Skip to main content
Erschienen in: Strength of Materials 6/2020

10.03.2021

Reinforcing Inclusion Effect on the Stress Concentration within the Spherical Shell Having an Elliptical Opening Under Uniform Internal Pressure

verfasst von: V. S. Hudramovich, E. L. Hart, O. A. Marchenko

Erschienen in: Strength of Materials | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The authors present the results of computer simulation of the stress-strain state of a thin-walled spherical shell with an elliptical opening and the surrounding reinforcing inclusion of another material. The effect of geometric and mechanical parameters of inclusions on the stress distribution around the opening and deformation of the shell under uniform internal pressure are investigated. The issue of stress concentration in modern leading fields of technology and industry, namely, in mechanical engineering, rocket, and space, is quite topical since it is associated with the reliability and durability of the designed structures or their elements. Stress concentrators can occur due to imperfections in the materials’ structure (cavities, cracks, foreign inclusions, etc.) or technological and structural necessity (openings, cutouts, leaks). Shell structures are used as load-carrying structures in many fields of engineering. They combine high strength with low weight, which contributes to their reliability and safety during operation. In most cases, shells in real structures have simple geometric surfaces (shells of rotation). Complex structures are usually a combination of such shells. It is important to investigate the effect of local stress concentrators as openings (considering inclusions) on the stress-strain state of shells. The methods of stress concentration reduction should be outlined. The authors performed a finite element analysis of the effect of reinforcements modeled by inclusions made of the different materials as compared with the shell material having an opening on the parameters of its stress-strain state. Such investigations are crucial for the design and optimization of the structures in many engineering fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. V. Karmishin, A. I. Likhoded, N. G. Panichkin, and S. N. Sukhinin, Foundations of Strength Execution of Rocket-Space Structures [in Russian], Mashinostroenie, Moscow (2007). A. V. Karmishin, A. I. Likhoded, N. G. Panichkin, and S. N. Sukhinin, Foundations of Strength Execution of Rocket-Space Structures [in Russian], Mashinostroenie, Moscow (2007).
2.
Zurück zum Zitat A. J. McEvily, Metal Failures: Mechanisms, Analysis, Prevention, John Wiley & Sons, New York (2002). A. J. McEvily, Metal Failures: Mechanisms, Analysis, Prevention, John Wiley & Sons, New York (2002).
3.
Zurück zum Zitat P. Fortescue, G. Swinerd, and J. Stark (Eds.), Spacecraft Systems Engineering, John Wiley & Sons, New York (2011). P. Fortescue, G. Swinerd, and J. Stark (Eds.), Spacecraft Systems Engineering, John Wiley & Sons, New York (2011).
4.
Zurück zum Zitat J. Liu, Z. Yue, X. Geng, et al., Long-Life Design and Test Technology of Typical Aircraft Structures, Springer, Beijing; National Defense Industry Press, Singapore (2018). J. Liu, Z. Yue, X. Geng, et al., Long-Life Design and Test Technology of Typical Aircraft Structures, Springer, Beijing; National Defense Industry Press, Singapore (2018).
5.
Zurück zum Zitat N. A. Makhutov, Yu. G. Matvienko, and A. N. Romanov, Problems of Strength, Manmade Safety, and Structural Material Science [in Russian], URSS, Moscow (2018). N. A. Makhutov, Yu. G. Matvienko, and A. N. Romanov, Problems of Strength, Manmade Safety, and Structural Material Science [in Russian], URSS, Moscow (2018).
6.
Zurück zum Zitat V. V. Panasyuk (Ed.), Mechanics of Fracture and Strength of Materials [in Ukrainian], in 14 volumes, Akademperiodika, Kyiv (2004–2012). V. V. Panasyuk (Ed.), Mechanics of Fracture and Strength of Materials [in Ukrainian], in 14 volumes, Akademperiodika, Kyiv (2004–2012).
7.
Zurück zum Zitat V. T. Troshchenko (Ed.), Strength of Materials and Structures [in Russian], Akademperiodika, Kiev (2005). V. T. Troshchenko (Ed.), Strength of Materials and Structures [in Russian], Akademperiodika, Kiev (2005).
8.
Zurück zum Zitat Z. Ò. Nazarchuk (Ed.), Technical Diagnostics of Materials and Structures [in Ukrainian], in 8 volumes, Prostir-M, Lviv (2016–2018). Z. Ò. Nazarchuk (Ed.), Technical Diagnostics of Materials and Structures [in Ukrainian], in 8 volumes, Prostir-M, Lviv (2016–2018).
9.
Zurück zum Zitat V. S. Hudramovich, V. P. Skalskyi, and Yu. M. Selivanov, Holographic and Acoustic-Emission Diagnostics of Nonuniform Structures and Materials [in Ukrainian], Prostir-M, Lviv (2017). V. S. Hudramovich, V. P. Skalskyi, and Yu. M. Selivanov, Holographic and Acoustic-Emission Diagnostics of Nonuniform Structures and Materials [in Ukrainian], Prostir-M, Lviv (2017).
10.
Zurück zum Zitat R. R. Mavlyutov, Stress Concentration in the Elements in Aircraft Structures [in Russian], Nauka, Moscow (1981). R. R. Mavlyutov, Stress Concentration in the Elements in Aircraft Structures [in Russian], Nauka, Moscow (1981).
11.
Zurück zum Zitat V. I. Pogorelov, Structural Mechanics of Thin-Walled Structures [in Russian], BKhV-Petersburg, Saint-Petersburg (2007). V. I. Pogorelov, Structural Mechanics of Thin-Walled Structures [in Russian], BKhV-Petersburg, Saint-Petersburg (2007).
12.
Zurück zum Zitat A. N. Guz, I. S. Chernyshenko, V. N. Chehov, et al., Methods of Shell Calculations [in Russian], in 5 volumes, Vol. 1: Theory of Shells Weakened by Openings, Naukova Dumka, Kiev (1980). A. N. Guz, I. S. Chernyshenko, V. N. Chehov, et al., Methods of Shell Calculations [in Russian], in 5 volumes, Vol. 1: Theory of Shells Weakened by Openings, Naukova Dumka, Kiev (1980).
13.
Zurück zum Zitat B. I. Mossakovskyi, V. S. Hudramovich, E. M. Makeev, Contact Interactions between the Elements of Shell Structures [in Russian], Naukova Dumka, Kiev (1988). B. I. Mossakovskyi, V. S. Hudramovich, E. M. Makeev, Contact Interactions between the Elements of Shell Structures [in Russian], Naukova Dumka, Kiev (1988).
14.
Zurück zum Zitat Ya. S. Pidstrygach, Selected Works [in Ukrainian], Naukova Dumka, Kyiv (1995). Ya. S. Pidstrygach, Selected Works [in Ukrainian], Naukova Dumka, Kyiv (1995).
15.
Zurück zum Zitat G. N. Savin, Distribution of Stresses around Holes [in Russian], Naukova Dumka, Kiev (1968). G. N. Savin, Distribution of Stresses around Holes [in Russian], Naukova Dumka, Kiev (1968).
16.
Zurück zum Zitat E. L. Hart and V. S. Hudramovich, “Projective-iterative schemes for the implementation of variational-grid methods in the problems of elastoplastic deformation of inhomogeneous thin-walled structures,” Matem. Met. Fiz.-Mekh. Pol., 61, No. 3, 24–39 (2018). E. L. Hart and V. S. Hudramovich, “Projective-iterative schemes for the implementation of variational-grid methods in the problems of elastoplastic deformation of inhomogeneous thin-walled structures,” Matem. Met. Fiz.-Mekh. Pol., 61, No. 3, 24–39 (2018).
17.
Zurück zum Zitat E. L. Hart and S. V. Panchenko, “Numerical analysis of the stress-strain state of the plate with a rectangular opening reinforced with triangular settings,” in: Problems of Calculation Mechanics and Strength of Structures [in Ukrainian], Issue 24, Dnipro (2015), pp. 35–47. E. L. Hart and S. V. Panchenko, “Numerical analysis of the stress-strain state of the plate with a rectangular opening reinforced with triangular settings,” in: Problems of Calculation Mechanics and Strength of Structures [in Ukrainian], Issue 24, Dnipro (2015), pp. 35–47.
18.
Zurück zum Zitat E. L. Hart and B. I. Teryokhin, “Selection of rational parameters of reinforcing elements in computer simulation of the behavior of a cylindrical shell with two rectangular holes,” in: Problems of Computational Mechanics and Strength of Structures [in Ukrainian], Issue 30, Dnipro (2019), pp. 19–32. E. L. Hart and B. I. Teryokhin, “Selection of rational parameters of reinforcing elements in computer simulation of the behavior of a cylindrical shell with two rectangular holes,” in: Problems of Computational Mechanics and Strength of Structures [in Ukrainian], Issue 30, Dnipro (2019), pp. 19–32.
19.
Zurück zum Zitat V. S. Hudramovich, E. L. Hart, and O. A. Marchenko, “Influence of the shape of reinforcements on the stress-strain state of a cylindrical shell with elongated rectangular holes,” in: Problems of Computational Mechanics and Strength of Structures [in Ukrainian], Issue 27, Dnipro (2017), pp. 52–64. V. S. Hudramovich, E. L. Hart, and O. A. Marchenko, “Influence of the shape of reinforcements on the stress-strain state of a cylindrical shell with elongated rectangular holes,” in: Problems of Computational Mechanics and Strength of Structures [in Ukrainian], Issue 27, Dnipro (2017), pp. 52–64.
20.
Zurück zum Zitat V. S. Hudramovich, E. L. Hart, and S. V. Panchenko, “The stress-strain state of plates with reinforced rectangular holes of different orientations relative to the direction of tension,” Tekhn. Mekh., No. 4, 82–89 (2018). V. S. Hudramovich, E. L. Hart, and S. V. Panchenko, “The stress-strain state of plates with reinforced rectangular holes of different orientations relative to the direction of tension,” Tekhn. Mekh., No. 4, 82–89 (2018).
21.
Zurück zum Zitat O. C. Zienkiewicz and R. L. Teylor, The Finite Element Method for Solid and Structural Mechanics, Elsevier, New York (2005). O. C. Zienkiewicz and R. L. Teylor, The Finite Element Method for Solid and Structural Mechanics, Elsevier, New York (2005).
22.
Zurück zum Zitat A. A. Samarskii and E. S. Nikolaev, Methods of Solutions of Mesh Equations [in Russian], Nauka, Moscow (1978). A. A. Samarskii and E. S. Nikolaev, Methods of Solutions of Mesh Equations [in Russian], Nauka, Moscow (1978).
23.
Zurück zum Zitat F. L. Chernousko and N. V. Banichuk, Variational Tasks of Mechanics and Management [in Russian], Nauka, Moscow (1973). F. L. Chernousko and N. V. Banichuk, Variational Tasks of Mechanics and Management [in Russian], Nauka, Moscow (1973).
24.
Zurück zum Zitat E. L. Hart and V. S. Hudramovich, “Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions,” J. Math. Sci., 203, No. 1, 55–69 (2014).CrossRef E. L. Hart and V. S. Hudramovich, “Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions,” J. Math. Sci., 203, No. 1, 55–69 (2014).CrossRef
25.
Zurück zum Zitat E. L. Hart and V. S. Hudramovich, “Projection-iterative modification of the method of local variations for problems with a quadratic functional,” J. Appl. Math. Mech., 80, No. 2, 156–163 (2016).CrossRef E. L. Hart and V. S. Hudramovich, “Projection-iterative modification of the method of local variations for problems with a quadratic functional,” J. Appl. Math. Mech., 80, No. 2, 156–163 (2016).CrossRef
26.
Zurück zum Zitat E. L. Hart and V. S. Hudramovich, “Application of the projection-iterative scheme of the method of local variations to solving stability problems for thin-walled shell structures under localized actions,” Strength Mater., 50, No. 6, 852–858 (2018).CrossRef E. L. Hart and V. S. Hudramovich, “Application of the projection-iterative scheme of the method of local variations to solving stability problems for thin-walled shell structures under localized actions,” Strength Mater., 50, No. 6, 852–858 (2018).CrossRef
27.
Zurück zum Zitat V. S. Hudramovich, E. L. Hart, D. V. Klimenko, and S. A. Ryabokon’, “Mutual influence of openings on strength of shell-type structures under plastic deformation,” Strength Mater., 45, No. 1, 1–9 (2013).CrossRef V. S. Hudramovich, E. L. Hart, D. V. Klimenko, and S. A. Ryabokon’, “Mutual influence of openings on strength of shell-type structures under plastic deformation,” Strength Mater., 45, No. 1, 1–9 (2013).CrossRef
28.
Zurück zum Zitat A. S. Avdonin, Applied Methods for Calculating Shells and Thin-Walled Structures [in Russian], Mashinostroenie, Moscow (1969). A. S. Avdonin, Applied Methods for Calculating Shells and Thin-Walled Structures [in Russian], Mashinostroenie, Moscow (1969).
29.
Zurück zum Zitat I. D. Evzerov and V. S. Zdorenko, “Convergence of planar finite elements of a thin shell,” Stroit. Mekh. Rasch. Sooruzh., No. 1, 35–40 (1984). I. D. Evzerov and V. S. Zdorenko, “Convergence of planar finite elements of a thin shell,” Stroit. Mekh. Rasch. Sooruzh., No. 1, 35–40 (1984).
30.
Zurück zum Zitat A. A. Lebedev (Ed.), B. I. Kovalchuk, F. F. Giginyak, and V. P. Lamashevskii, Mechanical Properties of Structural Materials under Complex Stress State. Handbook [in Russian], “In Jure” Publishing House, Kiev (2003). A. A. Lebedev (Ed.), B. I. Kovalchuk, F. F. Giginyak, and V. P. Lamashevskii, Mechanical Properties of Structural Materials under Complex Stress State. Handbook [in Russian], “In Jure” Publishing House, Kiev (2003).
31.
Zurück zum Zitat H. Liebowitz (Ed.), Fracture [Russian translation], in 7 volumes (8 books), Mir, Metallurgiya, Moscow (1973–1977), Vol. 2: G. C Sih and H. Liebowitz, Mathematical Fundamentals of Fracture, Chp. 2: Mathematical Theory of Brittle Fracture, Mir, Moscow (1975), pp. 83–203. H. Liebowitz (Ed.), Fracture [Russian translation], in 7 volumes (8 books), Mir, Metallurgiya, Moscow (1973–1977), Vol. 2: G. C Sih and H. Liebowitz, Mathematical Fundamentals of Fracture, Chp. 2: Mathematical Theory of Brittle Fracture, Mir, Moscow (1975), pp. 83–203.
Metadaten
Titel
Reinforcing Inclusion Effect on the Stress Concentration within the Spherical Shell Having an Elliptical Opening Under Uniform Internal Pressure
verfasst von
V. S. Hudramovich
E. L. Hart
O. A. Marchenko
Publikationsdatum
10.03.2021
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 6/2020
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00237-7

Weitere Artikel der Ausgabe 6/2020

Strength of Materials 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.