Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 7/2023

30.05.2023 | Original Article

Reference-free Bayesian model for pointing errors of typein neurosurgical planning

verfasst von: John S. H. Baxter, Stéphane Croci, Antoine Delmas, Luc Bredoux, Jean-Pascal Lefaucheur, Pierre Jannin

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Many neurosurgical planning tasks rely on identifying points of interest in volumetric images. Often, these points require significant expertise to identify correctly as, in some cases, they are not visible but instead inferred by the clinician. This leads to a high degree of variability between annotators selecting these points. In particular, errors of type are when the experts fundamentally select different points rather than the same point with some inaccuracy. This complicates research as their mean may not reflect any of the experts’ intentions nor the ground truth.

Methods

We present a regularised Bayesian model for measuring errors of type in pointing tasks. This model is reference-free; in that it does not require a priori knowledge of the ground truth point but instead works on the basis of the level of consensus between multiple annotators. We apply this model to simulated data and clinical data from transcranial magnetic stimulation for chronic pain.

Results

Our model estimates the probabilities of selecting the correct point in the range of 82.6\(-\)88.6% with uncertainties in the range of 2.8\(-\)4.0%. This agrees with the literature where ground truth points are known. The uncertainty has not previously been explored in the literature and gives an indication of the dataset’s strength.

Conclusions

Our reference-free Bayesian framework easily models errors of type in pointing tasks. It allows for clinical studies to be performed with a limited number of annotators where the ground truth is not immediately known, which can be applied widely for better understanding human errors in neurosurgical planning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927CrossRefPubMed Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927CrossRefPubMed
2.
Zurück zum Zitat Wiles AD, Likholyot A, Frantz DD, Peters TM (2008) A statistical model for point-based target registration error with anisotropic fiducial localizer error. IEEE Trans Med Imaging 27(3):378–390CrossRefPubMed Wiles AD, Likholyot A, Frantz DD, Peters TM (2008) A statistical model for point-based target registration error with anisotropic fiducial localizer error. IEEE Trans Med Imaging 27(3):378–390CrossRefPubMed
3.
Zurück zum Zitat Luo J, Frisken S, Machado I, Zhang M, Pieper S, Golland P, Toews M, Unadkat P, Sedghi A, Zhou H, Mehrtash A, Preiswerk F, Cheng C-C, Golby A, Sugiyama M, Wells WM (2018) Using the variogram for vector outlier screening: application to feature-based image registration. Int J Comput Assist Radiol Surg 13:1871–1880CrossRefPubMedPubMedCentral Luo J, Frisken S, Machado I, Zhang M, Pieper S, Golland P, Toews M, Unadkat P, Sedghi A, Zhou H, Mehrtash A, Preiswerk F, Cheng C-C, Golby A, Sugiyama M, Wells WM (2018) Using the variogram for vector outlier screening: application to feature-based image registration. Int J Comput Assist Radiol Surg 13:1871–1880CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Bardosi Z, Freysinger W (2016) Estimating \({FLE}_{image}\) distributions of manual fiducial localization in CT images. Int J Comput Assist Radiol Surg 11(6):1043–1049CrossRefPubMedPubMedCentral Bardosi Z, Freysinger W (2016) Estimating \({FLE}_{image}\) distributions of manual fiducial localization in CT images. Int J Comput Assist Radiol Surg 11(6):1043–1049CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Francel PC, Jackson TR, Kamiryo T, Laws ER (1999) Optimizing accuracy in magnetic resonance imaging-guided stereotaxis: a technique with validation based on the anterior commissure-posterior commissure line. J Neurosurg 90(1):94–100CrossRefPubMed Francel PC, Jackson TR, Kamiryo T, Laws ER (1999) Optimizing accuracy in magnetic resonance imaging-guided stereotaxis: a technique with validation based on the anterior commissure-posterior commissure line. J Neurosurg 90(1):94–100CrossRefPubMed
6.
Zurück zum Zitat Prakash KB, Hu Q, Aziz A, Nowinski WL (2006) Rapid and automatic localization of the anterior and posterior commissure point landmarks in mr volumetric neuroimages1. Acad Radiol 13(1):36–54CrossRef Prakash KB, Hu Q, Aziz A, Nowinski WL (2006) Rapid and automatic localization of the anterior and posterior commissure point landmarks in mr volumetric neuroimages1. Acad Radiol 13(1):36–54CrossRef
7.
Zurück zum Zitat Eckstein MP, Abbey CK, Bochud FO (2000) Visual signal detection in structured backgrounds. iv. figures of merit for model performance in multiple-alternative forced-choice detection tasks with correlated responses. JOSA A 17(2):206–217CrossRefPubMed Eckstein MP, Abbey CK, Bochud FO (2000) Visual signal detection in structured backgrounds. iv. figures of merit for model performance in multiple-alternative forced-choice detection tasks with correlated responses. JOSA A 17(2):206–217CrossRefPubMed
8.
Zurück zum Zitat Elangovan P, Mackenzie A, Dance DR, Young KC, Cooke V, Wilkinson L, Given-Wilson RM, Wallis MG, Wells K (2017) Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials. Phys Med Biol 62(7):2778CrossRefPubMed Elangovan P, Mackenzie A, Dance DR, Young KC, Cooke V, Wilkinson L, Given-Wilson RM, Wallis MG, Wells K (2017) Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials. Phys Med Biol 62(7):2778CrossRefPubMed
9.
Zurück zum Zitat Roxin A (2019) Drift-diffusion models for multiple-alternative forced-choice decision making. J Math Neurosci 9(1):1–23CrossRef Roxin A (2019) Drift-diffusion models for multiple-alternative forced-choice decision making. J Math Neurosci 9(1):1–23CrossRef
10.
Zurück zum Zitat Lefaucheur J-P, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Garcia-Larrea L (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rtms). Clin Neurophysiol 125(11):2150–2206 Lefaucheur J-P, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Garcia-Larrea L (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rtms). Clin Neurophysiol 125(11):2150–2206
11.
Zurück zum Zitat Kim WJ, Min YS, Yang EJ, Paik N-J (2014) Neuronavigated vs. conventional repetitive transcranial magnetic stimulation method for virtual lesioning on the broca’s area. Neuromodulation: Technology at the Neural Interface 17(1), 16–21 Kim WJ, Min YS, Yang EJ, Paik N-J (2014) Neuronavigated vs. conventional repetitive transcranial magnetic stimulation method for virtual lesioning on the broca’s area. Neuromodulation: Technology at the Neural Interface 17(1), 16–21
12.
Zurück zum Zitat Mylius V, Ayache S, Ahdab R, Farhat W, Zouari H, Belke M, Brugières P, Wehrmann E, Krakow K, Timmesfeld N, Schmidt S, Oertel WH, Knake S, Lefaucheur JP (2013) Definition of dlpfc and m1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. Neuroimage 78:224–232CrossRefPubMed Mylius V, Ayache S, Ahdab R, Farhat W, Zouari H, Belke M, Brugières P, Wehrmann E, Krakow K, Timmesfeld N, Schmidt S, Oertel WH, Knake S, Lefaucheur JP (2013) Definition of dlpfc and m1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. Neuroimage 78:224–232CrossRefPubMed
13.
Zurück zum Zitat Baxter JSH, Bui QA, Maguet E, Croci S, Delmas A, Lefaucheur J-P, Bredoux L, Jannin P (2021) Automatic cortical target point localisation in mri for transcranial magnetic stimulation via a multi-resolution convolutional neural network. Int J Comput Assist Radiol Surg 16(7):1077–1087CrossRefPubMed Baxter JSH, Bui QA, Maguet E, Croci S, Delmas A, Lefaucheur J-P, Bredoux L, Jannin P (2021) Automatic cortical target point localisation in mri for transcranial magnetic stimulation via a multi-resolution convolutional neural network. Int J Comput Assist Radiol Surg 16(7):1077–1087CrossRefPubMed
14.
Zurück zum Zitat Vakharia VN, Sparks R, Pérez-García F, Granados A, Miserocchi A, McEvoy A, Ourselin S, Duncan JS (2019) Machine learning for stereotactic neurosurgery: A prospective implementation and validation. Hugh Cairns Prize Essay Vakharia VN, Sparks R, Pérez-García F, Granados A, Miserocchi A, McEvoy A, Ourselin S, Duncan JS (2019) Machine learning for stereotactic neurosurgery: A prospective implementation and validation. Hugh Cairns Prize Essay
15.
Zurück zum Zitat Baxter JSH, Croci S, Delmas A, Bredoux L, Lefaucheur J-P, Jannin P (2022) Errors of type or errors of degree? cortical point targeting in transcranial magnetic stimulation. In: Medical imaging 2022: image-Guided Procedures, Robotic Interventions, and Modeling, vol. 12034, p. 1203403. SPIE Baxter JSH, Croci S, Delmas A, Bredoux L, Lefaucheur J-P, Jannin P (2022) Errors of type or errors of degree? cortical point targeting in transcranial magnetic stimulation. In: Medical imaging 2022: image-Guided Procedures, Robotic Interventions, and Modeling, vol. 12034, p. 1203403. SPIE
16.
Zurück zum Zitat Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kulis B, Jordan MI (2012) Revisiting k-means: new algorithms via bayesian nonparametrics. In: Proceedings of the 29th international coference on international conference on machine learning, pp. 1131–1138 Kulis B, Jordan MI (2012) Revisiting k-means: new algorithms via bayesian nonparametrics. In: Proceedings of the 29th international coference on international conference on machine learning, pp. 1131–1138
18.
Zurück zum Zitat Allen K, Shelhamer E, Shin H, Tenenbaum J (2019) Infinite mixture prototypes for few-shot learning. In: International conference on machine learning, pp. 232–241. PMLR Allen K, Shelhamer E, Shin H, Tenenbaum J (2019) Infinite mixture prototypes for few-shot learning. In: International conference on machine learning, pp. 232–241. PMLR
Metadaten
Titel
Reference-free Bayesian model for pointing errors of typein neurosurgical planning
verfasst von
John S. H. Baxter
Stéphane Croci
Antoine Delmas
Luc Bredoux
Jean-Pascal Lefaucheur
Pierre Jannin
Publikationsdatum
30.05.2023
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 7/2023
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-023-02943-w

Weitere Artikel der Ausgabe 7/2023

International Journal of Computer Assisted Radiology and Surgery 7/2023 Zur Ausgabe

Premium Partner