Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

12.09.2019

Reduction of hydroelastic response of a flexible floating structure by an annular flexible permeable membrane

verfasst von: Siluvai Antony Selvan, Harekrushna Behera, Trilochan Sahoo

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, hydroelastic response mitigation of a very large floating circular structure by an annular flexible permeable membrane is studied under the assumption of the linearized theory of water waves and small amplitude structural response. The very large floating structure is modeled based on small amplitude plate theory, while the flexible annular membrane is modeled using the two-dimensional string equation. Darcy’s law is used to model wave past the permeable annular membrane. To keep the structures in position, both the floating structures are assumed to be moored on the circular boundaries. The velocity potentials are expanded in terms of the Fourier–Bessel series in the open water, membrane-, and plate-covered regions. The solution of the physical problem is obtained using the matched eigenfunction expansion method along with the orthogonality of the vertical eigenfunctions in the open water region. On the other hand, orthogonal mode–coupling relation, satisfied by the vertical eigenfunctions in the floating flexible plate-covered region, is used when there is no spacing between the outer and the inner structures. The wave forces exerted on the inner and outer structures, deflection of the plate, and flow distribution around the inner plate are analyzed using numerical computations to understand the hydroelastic response of the inner elastic plate in the presence of the outer porous membrane. The effects of various wave and structural parameters such as wavenumber, porous-effect parameter, tensile force, width of the outer membrane, spring constants associated with the mooring joints, and the spacing between the structures are examined. The study reveals that the porous-effect parameter and the width of the annular membrane play an important role in reducing the wave forces on the inner plate. Moreover, due to the reflection and dissipation of a major part of the wave energy concentrating near the free surface, the inner floating structure experiences negligible wave loads in the case of deep water.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lamas-Pardo M, Iglesias G, Carral L (2015) A review of very large floating structures (VLFS) for coastal and offshore uses. Ocean Eng 109:677–690CrossRef Lamas-Pardo M, Iglesias G, Carral L (2015) A review of very large floating structures (VLFS) for coastal and offshore uses. Ocean Eng 109:677–690CrossRef
2.
Zurück zum Zitat Bhattacharya B, Fujikubo M, Hudson DA, Riggs HR, Seto H, Shin H, Shugar TA, Yasuzawa Y, Zong Z (2006) Very large floating structures. In: Proceedings of the16th international ship and offshore structures congress, Southampton, pp 391–442 Bhattacharya B, Fujikubo M, Hudson DA, Riggs HR, Seto H, Shin H, Shugar TA, Yasuzawa Y, Zong Z (2006) Very large floating structures. In: Proceedings of the16th international ship and offshore structures congress, Southampton, pp 391–442
3.
Zurück zum Zitat Kagemoto H (1995) On the comparisons of behaviours in waves of semisubmersible-type and pontoon-type very large floating structures. Ocean Eng Symp 13:231–238 Kagemoto H (1995) On the comparisons of behaviours in waves of semisubmersible-type and pontoon-type very large floating structures. Ocean Eng Symp 13:231–238
4.
Zurück zum Zitat Kashiwagi M (2000) Hydrodynamic interactions among a great number of columns supporting a very large flexible structure. J Fluids Struct 14(7):1013–1034CrossRef Kashiwagi M (2000) Hydrodynamic interactions among a great number of columns supporting a very large flexible structure. J Fluids Struct 14(7):1013–1034CrossRef
5.
Zurück zum Zitat Ohmatsu S (2005) Overview: Research on wave loading and responses of VLFS. Mar Struct 18(2):149–168CrossRef Ohmatsu S (2005) Overview: Research on wave loading and responses of VLFS. Mar Struct 18(2):149–168CrossRef
6.
Zurück zum Zitat Chong W, Watanabe E, Utsunomiya T (1995) An eigenfunction expansion-matching method for analyzing the wave-induced responses of an elastic floating plate. Appl Ocean Res 17(5):301–310CrossRef Chong W, Watanabe E, Utsunomiya T (1995) An eigenfunction expansion-matching method for analyzing the wave-induced responses of an elastic floating plate. Appl Ocean Res 17(5):301–310CrossRef
7.
Zurück zum Zitat Sturova IV (1999) Oblique incidence of surface waves on an elastic plate. J Appl Mech Tech Phys 40(4):604–610CrossRefMATH Sturova IV (1999) Oblique incidence of surface waves on an elastic plate. J Appl Mech Tech Phys 40(4):604–610CrossRefMATH
8.
Zurück zum Zitat Takagi K (1997) Interaction between solitary wave and floating elastic plate. J Waterw Port Coast Ocean Eng 123(2):57–62CrossRef Takagi K (1997) Interaction between solitary wave and floating elastic plate. J Waterw Port Coast Ocean Eng 123(2):57–62CrossRef
9.
Zurück zum Zitat Sturova IV (2001) The diffraction of surface waves by an elastic platform floating on shallow water. J Appl Math Mech 65(1):109–117CrossRefMATH Sturova IV (2001) The diffraction of surface waves by an elastic platform floating on shallow water. J Appl Math Mech 65(1):109–117CrossRefMATH
10.
Zurück zum Zitat Kohout AL, Meylan MH (2006) A model for wave scattering in the marginal ice zone based on a two-dimensional floating-elastic-plate solution. Ann Glaciol 44:101–107CrossRef Kohout AL, Meylan MH (2006) A model for wave scattering in the marginal ice zone based on a two-dimensional floating-elastic-plate solution. Ann Glaciol 44:101–107CrossRef
11.
Zurück zum Zitat Wadhams P, Squire VA, Ewing JA, Pascal RW (1986) The effect of the marginal ice zone on the directional wave spectrum of the ocean. J Phys Oceanogr 16(2):358–376CrossRef Wadhams P, Squire VA, Ewing JA, Pascal RW (1986) The effect of the marginal ice zone on the directional wave spectrum of the ocean. J Phys Oceanogr 16(2):358–376CrossRef
12.
Zurück zum Zitat Meylan MH, Squire VA (1996) Response of a circular ice floe to ocean waves. J Geophys Res Oceans 101(C4):8869–8884CrossRef Meylan MH, Squire VA (1996) Response of a circular ice floe to ocean waves. J Geophys Res Oceans 101(C4):8869–8884CrossRef
13.
Zurück zum Zitat Squire VA (2008) Synergies between VLFS hydroelasticity and sea-ice research. In: The eighteenth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers Squire VA (2008) Synergies between VLFS hydroelasticity and sea-ice research. In: The eighteenth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers
14.
Zurück zum Zitat Squire VA (2011) Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Philos Trans R Soc Lond A 369(1947):2813–2831MathSciNetCrossRefMATH Squire VA (2011) Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Philos Trans R Soc Lond A 369(1947):2813–2831MathSciNetCrossRefMATH
15.
Zurück zum Zitat Mondal R, Mandal S, Sahoo T (2014) Surface gravity wave interaction with circular flexible structures. Ocean Eng 88:446–462CrossRef Mondal R, Mandal S, Sahoo T (2014) Surface gravity wave interaction with circular flexible structures. Ocean Eng 88:446–462CrossRef
16.
Zurück zum Zitat Watanabe E, Utsunomiya T, Wang CM, Xiang Y (2003) Hydroelastic analysis of pontoon-type circular VLFS. In: The thirteenth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers Watanabe E, Utsunomiya T, Wang CM, Xiang Y (2003) Hydroelastic analysis of pontoon-type circular VLFS. In: The thirteenth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers
18.
19.
Zurück zum Zitat Takagi K, Shimada K, Ikebuchi T (2000) An anti-motion device for a very large floating structure. Mar Struct 13(4–5):421–436CrossRef Takagi K, Shimada K, Ikebuchi T (2000) An anti-motion device for a very large floating structure. Mar Struct 13(4–5):421–436CrossRef
20.
Zurück zum Zitat Karmakar D, Bhattacharjee J, Sahoo T (2010) Oblique flexural gravity-wave scattering due to changes in bottom topography. J Eng Math 66(4):325–341MathSciNetCrossRefMATH Karmakar D, Bhattacharjee J, Sahoo T (2010) Oblique flexural gravity-wave scattering due to changes in bottom topography. J Eng Math 66(4):325–341MathSciNetCrossRefMATH
21.
Zurück zum Zitat Ohta H (1999) Effect of attachment of a horizontal/vertical plate on the wave response of a VLFS. In: Proceedings of international workshop on very large floating structures (VLFS’99), vol 1, pp 265–274 Ohta H (1999) Effect of attachment of a horizontal/vertical plate on the wave response of a VLFS. In: Proceedings of international workshop on very large floating structures (VLFS’99), vol 1, pp 265–274
22.
Zurück zum Zitat Ikoma T, Masuda K, Rheem C-K, Maeda H, Togane M (2009) Hydroelastic motion of aircushion type large floating structures with several aircushions using a three-dimensional theory. In: ASME 2009 28th international conference on ocean, offshore and arctic engineering. American Society of Mechanical Engineers, pp 1331–1338 Ikoma T, Masuda K, Rheem C-K, Maeda H, Togane M (2009) Hydroelastic motion of aircushion type large floating structures with several aircushions using a three-dimensional theory. In: ASME 2009 28th international conference on ocean, offshore and arctic engineering. American Society of Mechanical Engineers, pp 1331–1338
23.
Zurück zum Zitat Norris AN, Vemula C (1995) Scattering of flexural waves on thin plates. J Sound Vib 181(1):115–125CrossRef Norris AN, Vemula C (1995) Scattering of flexural waves on thin plates. J Sound Vib 181(1):115–125CrossRef
24.
Zurück zum Zitat Cho IH, Kim MH (2013) Transmission of oblique incident waves by a submerged horizontal porous plate. Ocean Eng 61:56–65CrossRef Cho IH, Kim MH (2013) Transmission of oblique incident waves by a submerged horizontal porous plate. Ocean Eng 61:56–65CrossRef
25.
Zurück zum Zitat Molin B, Remy F (2015) Inertia effects in tld sloshing with perforated screens. J Fluids Struct 59:165–177CrossRef Molin B, Remy F (2015) Inertia effects in tld sloshing with perforated screens. J Fluids Struct 59:165–177CrossRef
26.
Zurück zum Zitat Meylan MH, Bennetts LG, Peter MA (2017) Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions. Wave Motion 70:240–250MathSciNetCrossRef Meylan MH, Bennetts LG, Peter MA (2017) Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions. Wave Motion 70:240–250MathSciNetCrossRef
27.
Zurück zum Zitat Nguyen HP, Dai J, Wang CM, Ang KK, Luong VH (2018) Reducing hydroelastic responses of pontoon-type VLFS using vertical elastic mooring lines. Mar Struct 59:251–270CrossRef Nguyen HP, Dai J, Wang CM, Ang KK, Luong VH (2018) Reducing hydroelastic responses of pontoon-type VLFS using vertical elastic mooring lines. Mar Struct 59:251–270CrossRef
28.
Zurück zum Zitat Singla S, Martha SC, Sahoo T (2018) Mitigation of structural responses of a very large floating structure in the presence of vertical porous barrier. Ocean Eng 165:505–527CrossRef Singla S, Martha SC, Sahoo T (2018) Mitigation of structural responses of a very large floating structure in the presence of vertical porous barrier. Ocean Eng 165:505–527CrossRef
29.
Zurück zum Zitat Singla S, Sahoo T, Martha SC, Behera H (2019) Effect of a floating permeable plate on the hydroelastic response of a very large floating structure. J Eng Math 116:49–72MathSciNetCrossRefMATH Singla S, Sahoo T, Martha SC, Behera H (2019) Effect of a floating permeable plate on the hydroelastic response of a very large floating structure. J Eng Math 116:49–72MathSciNetCrossRefMATH
30.
Zurück zum Zitat Manam SR, Bhattacharjee J, Sahoo T (2005) Expansion formulae in wave structure interaction problems. Proc R Soc A 462(2065):263–287MathSciNetCrossRefMATH Manam SR, Bhattacharjee J, Sahoo T (2005) Expansion formulae in wave structure interaction problems. Proc R Soc A 462(2065):263–287MathSciNetCrossRefMATH
31.
Zurück zum Zitat Koley S, Mondal R, Sahoo T (2018) Fredholm integral equation technique for hydroelastic analysis of a floating flexible porous plate. Eur J Mech B 67:291–305MathSciNetCrossRefMATH Koley S, Mondal R, Sahoo T (2018) Fredholm integral equation technique for hydroelastic analysis of a floating flexible porous plate. Eur J Mech B 67:291–305MathSciNetCrossRefMATH
32.
Zurück zum Zitat Karmakar D, Soares CG (2012) Scattering of gravity waves by a moored finite floating elastic plate. Appl Ocean Res 34:135–149CrossRef Karmakar D, Soares CG (2012) Scattering of gravity waves by a moored finite floating elastic plate. Appl Ocean Res 34:135–149CrossRef
33.
Zurück zum Zitat Koley S, Sahoo T (2017) Oblique wave scattering by horizontal floating flexible porous membrane. Meccanica 52(1–2):125–138MathSciNetCrossRef Koley S, Sahoo T (2017) Oblique wave scattering by horizontal floating flexible porous membrane. Meccanica 52(1–2):125–138MathSciNetCrossRef
34.
Zurück zum Zitat Karmakar D, Sahoo T (2008) Gravity wave interaction with floating membrane due to abrupt change in water depth. Ocean Eng 35(7):598–615CrossRef Karmakar D, Sahoo T (2008) Gravity wave interaction with floating membrane due to abrupt change in water depth. Ocean Eng 35(7):598–615CrossRef
35.
Zurück zum Zitat Mandal S, Sahoo T (2016) Gravity wave interaction with a flexible circular cage system. Appl Ocean Res 58:37–48CrossRef Mandal S, Sahoo T (2016) Gravity wave interaction with a flexible circular cage system. Appl Ocean Res 58:37–48CrossRef
36.
37.
Zurück zum Zitat Pete MA, Meylan MH, Chung H (2004) Wave scattering by a circular elastic plate in water of finite depth: a closed form solution. Int J Offshore Polar Eng 14(2):81–85 Pete MA, Meylan MH, Chung H (2004) Wave scattering by a circular elastic plate in water of finite depth: a closed form solution. Int J Offshore Polar Eng 14(2):81–85
38.
Zurück zum Zitat Sahoo T, Lee MM, Chwang AT (2000) Trapping and generation of waves by vertical porous structures. J Eng Mech 126(10):1074–1082CrossRef Sahoo T, Lee MM, Chwang AT (2000) Trapping and generation of waves by vertical porous structures. J Eng Mech 126(10):1074–1082CrossRef
39.
Zurück zum Zitat Schulkes RMSM, Hosking RJ, Sneyd AD (1987) Waves due to a steadily moving source on a floating ice plate. Part 2. J Fluid Mech 180:297–318CrossRefMATH Schulkes RMSM, Hosking RJ, Sneyd AD (1987) Waves due to a steadily moving source on a floating ice plate. Part 2. J Fluid Mech 180:297–318CrossRefMATH
Metadaten
Titel
Reduction of hydroelastic response of a flexible floating structure by an annular flexible permeable membrane
verfasst von
Siluvai Antony Selvan
Harekrushna Behera
Trilochan Sahoo
Publikationsdatum
12.09.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-10015-9

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.