Skip to main content
Erschienen in: Water Resources Management 6/2015

01.04.2015

Regional Flood Frequency Analysis using Soft Computing Techniques

verfasst von: Rakesh Kumar, Narendra K. Goel, Chandranath Chatterjee, Purna C. Nayak

Erschienen in: Water Resources Management | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For design of various types of hydraulic structures as well as for taking different flood management measures flood frequency estimates are required. Regional flood frequency analysis is carried out employing L-moments and soft computing techniques viz. artificial neural network (ANN) and fuzzy inference system (FIS) for the lower Godavari subzone 3(f) of India. The study area covers an areal extent of 174,201 km2 and annual maximum peak flood data of 17 catchments ranging in size from 35 to 824 km2 are used. The data screening is carried out employing L-moments based Discordancy measure (Di) and regional homogeneity is examined based on the heterogeneity measure (H). On the basis of the L-moment ratio diagram and Z i dist –statistic criteria, Pearson Type III (PE3) distribution is chosen as the suitable frequency distribution for the region. For the region under study, a relationship is developed between mean annual maximum peak flood and area of the catchment using the Levenberg-Marquardt (LM) iteration and the same is coupled with the PE3 based regional flood frequency relationship developed for estimation of floods of various frequencies for the ungauged catchments of the region. The regional flood frequency relationships developed based on L-moments and soft computing techniques are compared.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anmala J, Zhang B, Govindaraju RS (2000) Comparison of ANNs and empirical approaches for predicting watershed runoff. J Water Resour Plan Manag 126(3):156–166CrossRef Anmala J, Zhang B, Govindaraju RS (2000) Comparison of ANNs and empirical approaches for predicting watershed runoff. J Water Resour Plan Manag 126(3):156–166CrossRef
Zurück zum Zitat Aqil M, Kita I, Yano A, Nishiyama S (2007) A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J Hydrol 337:22–34CrossRef Aqil M, Kita I, Yano A, Nishiyama S (2007) A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J Hydrol 337:22–34CrossRef
Zurück zum Zitat ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology I: preliminary concepts. J Hydrol Eng 5:115–123CrossRef ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology I: preliminary concepts. J Hydrol Eng 5:115–123CrossRef
Zurück zum Zitat ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology II: hydrologic applications. J Hydrol Eng 5:124–137CrossRef ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology II: hydrologic applications. J Hydrol Eng 5:124–137CrossRef
Zurück zum Zitat Besaw LE, Rizzo DM, Bierman PR, Hackett WR (2010) Advances in ungauged streamflow prediction using artificial neural networks. J Hydrol 386(1–4):27–37CrossRef Besaw LE, Rizzo DM, Bierman PR, Hackett WR (2010) Advances in ungauged streamflow prediction using artificial neural networks. J Hydrol 386(1–4):27–37CrossRef
Zurück zum Zitat Bezak N, Mikos M, Sraj M (2014) Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using Copulas. Water Resour Manag 28(8):2195–2212CrossRef Bezak N, Mikos M, Sraj M (2014) Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using Copulas. Water Resour Manag 28(8):2195–2212CrossRef
Zurück zum Zitat Bhuyan A, Borah M, Kumar R (2010) Regional flood frequency analysis of north-bank of the river Brahmaputra by using LH-moments. Water Resour Manag 24:1779–1790CrossRef Bhuyan A, Borah M, Kumar R (2010) Regional flood frequency analysis of north-bank of the river Brahmaputra by using LH-moments. Water Resour Manag 24:1779–1790CrossRef
Zurück zum Zitat Cherif R, Bargaoui Z (2013) Regionalisation of maximum annual runoff using Hierarchical and Trellis Methods with Topographic Information. Water Resour Manag 27(8):2947–2963CrossRef Cherif R, Bargaoui Z (2013) Regionalisation of maximum annual runoff using Hierarchical and Trellis Methods with Topographic Information. Water Resour Manag 27(8):2947–2963CrossRef
Zurück zum Zitat Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278 Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278
Zurück zum Zitat Cunderlik JM, Burn DH (2006) Switching the pooling similarity distances: Mahalanobis for Euclidean. Water Resour Res 42, W03409. doi:10.1029/2005WR004245 Cunderlik JM, Burn DH (2006) Switching the pooling similarity distances: Mahalanobis for Euclidean. Water Resour Res 42, W03409. doi:10.​1029/​2005WR004245
Zurück zum Zitat Demirel MC, Venancio A, Kahya E (2009) Flow forecast by SWAT model and ANN in Pracana basin, Portugal. J Hydrol 40:467–473 Demirel MC, Venancio A, Kahya E (2009) Flow forecast by SWAT model and ANN in Pracana basin, Portugal. J Hydrol 40:467–473
Zurück zum Zitat Goyal MK, Gupta V (2014) Identification of homogeneous rainfall regimes in Northeast region of India using fuzzy cluster analysis. Water Resour Manag 28(13):4491–4511CrossRef Goyal MK, Gupta V (2014) Identification of homogeneous rainfall regimes in Northeast region of India using fuzzy cluster analysis. Water Resour Manag 28(13):4491–4511CrossRef
Zurück zum Zitat Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resour Res 15(5):1049–1054CrossRef Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resour Res 15(5):1049–1054CrossRef
Zurück zum Zitat Griffis VW, Stedinger JR (2007) Evolution of flood frequency analysis with Bulletin 17. J Hydrol Eng 12(3):283–297CrossRef Griffis VW, Stedinger JR (2007) Evolution of flood frequency analysis with Bulletin 17. J Hydrol Eng 12(3):283–297CrossRef
Zurück zum Zitat Guse B, Thieken AH, Castellarin A, Merz B (2010) Deriving probabilistic regional envelope curves with two pooling methods. J Hydrol 380:14–26CrossRef Guse B, Thieken AH, Castellarin A, Merz B (2010) Deriving probabilistic regional envelope curves with two pooling methods. J Hydrol 380:14–26CrossRef
Zurück zum Zitat Haykin S (1994) Neural Networks—A Comprehensive Foundation. Macmillan, New York Haykin S (1994) Neural Networks—A Comprehensive Foundation. Macmillan, New York
Zurück zum Zitat He J, Valeo C (2009) Comparative study of ANNs versus parametric methods in rainfall frequency analysis. J of Hydrol Eng 14(2):172–184CrossRef He J, Valeo C (2009) Comparative study of ANNs versus parametric methods in rainfall frequency analysis. J of Hydrol Eng 14(2):172–184CrossRef
Zurück zum Zitat Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistic. J Royal Stat Soc Ser B 52(2):105–124 Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistic. J Royal Stat Soc Ser B 52(2):105–124
Zurück zum Zitat Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–281CrossRef Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–281CrossRef
Zurück zum Zitat Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, New YorkCrossRef Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, New YorkCrossRef
Zurück zum Zitat Hsu K, Gupta VH, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10):2517–2530CrossRef Hsu K, Gupta VH, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10):2517–2530CrossRef
Zurück zum Zitat Jacquin AP, Shamseldin AY (2006) Development of rainfall-runoff models using Takagi–Sugeno fuzzy inference systems. J Hydrol 329:154–173CrossRef Jacquin AP, Shamseldin AY (2006) Development of rainfall-runoff models using Takagi–Sugeno fuzzy inference systems. J Hydrol 329:154–173CrossRef
Zurück zum Zitat Jain A, Indurthy PKV (2003) Comparative analysis of event based rainfall–runoff modeling techniques-deterministic, statistical and artificial neural networks. J Hydrol Eng 8(2):93–98CrossRef Jain A, Indurthy PKV (2003) Comparative analysis of event based rainfall–runoff modeling techniques-deterministic, statistical and artificial neural networks. J Hydrol Eng 8(2):93–98CrossRef
Zurück zum Zitat Jain A, Sudheer KP, Srinivasulu S (2004) Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol Process 18(3):571–581. doi:10.1002/hyp.5502 CrossRef Jain A, Sudheer KP, Srinivasulu S (2004) Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol Process 18(3):571–581. doi:10.​1002/​hyp.​5502 CrossRef
Zurück zum Zitat Jingyl Z, Hall MJ (2004) Regional flood frequency analysis for the Gan-Ming river basin in China. J Hydrol 296:98–117CrossRef Jingyl Z, Hall MJ (2004) Regional flood frequency analysis for the Gan-Ming river basin in China. J Hydrol 296:98–117CrossRef
Zurück zum Zitat Kumar R, Chatterjee C (2005) Regional flood frequency analysis using L-moments for North Brahmaputra Region of India. J Hydrol Eng 10(1):1–7CrossRef Kumar R, Chatterjee C (2005) Regional flood frequency analysis using L-moments for North Brahmaputra Region of India. J Hydrol Eng 10(1):1–7CrossRef
Zurück zum Zitat Kumar R, Chatterjee C (2011) Development of regional flood frequency relationships for gauged and ungauged catchments using L-moments. In: Kropp JP, Schellnhuber HJ (eds) Extremis – disruptive events and trends in climate and hydrology. Springer Heidelberg Dordrecht London, New York, pp 105–127 Kumar R, Chatterjee C (2011) Development of regional flood frequency relationships for gauged and ungauged catchments using L-moments. In: Kropp JP, Schellnhuber HJ (eds) Extremis – disruptive events and trends in climate and hydrology. Springer Heidelberg Dordrecht London, New York, pp 105–127
Zurück zum Zitat Kumar R, Chatterjee C, Kumar S, Lohani AK, Singh RD (2003a) Development of regional flood frequency relationships using L-moments for Middle Ganga Plains (Subzone 1-f) of India. Water Resour Manag 17(4):243–257CrossRef Kumar R, Chatterjee C, Kumar S, Lohani AK, Singh RD (2003a) Development of regional flood frequency relationships using L-moments for Middle Ganga Plains (Subzone 1-f) of India. Water Resour Manag 17(4):243–257CrossRef
Zurück zum Zitat Kumar R, Chatterjee C, Panigrahi N, Patwari BC, Singh RD (2003b) Development of regional flood formula using L-moments for North Brahmaputra river system. J Inst Eng (I) 84:57–63 Kumar R, Chatterjee C, Panigrahi N, Patwari BC, Singh RD (2003b) Development of regional flood formula using L-moments for North Brahmaputra river system. J Inst Eng (I) 84:57–63
Zurück zum Zitat Kumar M, Raghuwanshi NS, Singh R (2009) Development and validation of GANN model for evapotranspiration estimation. J Hydrol Eng 44(2):131–140CrossRef Kumar M, Raghuwanshi NS, Singh R (2009) Development and validation of GANN model for evapotranspiration estimation. J Hydrol Eng 44(2):131–140CrossRef
Zurück zum Zitat Lohani AK, Goel NK, Bhatia KKS (2006) Takagi–Sugeno fuzzy inference system for modeling stage–discharge relationship. J Hydrol 331:146–160CrossRef Lohani AK, Goel NK, Bhatia KKS (2006) Takagi–Sugeno fuzzy inference system for modeling stage–discharge relationship. J Hydrol 331:146–160CrossRef
Zurück zum Zitat Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ Model Softw 15:101–124CrossRef Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ Model Softw 15:101–124CrossRef
Zurück zum Zitat Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process 22(26):5097–5106CrossRef Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process 22(26):5097–5106CrossRef
Zurück zum Zitat Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291(1–2):52–66CrossRef Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291(1–2):52–66CrossRef
Zurück zum Zitat Nayak PC, Sudheer KP, Ramasastri KS (2005a) Fuzzy computing based rainfall–runoff model for real time flood forecasting. Hydrol Process 19(4):955–968CrossRef Nayak PC, Sudheer KP, Ramasastri KS (2005a) Fuzzy computing based rainfall–runoff model for real time flood forecasting. Hydrol Process 19(4):955–968CrossRef
Zurück zum Zitat Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005b) Short-term flood forecasting with a neurofuzzy model. Water Resour Res 41(4), W04004 Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005b) Short-term flood forecasting with a neurofuzzy model. Water Resour Res 41(4), W04004
Zurück zum Zitat Noto LV, Loggia GL (2009) Use of L-moments approach for regional flood frequency analysis in Sicily, Italy. Water Resour Manag 23:2207–2229CrossRef Noto LV, Loggia GL (2009) Use of L-moments approach for regional flood frequency analysis in Sicily, Italy. Water Resour Manag 23:2207–2229CrossRef
Zurück zum Zitat Rajasekaran S, Vijayalakshmi Pai GA (2000) Image recognition using simplified fuzzy art map augmented with a moment based feature extractor. Int J Pattern Recognit Artif Intell 14(8):1081–1095CrossRef Rajasekaran S, Vijayalakshmi Pai GA (2000) Image recognition using simplified fuzzy art map augmented with a moment based feature extractor. Int J Pattern Recognit Artif Intell 14(8):1081–1095CrossRef
Zurück zum Zitat Rao AR, Hamed KH (2000) Flood frequency analysis. CRC Press, Washington, D.C Rao AR, Hamed KH (2000) Flood frequency analysis. CRC Press, Washington, D.C
Zurück zum Zitat Reed DW, Robson AJ (1999) Flood Estimation Handbook, vol 3. Institute of Hydrology, Wallingford Reed DW, Robson AJ (1999) Flood Estimation Handbook, vol 3. Institute of Hydrology, Wallingford
Zurück zum Zitat Saf B (2010) Assessment of the effects of discordant sites on regional flood frequency analysis. J Hydrol 380:362–375CrossRef Saf B (2010) Assessment of the effects of discordant sites on regional flood frequency analysis. J Hydrol 380:362–375CrossRef
Zurück zum Zitat Sehgal V, Sahay RR, Chatterjee C (2014a) Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models. Water Resour Manag 28(6):1733–1749CrossRef Sehgal V, Sahay RR, Chatterjee C (2014a) Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models. Water Resour Manag 28(6):1733–1749CrossRef
Zurück zum Zitat Sehgal V, Tiwari MK, Chatterjee C (2014b) Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting. Water Resour Manag 28(10):2793–2811CrossRef Sehgal V, Tiwari MK, Chatterjee C (2014b) Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting. Water Resour Manag 28(10):2793–2811CrossRef
Zurück zum Zitat Sivapalan M, Takeuchi K, Franks SW, Gupta VK, Karambiri Lakshmi V, Liang X, McDonnell Mendioudo EM, O’Connell PE, Oki T, Pomeroy JW, Schertzer D, Unlenbrook S, Zahe E (2003) IAHS decade on predictions of ungauged basins (PUB), 2003-2012: Shaping an exciting future for hydrological sciences. Hydrol Sci J 48:857–880CrossRef Sivapalan M, Takeuchi K, Franks SW, Gupta VK, Karambiri Lakshmi V, Liang X, McDonnell Mendioudo EM, O’Connell PE, Oki T, Pomeroy JW, Schertzer D, Unlenbrook S, Zahe E (2003) IAHS decade on predictions of ungauged basins (PUB), 2003-2012: Shaping an exciting future for hydrological sciences. Hydrol Sci J 48:857–880CrossRef
Zurück zum Zitat Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of Hydrology. McGraw-Hill, New York, pp 18.1–18.66 Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of Hydrology. McGraw-Hill, New York, pp 18.1–18.66
Zurück zum Zitat Sudheer KP, Chaubey I, Garg V, Migliaccio KW (2007) Impact of timescale of the calibration objective function on the performance of watershed models. Hydrol Process 21:3409–3419CrossRef Sudheer KP, Chaubey I, Garg V, Migliaccio KW (2007) Impact of timescale of the calibration objective function on the performance of watershed models. Hydrol Process 21:3409–3419CrossRef
Zurück zum Zitat Tiwari MK, Chatterjee C (2009) Daily discharge forecasting using WANNs coupled with nonlinear bias correction techniques. IAHS-AISH Publ 331:98–108 Tiwari MK, Chatterjee C (2009) Daily discharge forecasting using WANNs coupled with nonlinear bias correction techniques. IAHS-AISH Publ 331:98–108
Zurück zum Zitat Tiwari MK, Chatterjee C (2010a) Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J Hydrol 394:458–470CrossRef Tiwari MK, Chatterjee C (2010a) Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J Hydrol 394:458–470CrossRef
Zurück zum Zitat Tiwari MK, Chatterjee C (2010b) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382:20–33CrossRef Tiwari MK, Chatterjee C (2010b) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382:20–33CrossRef
Zurück zum Zitat Tiwari MK, Chatterjee C (2011) A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting. J Hydroinf 13:500–519CrossRef Tiwari MK, Chatterjee C (2011) A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting. J Hydroinf 13:500–519CrossRef
Zurück zum Zitat Tiwari MK, Song KY, Chatterjee C, Gupta MM (2012) River-flow forecasting using higher-order neural networks. J Hydrol Eng 17(5):655–666CrossRef Tiwari MK, Song KY, Chatterjee C, Gupta MM (2012) River-flow forecasting using higher-order neural networks. J Hydrol Eng 17(5):655–666CrossRef
Zurück zum Zitat Tiwari MK, Song KY, Chatterjee C, Gupta MM (2013) Improving reliability of river flow forecasting using neural networks, wavelets and self-organizing maps. J Hydroinf 15(2):486–502CrossRef Tiwari MK, Song KY, Chatterjee C, Gupta MM (2013) Improving reliability of river flow forecasting using neural networks, wavelets and self-organizing maps. J Hydroinf 15(2):486–502CrossRef
Zurück zum Zitat Zafirakou-Koulouris A, Vogel RM, Craig SM, Habermeier J (1998) L moment diagrams for censored observations. Water Resour Res 34(5):1241–1249CrossRef Zafirakou-Koulouris A, Vogel RM, Craig SM, Habermeier J (1998) L moment diagrams for censored observations. Water Resour Res 34(5):1241–1249CrossRef
Zurück zum Zitat Zhang L, Singh VP (2007) Trivariate flood frequency analysis using the Gumbel–Hougaard Copula. J Hydrol Eng 12(4):431–439CrossRef Zhang L, Singh VP (2007) Trivariate flood frequency analysis using the Gumbel–Hougaard Copula. J Hydrol Eng 12(4):431–439CrossRef
Metadaten
Titel
Regional Flood Frequency Analysis using Soft Computing Techniques
verfasst von
Rakesh Kumar
Narendra K. Goel
Chandranath Chatterjee
Purna C. Nayak
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 6/2015
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-015-0922-1

Weitere Artikel der Ausgabe 6/2015

Water Resources Management 6/2015 Zur Ausgabe