oxford RobotCar Dataset. The International Journal of Robotics Research (IJRR), 36(1), 3–15.CrossRef Maddern, W., Pascoe, G., Linegar, C., & Newman, P. (2017). 1 Year, 1000 km: The Oxford RobotCar Dataset. The International Journal of Robotics Research (IJRR), 36(1), 3–15.CrossRef
Zurück zum Zitat Nielsen, T. D., & Jensen, F. V. (2009). Bayesian networks and decision graphs. New York: Springer.MATH Nielsen, T. D., & Jensen, F. V. (2009). Bayesian networks and decision graphs. New York: Springer.MATH
Zurück zum Zitat Pan, Y., Yao, T., Li, Y., Wang, Y., Ngo, C.-W., & Mei, T. (2019). Transferrable prototypical networks for unsupervised domain adaptation. In CVPR. Pan, Y., Yao, T., Li, Y., Wang, Y., Ngo, C.-W., & Mei, T. (2019). Transferrable prototypical networks for unsupervised domain adaptation. In CVPR.
Zurück zum Zitat Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch.
Zurück zum Zitat Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., & Rabinovich, A. (2014). Training deep neural networks on noisy labels with bootstrapping. arXiv:1412.6596. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., & Rabinovich, A. (2014). Training deep neural networks on noisy labels with bootstrapping. arXiv:​1412.​6596.
Zurück zum Zitat Richter, S. R., Vineet, V., Roth, S., & Koltun, V. (2016). Playing for data: Ground truth from computer games. In ECCV. Richter, S. R., Vineet, V., Roth, S., & Koltun, V. (2016). Playing for data: Ground truth from computer games. In ECCV.
Zurück zum Zitat Ros, G., Sellart, L., Materzynska, J., Vazquez, D., & Lopez, A. M. (2016). The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In CVPR. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., & Lopez, A. M. (2016). The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In CVPR.
Zurück zum Zitat Saito, K., Watanabe, K., Ushiku, Y., & Harada, T. (2018). Maximum classifier discrepancy for unsupervised domain adaptation. In CVPR. Saito, K., Watanabe, K., Ushiku, Y., & Harada, T. (2018). Maximum classifier discrepancy for unsupervised domain adaptation. In CVPR.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929–1958.MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929–1958.MathSciNetMATH
Zurück zum Zitat Tsai, Y.-H., Hung, W.-C., Schulter, S., Sohn, K., Yang, M.-H., & Chandraker, M. (2018). Learning to adapt structured output space for semantic segmentation. In CVPR. Tsai, Y.-H., Hung, W.-C., Schulter, S., Sohn, K., Yang, M.-H., & Chandraker, M. (2018). Learning to adapt structured output space for semantic segmentation. In CVPR.
Zurück zum Zitat Tsai, Y.-H., Sohn, K., Schulter, S., & Chandraker, M. (2019). Domain adaptation for structured output via discriminative representations. In ICCV. Tsai, Y.-H., Sohn, K., Schulter, S., & Chandraker, M. (2019). Domain adaptation for structured output via discriminative representations. In ICCV.
Zurück zum Zitat Tzeng, E., Hoffman, J., Darrell, T., & Saenko, K. (2015). Simultaneous deep transfer across domains and tasks. In ICCV. Tzeng, E., Hoffman, J., Darrell, T., & Saenko, K. (2015). Simultaneous deep transfer across domains and tasks. In ICCV.
Zurück zum Zitat Vu, T.-H., Jain, H., Bucher, M., Cord, M., & Pérez, P. (2019). Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In CVPR. Vu, T.-H., Jain, H., Bucher, M., Cord, M., & Pérez, P. (2019). Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In CVPR.
Zurück zum Zitat Wang, J., Zhu, X., Gong, S., & Li, W. (2018). Transferable joint attribute-identity deep learning for unsupervised person re-identification. In CVPR. Wang, J., Zhu, X., Gong, S., & Li, W. (2018). Transferable joint attribute-identity deep learning for unsupervised person re-identification. In CVPR.
Zurück zum Zitat Wang, S., Zhang, L., Zuo, W., & Zhang, B. (2019). Class-specific reconstruction transfer learning for visual recognition across domains. IEEE Transactions on Image Processing, 29, 2424–2438.CrossRef Wang, S., Zhang, L., Zuo, W., & Zhang, B. (2019). Class-specific reconstruction transfer learning for visual recognition across domains. IEEE Transactions on Image Processing, 29, 2424–2438.CrossRef
Zurück zum Zitat Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., & Huang, T. S. (2018). Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In CVPR. Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., & Huang, T. S. (2018). Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In CVPR.
Zurück zum Zitat Wu, Z., Han, X., Lin, Y.-L., Gokhan Uzunbas, M., Goldstein, T., Nam Lim, S., & Davis, L. S. (2018). Dcan: Dual channel-wise alignment networks for unsupervised scene adaptation. In ECCV. Wu, Z., Han, X., Lin, Y.-L., Gokhan Uzunbas, M., Goldstein, T., Nam Lim, S., & Davis, L. S. (2018). Dcan: Dual channel-wise alignment networks for unsupervised scene adaptation. In ECCV.
Zurück zum Zitat Wu, Z., Wang, X., Gonzalez, J. E., Goldstein, T., & Davis, L. S. (2019). Ace: adapting to changing environments for semantic segmentation. In ICCV. Wu, Z., Wang, X., Gonzalez, J. E., Goldstein, T., & Davis, L. S. (2019). Ace: adapting to changing environments for semantic segmentation. In ICCV.
Zurück zum Zitat Yang, J., Xu, R., Li, R., Qi, X., Shen, X., Li, G., & Lin, L. (2020). An adversarial perturbation oriented domain adaptation approach for semantic segmentation. In AAAI. Yang, J., Xu, R., Li, R., Qi, X., Shen, X., Li, G., & Lin, L. (2020). An adversarial perturbation oriented domain adaptation approach for semantic segmentation. In AAAI.
Zurück zum Zitat Yu, T., Li, D., Yang, Y., Hospedales, T. M., & Xiang, T. (2019). Robust person re-identification by modelling feature uncertainty. In ICCV. Yu, T., Li, D., Yang, Y., Hospedales, T. M., & Xiang, T. (2019). Robust person re-identification by modelling feature uncertainty. In ICCV.
Zurück zum Zitat Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A., Keutzer, K., & Gong, B. (2019). Domain randomization and pyramid consistency: Simulation-to-real generalization without accessing target domain data. In ICCV. Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A., Keutzer, K., & Gong, B. (2019). Domain randomization and pyramid consistency: Simulation-to-real generalization without accessing target domain data. In ICCV.
Zurück zum Zitat Zhang, L., Li, X., Arnab, A., Yang, K., Tong, Y., & Torr, P. H. (2019a). Dual graph convolutional network for semantic segmentation. In BMVC. Zhang, L., Li, X., Arnab, A., Yang, K., Tong, Y., & Torr, P. H. (2019a). Dual graph convolutional network for semantic segmentation. In BMVC.
Zurück zum Zitat Zhang, L., Wang, S., Huang, G.-B., Zuo, W., Yang, J., & Zhang, D. (2019b). Manifold criterion guided transfer learning via intermediate domain generation. IEEE Transactions on Neural Networks and Learning Systems, 30(12), 3759–3773.MathSciNetCrossRef Zhang, L., Wang, S., Huang, G.-B., Zuo, W., Yang, J., & Zhang, D. (2019b). Manifold criterion guided transfer learning via intermediate domain generation. IEEE Transactions on Neural Networks and Learning Systems, 30(12), 3759–3773.MathSciNetCrossRef
Zurück zum Zitat Zhang, L., Xu, D., Arnab, A., and Torr, P. H. (2020). Dynamic graph message passing network. In CVPR. Zhang, L., Xu, D., Arnab, A., and Torr, P. H. (2020). Dynamic graph message passing network. In CVPR.
Zurück zum Zitat Zhang, Y., Qiu, Z., Yao, T., Liu, D., & Mei, T. (2018). Fully convolutional adaptation networks for semantic segmentation. In CVPR. Zhang, Y., Qiu, Z., Yao, T., Liu, D., & Mei, T. (2018). Fully convolutional adaptation networks for semantic segmentation. In CVPR.
Zurück zum Zitat Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In CVPR. Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In CVPR.
Zurück zum Zitat Zheng, Z., & Yang, Y. (2020). Unsupervised scene adaptation with memory regularization in vivo. In IJCAI. Zheng, Z., & Yang, Y. (2020). Unsupervised scene adaptation with memory regularization in vivo. In IJCAI.
Zurück zum Zitat Zou, Y., Yu, Z., Liu, X., Kumar, B., & Wang, J. (2019). Confidence regularized self-training. In ICCV. Zou, Y., Yu, Z., Liu, X., Kumar, B., & Wang, J. (2019). Confidence regularized self-training. In ICCV.
Zurück zum Zitat Zou, Y., Yu, Z., Vijaya Kumar, B., & Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In ECCV. Zou, Y., Yu, Z., Vijaya Kumar, B., & Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In ECCV.
Metadaten
Titel
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
verfasst von
Zhedong Zheng
Yi Yang
Publikationsdatum
06.01.2021
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 4/2021
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-020-01395-y

Weitere Artikel der Ausgabe 4/2021

International Journal of Computer Vision 4/2021 Zur Ausgabe