Skip to main content

2023 | OriginalPaper | Buchkapitel

8. Reinforcement Learning Based Weighting Factors’ Real-Time Updating Scheme for the FCS Model Predictive Control to Improve the Large-Signal Stability of Inverters

verfasst von : Xin Zhang, Jinsong He, Hao Ma, Zhixun Ma, Xiaohai Ge

Erschienen in: Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The previous chapter demonstrates that the finite control set (FCS) model predictive control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Vazquez et al., “Model predictive control: A review of its applications in power electronics,” IEEE Ind. Electron. Mag., vol. 8, no. 1, pp. 16–31, 2014.CrossRef S. Vazquez et al., “Model predictive control: A review of its applications in power electronics,” IEEE Ind. Electron. Mag., vol. 8, no. 1, pp. 16–31, 2014.CrossRef
2.
Zurück zum Zitat S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model Predictive Control for Power Converters and Drives: Advances and Trends,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 935–947, 2017.CrossRef S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model Predictive Control for Power Converters and Drives: Advances and Trends,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 935–947, 2017.CrossRef
3.
Zurück zum Zitat Z. Ma, Z. Xin, J. He, and Z. Zeng, “Robust Constant Switching Frequency Predictive Current Control with a Dichotomy Solution for Three-Phase Grid-Connected Inverters,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 5282–5285. Z. Ma, Z. Xin, J. He, and Z. Zeng, “Robust Constant Switching Frequency Predictive Current Control with a Dichotomy Solution for Three-Phase Grid-Connected Inverters,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 5282–5285.
4.
Zurück zum Zitat J. He, X. Zhang, H. Ma, and C. Cai, “Lyapunov-based Large-signal Control of Three- phase Stand-alone Inverters with Inherent Dual Control Loops and Load Disturbance Adaptivity,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 8391–8401, 2020.CrossRef J. He, X. Zhang, H. Ma, and C. Cai, “Lyapunov-based Large-signal Control of Three- phase Stand-alone Inverters with Inherent Dual Control Loops and Load Disturbance Adaptivity,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 8391–8401, 2020.CrossRef
5.
Zurück zum Zitat J. Huang, F. Guo, C. Wen, B. Yang, and J. Xiao, “A direct power control strategy for AC/DC converter based on best switching state approach,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 4, pp. 2273–2286, 2018.CrossRef J. Huang, F. Guo, C. Wen, B. Yang, and J. Xiao, “A direct power control strategy for AC/DC converter based on best switching state approach,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 4, pp. 2273–2286, 2018.CrossRef
6.
Zurück zum Zitat H. Komurcugil, S. Member, N. Altin, and S. Ozdemir, “Lyapunov-Function and Proportional-Resonant-Based Control Strategy for Single-Phase Grid-Connected VSI With LCL Filter,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2838–2849, 2016.CrossRef H. Komurcugil, S. Member, N. Altin, and S. Ozdemir, “Lyapunov-Function and Proportional-Resonant-Based Control Strategy for Single-Phase Grid-Connected VSI With LCL Filter,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2838–2849, 2016.CrossRef
7.
Zurück zum Zitat J. He, C. C. Y. John, X. Zhang, Z. Li, and Z. Liu, “An Adaptive Dual-loop Lyapunov-based Control Scheme for a Single-Phase UPS Inverter,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 8886–8891, 2020.CrossRef J. He, C. C. Y. John, X. Zhang, Z. Li, and Z. Liu, “An Adaptive Dual-loop Lyapunov-based Control Scheme for a Single-Phase UPS Inverter,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 8886–8891, 2020.CrossRef
8.
Zurück zum Zitat X. Li, J. He, C. Wen, and X. Liu, “Backstepping Based Adaptive Control of a Class of Uncertain Incommensurate Fractional-Order Nonlinear Systems with External Disturbance,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 4087–4095, 2022.CrossRef X. Li, J. He, C. Wen, and X. Liu, “Backstepping Based Adaptive Control of a Class of Uncertain Incommensurate Fractional-Order Nonlinear Systems with External Disturbance,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 4087–4095, 2022.CrossRef
9.
Zurück zum Zitat J. He and X. Zhang, “An Ellipse-optimized Composite Backstepping Control Strategy for a Point-of-load Inverter Under Load Disturbance in the Shipboard Power System,” IEEE Open J. Power Electron., vol. 1, no. 8, pp. 420–430, 2020.CrossRef J. He and X. Zhang, “An Ellipse-optimized Composite Backstepping Control Strategy for a Point-of-load Inverter Under Load Disturbance in the Shipboard Power System,” IEEE Open J. Power Electron., vol. 1, no. 8, pp. 420–430, 2020.CrossRef
10.
Zurück zum Zitat S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fast-transient, and cost-effective synchronous-frame repetitive controller for three-phase UPS inverters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994–3005, 2012.CrossRef S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fast-transient, and cost-effective synchronous-frame repetitive controller for three-phase UPS inverters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994–3005, 2012.CrossRef
11.
Zurück zum Zitat P. Cortés et al., “Guidelines for weighting factors design in model predictive control of power converters and drives,” Proc. IEEE Int. Conf. Ind. Technol., pp. 1–7, 2009. P. Cortés et al., “Guidelines for weighting factors design in model predictive control of power converters and drives,” Proc. IEEE Int. Conf. Ind. Technol., pp. 1–7, 2009.
12.
Zurück zum Zitat P. Zanchetta, “Heuristic multi-objective optimization for cost function weights selection in finite states model predictive control,” Preced. 2011 - Work. Predict. Control Electr. Drives Power Electron., pp. 70–75, 2011. P. Zanchetta, “Heuristic multi-objective optimization for cost function weights selection in finite states model predictive control,” Preced. 2011 - Work. Predict. Control Electr. Drives Power Electron., pp. 70–75, 2011.
13.
Zurück zum Zitat S. A. Davari, D. A. Khaburi, and R. Kennel, “An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1540–1551, 2012.CrossRef S. A. Davari, D. A. Khaburi, and R. Kennel, “An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1540–1551, 2012.CrossRef
14.
Zurück zum Zitat F. Villarroel, J. R. Espinoza, C. A. Rojas, J. Rodriguez, M. Rivera, and D. Sbarbaro, “Multiobjective switching state selector for finite-states model predictive control based on fuzzy decision making in a matrix converter,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 589–599, 2013.CrossRef F. Villarroel, J. R. Espinoza, C. A. Rojas, J. Rodriguez, M. Rivera, and D. Sbarbaro, “Multiobjective switching state selector for finite-states model predictive control based on fuzzy decision making in a matrix converter,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 589–599, 2013.CrossRef
15.
Zurück zum Zitat T. Dragičević and M. Novak, “Weighting Factor Design in Model Predictive Control of Power Electronic Converters: An Artificial Neural Network Approach,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8870–8880, 2019.CrossRef T. Dragičević and M. Novak, “Weighting Factor Design in Model Predictive Control of Power Electronic Converters: An Artificial Neural Network Approach,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8870–8880, 2019.CrossRef
16.
Zurück zum Zitat M. Novak, T. Dragicevic, and F. Blaabjerg, “Weighting factor design based on artificial neural network for finite set MPC operated 3L-NPC converter,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2019-March, pp. 77–82, 2019. M. Novak, T. Dragicevic, and F. Blaabjerg, “Weighting factor design based on artificial neural network for finite set MPC operated 3L-NPC converter,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2019-March, pp. 77–82, 2019.
17.
Zurück zum Zitat Z. Ma, X. Zhang, J. Huang, and B. Zhao, “Stability-constraining-dichotomy-solution-based model predictive control to improve the stability of power conversion system in the MEA,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5696–5706, 2019.CrossRef Z. Ma, X. Zhang, J. Huang, and B. Zhao, “Stability-constraining-dichotomy-solution-based model predictive control to improve the stability of power conversion system in the MEA,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5696–5706, 2019.CrossRef
18.
Zurück zum Zitat T. Dragičević, “Dynamic Stabilization of DC Microgrids with Predictive Control of Point-of-Load Converters,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10872–10884, 2018.CrossRef T. Dragičević, “Dynamic Stabilization of DC Microgrids with Predictive Control of Point-of-Load Converters,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10872–10884, 2018.CrossRef
19.
Zurück zum Zitat J. He, C. Wen, and X. Zhang, “Composite-Bisection Predictive Control to Stabilize and Indirectly Regulate Downstream Load Inverters Cascaded With LC Input Filters in the SPS,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 6, pp. 6854–6863, Dec. 2021.CrossRef J. He, C. Wen, and X. Zhang, “Composite-Bisection Predictive Control to Stabilize and Indirectly Regulate Downstream Load Inverters Cascaded With LC Input Filters in the SPS,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 6, pp. 6854–6863, Dec. 2021.CrossRef
20.
Zurück zum Zitat P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323–1325, 2012.CrossRef P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323–1325, 2012.CrossRef
21.
Zurück zum Zitat J. He, L. Xing, and C. Wen, “Weighting Factors’ Real-time Updating for Finite Control Set Model Predictive Control of Power Converters via Reinforcement Learning,” in 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 2021, pp. 707–712. J. He, L. Xing, and C. Wen, “Weighting Factors’ Real-time Updating for Finite Control Set Model Predictive Control of Power Converters via Reinforcement Learning,” in 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 2021, pp. 707–712.
23.
Zurück zum Zitat T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., Sep. 2016. T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., Sep. 2016.
24.
Zurück zum Zitat T. Dragicevic, P. Wheeler, and F. Blaabjerg, “Artificial Intelligence Aided Automated Design for Reliability of Power Electronic Systems,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7161–7171, 2019.CrossRef T. Dragicevic, P. Wheeler, and F. Blaabjerg, “Artificial Intelligence Aided Automated Design for Reliability of Power Electronic Systems,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7161–7171, 2019.CrossRef
Metadaten
Titel
Reinforcement Learning Based Weighting Factors’ Real-Time Updating Scheme for the FCS Model Predictive Control to Improve the Large-Signal Stability of Inverters
verfasst von
Xin Zhang
Jinsong He
Hao Ma
Zhixun Ma
Xiaohai Ge
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7191-4_8