Skip to main content

2020 | OriginalPaper | Buchkapitel

Reinforcement Learning of Musculoskeletal Control from Functional Simulations

verfasst von : Emanuel Joos, Fabien Péan, Orcun Goksel

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To diagnose, plan, and treat musculoskeletal pathologies, understanding and reproducing muscle recruitment for complex movements is essential. With muscle activations for movements often being highly redundant, nonlinear, and time dependent, machine learning can provide a solution for their modeling and control for anatomy-specific musculoskeletal simulations. Sophisticated biomechanical simulations often require specialized computational environments, being numerically complex and slow, hindering their integration with typical deep learning frameworks. In this work, a deep reinforcement learning (DRL) based inverse dynamics controller is trained to control muscle activations of a biomechanical model of the human shoulder. In a generalizable end-to-end fashion, muscle activations are learned given current and desired position-velocity pairs. A customized reward functions for trajectory control is introduced, enabling straightforward extension to additional muscles and higher degrees of freedom. Using the biomechanical model, multiple episodes are simulated on a cluster simultaneously using the evolving neural models of the DRL being trained. Results are presented for a single-axis motion control of shoulder abduction for the task of following randomly generated angular trajectories.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abdi, A.H., Saha, P., Srungarapu, V.P., Fels, S.: Muscle excitation estimation in biomechanical simulation using NAF reinforcement learning. In: Computational Biomechanics for Medicine, pp. 133–141 (2020) Abdi, A.H., Saha, P., Srungarapu, V.P., Fels, S.: Muscle excitation estimation in biomechanical simulation using NAF reinforcement learning. In: Computational Biomechanics for Medicine, pp. 133–141 (2020)
2.
Zurück zum Zitat Artstein, Z.: Discrete and continuous bang-bang and facial spaces or: look for the extreme points. Siam Rev. 22(2), 172–185 (1980)MathSciNetCrossRef Artstein, Z.: Discrete and continuous bang-bang and facial spaces or: look for the extreme points. Siam Rev. 22(2), 172–185 (1980)MathSciNetCrossRef
3.
Zurück zum Zitat Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 2. Athena Scientific, Belmont (2012)MATH Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 2. Athena Scientific, Belmont (2012)MATH
4.
Zurück zum Zitat Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4), 657–665 (2005)CrossRef Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4), 657–665 (2005)CrossRef
6.
Zurück zum Zitat Brown, J.M.M., Wickham, J.B., McAndrew, D.J., Huang, X.F.: Muscles within muscles: coordination of 19 muscle segments within three shoulder muscles during isometric motor tasks. J. Electromyogr. Kinesiol. 17(1), 57–73 (2007)CrossRef Brown, J.M.M., Wickham, J.B., McAndrew, D.J., Huang, X.F.: Muscles within muscles: coordination of 19 muscle segments within three shoulder muscles during isometric motor tasks. J. Electromyogr. Kinesiol. 17(1), 57–73 (2007)CrossRef
7.
Zurück zum Zitat Contemori, S., Panichi, R., Biscarini, A.: Effects of scapular retraction/protraction position and scapular elevation on shoulder girdle muscle activity during glenohumeral abduction. Hum. Mov. Sci. 64, 55–66 (2019)CrossRef Contemori, S., Panichi, R., Biscarini, A.: Effects of scapular retraction/protraction position and scapular elevation on shoulder girdle muscle activity during glenohumeral abduction. Hum. Mov. Sci. 64, 55–66 (2019)CrossRef
10.
Zurück zum Zitat Di Giacomo, G., Pouliart, N., Costantini, A., De Vita, A.: Atlas of Functional Shoulder Anatomy. Springer, New York (2008)CrossRef Di Giacomo, G., Pouliart, N., Costantini, A., De Vita, A.: Atlas of Functional Shoulder Anatomy. Springer, New York (2008)CrossRef
12.
Zurück zum Zitat Gerber, C., Snedeker, J.G., Baumgartner, D., Viehöfer, A.F.: Supraspinatus tendon load during abduction is dependent on the size of the critical shoulder angle: a biomechanical analysis. J. Orthop. Res. 32(7), 952–957 (2014)CrossRef Gerber, C., Snedeker, J.G., Baumgartner, D., Viehöfer, A.F.: Supraspinatus tendon load during abduction is dependent on the size of the critical shoulder angle: a biomechanical analysis. J. Orthop. Res. 32(7), 952–957 (2014)CrossRef
15.
17.
Zurück zum Zitat Lloyd, J.E., Stavness, I., Fels, S.: ArtiSynth: a fast interactive biomechanical modeling toolkit combining multibody and finite element simulation. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. SMTEB, vol. 11, pp. 355–394. Springer, Heidelberg (2012). https://doi.org/10.1007/8415_2012_126CrossRef Lloyd, J.E., Stavness, I., Fels, S.: ArtiSynth: a fast interactive biomechanical modeling toolkit combining multibody and finite element simulation. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. SMTEB, vol. 11, pp. 355–394. Springer, Heidelberg (2012). https://​doi.​org/​10.​1007/​8415_​2012_​126CrossRef
18.
Zurück zum Zitat Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi, T., Okubo, K.: Bodyparts3D: 3D structure database for anatomical concepts. Nucleic Acids Res. 37, D782–D785 (2008)CrossRef Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi, T., Okubo, K.: Bodyparts3D: 3D structure database for anatomical concepts. Nucleic Acids Res. 37, D782–D785 (2008)CrossRef
19.
Zurück zum Zitat Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)CrossRef Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)CrossRef
20.
Zurück zum Zitat Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019) Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)
21.
Zurück zum Zitat Pean, F., Goksel, O.: Surface-based modeling of muscles: functional simulation of the shoulder. Med. Eng. Phys. 82, 1–12 (2020)CrossRef Pean, F., Goksel, O.: Surface-based modeling of muscles: functional simulation of the shoulder. Med. Eng. Phys. 82, 1–12 (2020)CrossRef
22.
Zurück zum Zitat Péan, F., Tanner, C., Gerber, C., Fürnstahl, P., Goksel, O.: A comprehensive and volumetric musculoskeletal model for the dynamic simulation of the shoulder function. Comput. Methods Biomech. Biomed. Eng. 22(7), 740–751 (2019)CrossRef Péan, F., Tanner, C., Gerber, C., Fürnstahl, P., Goksel, O.: A comprehensive and volumetric musculoskeletal model for the dynamic simulation of the shoulder function. Comput. Methods Biomech. Biomed. Eng. 22(7), 740–751 (2019)CrossRef
23.
Zurück zum Zitat Reed, D., Cathers, I., Halaki, M., Ginn, K.: Does supraspinatus initiate shoulder abduction? J. Electromyogr. Kinesiol. 23(2), 425–429 (2013)CrossRef Reed, D., Cathers, I., Halaki, M., Ginn, K.: Does supraspinatus initiate shoulder abduction? J. Electromyogr. Kinesiol. 23(2), 425–429 (2013)CrossRef
24.
Zurück zum Zitat Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P.: Trust region policy optimization. In: International Conference on Machine Learning (ICML), vol. PMLR 37, pp. 1889–1897 (2015) Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P.: Trust region policy optimization. In: International Conference on Machine Learning (ICML), vol. PMLR 37, pp. 1889–1897 (2015)
25.
Zurück zum Zitat Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: International Conference on Learning Representations (ICLR) (2016) Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: International Conference on Learning Representations (ICLR) (2016)
26.
Zurück zum Zitat Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv:1707.06347 (2017) Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv:​1707.​06347 (2017)
27.
Zurück zum Zitat Silver, D., Huang, A., Maddison, C.J., Guez, A., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRef Silver, D., Huang, A., Maddison, C.J., Guez, A., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRef
28.
Zurück zum Zitat Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2020) Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2020)
29.
Zurück zum Zitat Stavness, I., Lloyd, J.E., Fels, S.: Automatic prediction of tongue muscle activations using a finite element model. J. Biomech. 45(16), 2841–2848 (2012)CrossRef Stavness, I., Lloyd, J.E., Fels, S.: Automatic prediction of tongue muscle activations using a finite element model. J. Biomech. 45(16), 2841–2848 (2012)CrossRef
30.
Zurück zum Zitat Streit, J.J., et al.: Pectoralis major tendon transfer for the treatment of scapular winging due to long thoracic nerve palsy. J. Shoulder Elbow Surg. 21(5), 685–690 (2012)CrossRef Streit, J.J., et al.: Pectoralis major tendon transfer for the treatment of scapular winging due to long thoracic nerve palsy. J. Shoulder Elbow Surg. 21(5), 685–690 (2012)CrossRef
31.
Zurück zum Zitat Tsurumine, Y., Cui, Y., Uchibe, E., Matsubara, T.: Deep reinforcement learning with smooth policy update: application to robotic cloth manipulation. Robot. Autonom. Syst. 112, 72–83 (2019)CrossRef Tsurumine, Y., Cui, Y., Uchibe, E., Matsubara, T.: Deep reinforcement learning with smooth policy update: application to robotic cloth manipulation. Robot. Autonom. Syst. 112, 72–83 (2019)CrossRef
32.
Zurück zum Zitat Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: AAAI Conference on Artificial Intelligence, pp. 2094–2100 (2016) Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: AAAI Conference on Artificial Intelligence, pp. 2094–2100 (2016)
33.
Zurück zum Zitat Wickham, J., Pizzari, T., Stansfeld, K., Burnside, A., Watson, L.: Quantifying ‘normal’ shoulder muscle activity during abduction. J. Electromyogr. Kinesiol. 20(2), 212–222 (2010)CrossRef Wickham, J., Pizzari, T., Stansfeld, K., Burnside, A., Watson, L.: Quantifying ‘normal’ shoulder muscle activity during abduction. J. Electromyogr. Kinesiol. 20(2), 212–222 (2010)CrossRef
Metadaten
Titel
Reinforcement Learning of Musculoskeletal Control from Functional Simulations
verfasst von
Emanuel Joos
Fabien Péan
Orcun Goksel
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59716-0_14

Premium Partner