Skip to main content
Erschienen in: Acta Mechanica Sinica 4/2015

01.08.2015 | Research Paper

Refraction characteristics of phononic crystals

verfasst von: Sia Nemat-Nasser

Erschienen in: Acta Mechanica Sinica | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Some of the most interesting refraction properties of phononic crystals are revealed by examining the anti-plane shear waves in doubly periodic elastic composites with unit cells containing rectangular and/or elliptical multi-inclusions. The corresponding band structure, group velocity, and energy–flux vector are calculated using a powerful mixed variational method that accurately and efficiently yields all the field quantities over multiple frequency pass-bands. The background matrix and the inclusions can be anisotropic, each having distinct elastic moduli and mass densities. Equifrequency contours and energy–flux vectors are readily calculated as functions of the wave-vector components. By superimposing the energy–flux vectors on equifrequency contours in the plane of the wave-vector components, and supplementing this with a three-dimensional graph of the corresponding frequency surface, a wealth of information is extracted essentially at a glance. This way it is shown that a composite with even a simple square unit cell containing a central circular inclusion can display negative or positive energy and phase velocity refractions, or simply performs a harmonic vibration (standing wave), depending on the frequency and the wave-vector. Moreover, that the same composite when interfaced with a suitable homogeneous solid can display: (1) negative refraction with negative phase velocity refraction; (2) negative refraction with positive phase velocity refraction; (3) positive refraction with negative phase velocity refraction; (4) positive refraction with positive phase velocity refraction; or even (5) complete reflection with no energy transmission, depending on the frequency, and direction and the wavelength of the plane-wave that is incident from the homogeneous solid to the interface. For elliptical and rectangular inclusion geometries, analytical expressions are given for the key calculation quantities. Expressions for displacement, velocity, linear momentum, strain, and stress components, as well as the energy–flux and group velocity components are given in series form. The general results are illustrated for rectangular unit cells, one with two and the other with four inclusions, although any number of inclusions can be considered. The energy–flux and the accompanying phase velocity refractions at an interface with a homogeneous solid are demonstrated. Finally, by comparing the results of the present solution method with those obtained using the Rayleigh quotient and, for the layered case, with the exact solutions, the remarkable accuracy and the convergence rate of the present solution method are demonstrated.

Graphical abstract

Anomalous refractive characteristics of phononic crystals are revealed using anti-plane shear waves in doubly periodic elastic composites. It is shown that negative or positive refraction can be accompanied by negative or positive phase velocity refraction, and/or the crystal can have complete refraction with no energy transmission, all depending on the wavelength and frequency of the plane wave that is incident from a homogeneous solid to its interface with the composite. A powerful computational tool is proposed which applies to one-, two-, three-dimensional phononic crystals yielding results with great accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bloch, F.: Quantum mechanics of electrons in crystal lattices. Z. Phys. 52, 555–600 (1928)CrossRefMATH Bloch, F.: Quantum mechanics of electrons in crystal lattices. Z. Phys. 52, 555–600 (1928)CrossRefMATH
2.
Zurück zum Zitat Brillouin, L.: Wave guides for slow waves. J. Appl. Phys. 19, 1023–1041 (1948)CrossRef Brillouin, L.: Wave guides for slow waves. J. Appl. Phys. 19, 1023–1041 (1948)CrossRef
3.
Zurück zum Zitat Minagawa, S., Nemat-Nasser, S.: Harmonic waves in three-dimensional elastic composites. Int. J. Solids Struct. 12, 769–777 (1976)CrossRefMATH Minagawa, S., Nemat-Nasser, S.: Harmonic waves in three-dimensional elastic composites. Int. J. Solids Struct. 12, 769–777 (1976)CrossRefMATH
4.
Zurück zum Zitat Nemat-Nasser, S.: General variational methods for waves in elastic composites. J. Elast. 2, 73–90 (1972)CrossRef Nemat-Nasser, S.: General variational methods for waves in elastic composites. J. Elast. 2, 73–90 (1972)CrossRef
5.
Zurück zum Zitat Nemat-Nasser, S., Fu, F., Minagawa, S.: Harmonic waves in one-, two-and three-dimensional composites: Bounds for eigenfrequencies. Int. J. Solids Struct. 11, 617–642 (1975)CrossRefMATH Nemat-Nasser, S., Fu, F., Minagawa, S.: Harmonic waves in one-, two-and three-dimensional composites: Bounds for eigenfrequencies. Int. J. Solids Struct. 11, 617–642 (1975)CrossRefMATH
6.
Zurück zum Zitat Rytov, S.: Acoustical properties of a thinly laminated medium. Sov. Phys. Acoust. 2, 68–80 (1956) Rytov, S.: Acoustical properties of a thinly laminated medium. Sov. Phys. Acoust. 2, 68–80 (1956)
7.
Zurück zum Zitat Cervera, F., Sanchis, L., Sanchez-Perez, J., et al.: Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2001)CrossRef Cervera, F., Sanchis, L., Sanchez-Perez, J., et al.: Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2001)CrossRef
8.
Zurück zum Zitat Gorishnyy, T., Ullal, C., Maldovan, M., et al.: Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)CrossRef Gorishnyy, T., Ullal, C., Maldovan, M., et al.: Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)CrossRef
9.
Zurück zum Zitat Khelif, A., Choujaa, A., Djafari-Rouhani, B., et al.: Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003)CrossRef Khelif, A., Choujaa, A., Djafari-Rouhani, B., et al.: Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003)CrossRef
10.
Zurück zum Zitat Lin, S.C.S., Huang, T.J., Sun, J.H., et al.: Gradient-index phononic crystals. Phys. Rev. B 79, 094302 (2009)CrossRef Lin, S.C.S., Huang, T.J., Sun, J.H., et al.: Gradient-index phononic crystals. Phys. Rev. B 79, 094302 (2009)CrossRef
11.
Zurück zum Zitat Mohammadi, S., Eftekhar, A.A., Khelif, A., et al.: Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates. Appl. Phys. Lett. 92, 221905 (2008)CrossRef Mohammadi, S., Eftekhar, A.A., Khelif, A., et al.: Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates. Appl. Phys. Lett. 92, 221905 (2008)CrossRef
12.
Zurück zum Zitat Reed, E.J., Soljačić, M., Joannopoulos, J.D.: Reversed Doppler effect in photonic crystals. Phys. Rev. Lett. 91, 133901 (2003)CrossRef Reed, E.J., Soljačić, M., Joannopoulos, J.D.: Reversed Doppler effect in photonic crystals. Phys. Rev. Lett. 91, 133901 (2003)CrossRef
13.
Zurück zum Zitat Sukhovich, A., Jing, L., Page, J.H.: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77, 014301 (2008)CrossRef Sukhovich, A., Jing, L., Page, J.H.: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77, 014301 (2008)CrossRef
14.
Zurück zum Zitat Yang, S., Page, J., Liu, Z., et al.: Focusing of sound in a 3Dphononic crystal. Phys. Rev. Lett. 93, 024301 (2004) Yang, S., Page, J., Liu, Z., et al.: Focusing of sound in a 3Dphononic crystal. Phys. Rev. Lett. 93, 024301 (2004)
15.
Zurück zum Zitat Yang, S., Page, J., Liu, Z., et al.: Ultrasound tunneling through 3D phononic crystals. Phys. Rev. Lett. 88, 104301 (2002)CrossRef Yang, S., Page, J., Liu, Z., et al.: Ultrasound tunneling through 3D phononic crystals. Phys. Rev. Lett. 88, 104301 (2002)CrossRef
16.
Zurück zum Zitat Notomi, M.: Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62(16), 10696–10705 (2000)CrossRef Notomi, M.: Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62(16), 10696–10705 (2000)CrossRef
17.
Zurück zum Zitat Ohtaka, K., Ueta, T., Tanabe, Y.: Photonic bands using vector spherical waves: IV analogy of optics of phononic crystals to that of anisotropic crystals. J. Phys. Soc. Japan 65(9), 3068–3077 (1996)CrossRef Ohtaka, K., Ueta, T., Tanabe, Y.: Photonic bands using vector spherical waves: IV analogy of optics of phononic crystals to that of anisotropic crystals. J. Phys. Soc. Japan 65(9), 3068–3077 (1996)CrossRef
18.
Zurück zum Zitat Minagawa, S., Nemat-Nasser, S., Yamada, M.: Finite element analysis of harmonic waves in layered and fibre-reinforced composites. Int. J. Numer. Methods Eng. 17, 1335–1353 (1981)CrossRefMATH Minagawa, S., Nemat-Nasser, S., Yamada, M.: Finite element analysis of harmonic waves in layered and fibre-reinforced composites. Int. J. Numer. Methods Eng. 17, 1335–1353 (1981)CrossRefMATH
19.
Zurück zum Zitat Babuška, I., Osborn, J.: Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients. Math. Comput. 32, 991–1023 (1978)CrossRefMATH Babuška, I., Osborn, J.: Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients. Math. Comput. 32, 991–1023 (1978)CrossRefMATH
Metadaten
Titel
Refraction characteristics of phononic crystals
verfasst von
Sia Nemat-Nasser
Publikationsdatum
01.08.2015
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 4/2015
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0454-1

Weitere Artikel der Ausgabe 4/2015

Acta Mechanica Sinica 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.