Skip to main content

2022 | OriginalPaper | Buchkapitel

6. Related Work on CSMs and Solutions

verfasst von : Yixiang Fang, Kai Wang, Xuemin Lin, Wenjie Zhang

Erschienen in: Cohesive Subgraph Search Over Large Heterogeneous Information Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the literature, the topic of CSS on graphs has received tremendous research attention and it has been extensively studied in the past several decades, and most of existing research works focus on conventional homogeneous networks. However, the models and solutions of these works are highly related to the these of CSS over large HINs. In this chapter, we thoroughly review the five groups of works on CSS on homogeneous networks, which are core-, truss-, clique-, connectivity-, and density-based CSMs and solutions. In addition, we also review the works on HIN clustering and compare it with the earlier version of this book.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
10.
Zurück zum Zitat Bahmani, B., Kumar, R., & Vassilvitskii, S. (2012). Densest subgraph in streaming and mapreduce. PVLDB, 5(5), 454–465. Bahmani, B., Kumar, R., & Vassilvitskii, S. (2012). Densest subgraph in streaming and mapreduce. PVLDB, 5(5), 454–465.
12.
Zurück zum Zitat Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6), 066102.MathSciNetCrossRef Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6), 066102.MathSciNetCrossRef
14.
Zurück zum Zitat Batagelj, V., & Zaversnik, M. (2003). An o (m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049. Batagelj, V., & Zaversnik, M. (2003). An o (m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049.
16.
Zurück zum Zitat Beckett, S. J. (2016). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3(1), 140536.MathSciNetCrossRef Beckett, S. J. (2016). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3(1), 140536.MathSciNetCrossRef
17.
Zurück zum Zitat Berlowitz, D., Cohen, S., & Kimelfeld, B. (2015). Efficient enumeration of maximal k-plexes. In SIGMOD (pp. 431–444). ACM. Berlowitz, D., Cohen, S., & Kimelfeld, B. (2015). Efficient enumeration of maximal k-plexes. In SIGMOD (pp. 431–444). ACM.
18.
Zurück zum Zitat Bi, F., Chang, L., Lin, X., & Zhang, W. (2018). An optimal and progressive approach to online search of top-k influential communities. PVLDB, 11(9), 1056–1068. Bi, F., Chang, L., Lin, X., & Zhang, W. (2018). An optimal and progressive approach to online search of top-k influential communities. PVLDB, 11(9), 1056–1068.
22.
Zurück zum Zitat Cazals, F., & Karande, C. (2008). A note on the problem of reporting maximal cliques. Theoretical Computer Science, 407(1–3), 564–568.MathSciNetMATHCrossRef Cazals, F., & Karande, C. (2008). A note on the problem of reporting maximal cliques. Theoretical Computer Science, 407(1–3), 564–568.MathSciNetMATHCrossRef
25.
Zurück zum Zitat Chang, L., Lin, X., Qin, L., Yu, J. X., & Zhang, W. (2015). Index-based optimal algorithms for computing Steiner components with maximum connectivity. In SIGMOD (pp. 459–474). ACM. Chang, L., Lin, X., Qin, L., Yu, J. X., & Zhang, W. (2015). Index-based optimal algorithms for computing Steiner components with maximum connectivity. In SIGMOD (pp. 459–474). ACM.
26.
Zurück zum Zitat Chang, L., Yu, J. X., Qin, L., Lin, X., Liu, C., & Liang, W. (2013). Efficiently computing k-edge connected components via graph decomposition. In SIGMOD (pp. 205–216). ACM. Chang, L., Yu, J. X., Qin, L., Lin, X., Liu, C., & Liang, W. (2013). Efficiently computing k-edge connected components via graph decomposition. In SIGMOD (pp. 205–216). ACM.
27.
Zurück zum Zitat Charikar, M. (2000). Greedy approximation algorithms for finding dense components in a graph. In International Workshop on Approximation Algorithms for Combinatorial Optimization (pp. 84–95). Springer. Charikar, M. (2000). Greedy approximation algorithms for finding dense components in a graph. In International Workshop on Approximation Algorithms for Combinatorial Optimization (pp. 84–95). Springer.
31.
Zurück zum Zitat Chen, L., Gao, Y., Zhang, Y., Jensen, C. S., & Zheng, B. (2019). Efficient and incremental clustering algorithms on star-schema heterogeneous graphs. In ICDE (pp. 256–267). IEEE. Chen, L., Gao, Y., Zhang, Y., Jensen, C. S., & Zheng, B. (2019). Efficient and incremental clustering algorithms on star-schema heterogeneous graphs. In ICDE (pp. 256–267). IEEE.
32.
Zurück zum Zitat Chen, L., Liu, C., Zhou, R., Li, J., Yang, X., & Wang, B. (2018). Maximum co-located community search in large scale social networks. PVLDB, 11(10), 1233–1246. Chen, L., Liu, C., Zhou, R., Li, J., Yang, X., & Wang, B. (2018). Maximum co-located community search in large scale social networks. PVLDB, 11(10), 1233–1246.
33.
Zurück zum Zitat Chen, L., Liu, C., Zhou, R., Xu, J., & Li, J. (2021). Efficient exact algorithms for maximum balanced biclique search in bipartite graphs (pp. 248–260). Chen, L., Liu, C., Zhou, R., Xu, J., & Li, J. (2021). Efficient exact algorithms for maximum balanced biclique search in bipartite graphs (pp. 248–260).
34.
Zurück zum Zitat Chen, P.-L., Chou, C.-K., & Chen, M.-S. (2014). Distributed algorithms for k-truss decomposition. In Big data (pp. 471–480). IEEE. Chen, P.-L., Chou, C.-K., & Chen, M.-S. (2014). Distributed algorithms for k-truss decomposition. In Big data (pp. 471–480). IEEE.
35.
Zurück zum Zitat Chen, S., Wei, R., Popova, D., & Thomo, A. (2016). Efficient computation of importance based communities in web-scale networks using a single machine. In CIKM (pp. 1553–1562). Chen, S., Wei, R., Popova, D., & Thomo, A. (2016). Efficient computation of importance based communities in web-scale networks using a single machine. In CIKM (pp. 1553–1562).
37.
Zurück zum Zitat Chen, Y., Fang, Y., Cheng, R., Li, Y., Chen, X., & Zhang, J. (2018). Exploring communities in large profiled graphs. IEEE Transactions on Knowledge and Data Engineering, 31(8), 1624–1629.CrossRef Chen, Y., Fang, Y., Cheng, R., Li, Y., Chen, X., & Zhang, J. (2018). Exploring communities in large profiled graphs. IEEE Transactions on Knowledge and Data Engineering, 31(8), 1624–1629.CrossRef
38.
Zurück zum Zitat Cheng, J., Ke, Y., Chu, S., & Özsu, M. T. (2011). Efficient core decomposition in massive networks. In ICDE (pp. 51–62). IEEE. Cheng, J., Ke, Y., Chu, S., & Özsu, M. T. (2011). Efficient core decomposition in massive networks. In ICDE (pp. 51–62). IEEE.
39.
Zurück zum Zitat Cheng, J., Ke, Y., Fu, A. W.-C., Yu, J. X., & Zhu, L. (2011). Finding maximal cliques in massive networks. TODS, 36(4), 1–34.CrossRef Cheng, J., Ke, Y., Fu, A. W.-C., Yu, J. X., & Zhu, L. (2011). Finding maximal cliques in massive networks. TODS, 36(4), 1–34.CrossRef
41.
Zurück zum Zitat Cohen, J. (2008). Trusses: Cohesive subgraphs for social network analysis. National security Agency Technical Report, 16, 3–1. Cohen, J. (2008). Trusses: Cohesive subgraphs for social network analysis. National security Agency Technical Report, 16, 3–1.
42.
Zurück zum Zitat Danisch, M., Balalau, O., & Sozio, M. (2018). Listing k-cliques in sparse real-world graphs. In WWW (pp. 589–598). Danisch, M., Balalau, O., & Sozio, M. (2018). Listing k-cliques in sparse real-world graphs. In WWW (pp. 589–598).
43.
Zurück zum Zitat Danisch, M., Chan, T.-H. H., & Sozio, M. (2017). Large scale density-friendly graph decomposition via convex programming. In WWW (pp. 233–242). Danisch, M., Chan, T.-H. H., & Sozio, M. (2017). Large scale density-friendly graph decomposition via convex programming. In WWW (pp. 233–242).
48.
Zurück zum Zitat Ding, D., Li, H., Huang, Z., & Mamoulis, N. (2017). Efficient fault-tolerant group recommendation using alpha-beta-core. In CIKM (pp. 2047–2050). Ding, D., Li, H., Huang, Z., & Mamoulis, N. (2017). Efficient fault-tolerant group recommendation using alpha-beta-core. In CIKM (pp. 2047–2050).
50.
Zurück zum Zitat Dormann, C. F., & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5(1), 90–98.CrossRef Dormann, C. F., & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5(1), 90–98.CrossRef
54.
Zurück zum Zitat Fang, Y., Cheng, R., Chen, Y., Luo, S., & Hu, J. (2017). Effective and efficient attributed community search. The VLDB Journal, 26(6), 803–828.CrossRef Fang, Y., Cheng, R., Chen, Y., Luo, S., & Hu, J. (2017). Effective and efficient attributed community search. The VLDB Journal, 26(6), 803–828.CrossRef
55.
Zurück zum Zitat Fang, Y., Cheng, R., Li, X., Luo, S., & Hu, J. (2017). Effective community search over large spatial graphs. PVLDB, 10(6), 709–720. Fang, Y., Cheng, R., Li, X., Luo, S., & Hu, J. (2017). Effective community search over large spatial graphs. PVLDB, 10(6), 709–720.
56.
Zurück zum Zitat Fang, Y., Cheng, R., Luo, S., & Hu, J. (2016). Effective community search for large attributed graphs. PVLDB, 9(12), 1233–1244. Fang, Y., Cheng, R., Luo, S., & Hu, J. (2016). Effective community search for large attributed graphs. PVLDB, 9(12), 1233–1244.
57.
Zurück zum Zitat Fang, Y., Cheng, R., Luo, S., Hu, J., & Huang, K. (2017). C-explorer: Browsing communities in large graphs. PVLDB, 10(12), 1885–1888. Fang, Y., Cheng, R., Luo, S., Hu, J., & Huang, K. (2017). C-explorer: Browsing communities in large graphs. PVLDB, 10(12), 1885–1888.
58.
Zurück zum Zitat Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W., Cheng, R., & Lin, X. (2020). A survey of community search over big graphs. The VLDB Journal, 29(1), 353–392.CrossRef Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W., Cheng, R., & Lin, X. (2020). A survey of community search over big graphs. The VLDB Journal, 29(1), 353–392.CrossRef
59.
Zurück zum Zitat Fang, Y., Wang, K., Lin, X., & Zhang, W. (2021). Cohesive subgraph search over big heterogeneous information networks: Applications, challenges, and solutions. ACM SIGMOD (pp. 2829–2838). Fang, Y., Wang, K., Lin, X., & Zhang, W. (2021). Cohesive subgraph search over big heterogeneous information networks: Applications, challenges, and solutions. ACM SIGMOD (pp. 2829–2838).
60.
Zurück zum Zitat Fang, Y., Wang, Z., Cheng, R., Li, X., Luo, S., Hu, J., & Chen, X. (2019). On spatial-aware community search. TKDE, 31(4), 783–798. Fang, Y., Wang, Z., Cheng, R., Li, X., Luo, S., Hu, J., & Chen, X. (2019). On spatial-aware community search. TKDE, 31(4), 783–798.
61.
Zurück zum Zitat Fang, Y., Wang, Z., Cheng, R., Wang, H., & Hu, J. (2019). Effective and efficient community search over large directed graphs. TKDE, 31(11), 2093–2107. Fang, Y., Wang, Z., Cheng, R., Wang, H., & Hu, J. (2019). Effective and efficient community search over large directed graphs. TKDE, 31(11), 2093–2107.
63.
Zurück zum Zitat Fang, Y., Yu, K., Cheng, R., Lakshmanan, L. V., & Lin, X. (2019). Efficient algorithms for densest subgraph discovery. PVLDB, 12(11), 1719–1732. Fang, Y., Yu, K., Cheng, R., Lakshmanan, L. V., & Lin, X. (2019). Efficient algorithms for densest subgraph discovery. PVLDB, 12(11), 1719–1732.
67.
Zurück zum Zitat Gallo, G., Grigoriadis, M. D., & Tarjan, R. E. (1989). A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1), 30–55.MathSciNetMATHCrossRef Gallo, G., Grigoriadis, M. D., & Tarjan, R. E. (1989). A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1), 30–55.MathSciNetMATHCrossRef
69.
Zurück zum Zitat Giatsidis, C., Thilikos, D. M., & Vazirgiannis, M. (2013). D-cores: Measuring collaboration of directed graphs based on degeneracy. Knowledge and Information Systems, 35(2), 311–343.CrossRef Giatsidis, C., Thilikos, D. M., & Vazirgiannis, M. (2013). D-cores: Measuring collaboration of directed graphs based on degeneracy. Knowledge and Information Systems, 35(2), 311–343.CrossRef
70.
Zurück zum Zitat Gibbons, A. (1985). Algorithmic graph theory. Cambridge University Press.MATH Gibbons, A. (1985). Algorithmic graph theory. Cambridge University Press.MATH
73.
Zurück zum Zitat Goldberg, A. V. (1984). Finding a maximum density subgraph. University of California Berkeley, CA. Goldberg, A. V. (1984). Finding a maximum density subgraph. University of California Berkeley, CA.
75.
Zurück zum Zitat Guimerà, R., Sales-Pardo, M., & Amaral, L. A. N. (2007). Module identification in bipartite and directed networks. Physical Review E, 76(3), 036102.CrossRef Guimerà, R., Sales-Pardo, M., & Amaral, L. A. N. (2007). Module identification in bipartite and directed networks. Physical Review E, 76(3), 036102.CrossRef
82.
Zurück zum Zitat Hu, J., Wu, X., Cheng, R., Luo, S., & Fang, Y. (2016). Querying minimal Steiner maximum-connected subgraphs in large graphs. In CIKM (pp. 1241–1250). Hu, J., Wu, X., Cheng, R., Luo, S., & Fang, Y. (2016). Querying minimal Steiner maximum-connected subgraphs in large graphs. In CIKM (pp. 1241–1250).
83.
Zurück zum Zitat Hu, J., Wu, X., Cheng, R., Luo, S., & Fang, Y. (2017). On minimal Steiner maximum-connected subgraph queries. TKDE, 29(11), 2455–2469. Hu, J., Wu, X., Cheng, R., Luo, S., & Fang, Y. (2017). On minimal Steiner maximum-connected subgraph queries. TKDE, 29(11), 2455–2469.
84.
Zurück zum Zitat Huang, X., Cheng, H., Qin, L., Tian, W., & Yu, J. X. (2014). Querying k-truss community in large and dynamic graphs. In SIGMOD (pp. 1311–1322). ACM. Huang, X., Cheng, H., Qin, L., Tian, W., & Yu, J. X. (2014). Querying k-truss community in large and dynamic graphs. In SIGMOD (pp. 1311–1322). ACM.
85.
Zurück zum Zitat Huang, X., & Lakshmanan, L. V. (2017). Attribute-driven community search. PVLDB, 10(9), 949–960. Huang, X., & Lakshmanan, L. V. (2017). Attribute-driven community search. PVLDB, 10(9), 949–960.
86.
Zurück zum Zitat Huang, X., Lakshmanan, L. V., & Xu, J. (2017). Community search over big graphs: Models, algorithms, and opportunities. In ICDE (pp. 1451–1454). IEEE. Huang, X., Lakshmanan, L. V., & Xu, J. (2017). Community search over big graphs: Models, algorithms, and opportunities. In ICDE (pp. 1451–1454). IEEE.
87.
Zurück zum Zitat Huang, X., Lakshmanan, L. V., Yu, J. X., & Cheng, H. (2015). Approximate closest community search in networks. PVLDB, 9(4). Huang, X., Lakshmanan, L. V., Yu, J. X., & Cheng, H. (2015). Approximate closest community search in networks. PVLDB, 9(4).
95.
Zurück zum Zitat Khaouid, W., Barsky, M., Srinivasan, V., & Thomo, A. (2015). K-core decomposition of large networks on a single pc. PVLDB, 9(1), 13–23. Khaouid, W., Barsky, M., Srinivasan, V., & Thomo, A. (2015). K-core decomposition of large networks on a single pc. PVLDB, 9(1), 13–23.
99.
Zurück zum Zitat Larremore, D. B., Clauset, A., & Jacobs, A. Z. (2014). Efficiently inferring community structure in bipartite networks. Physical Review E, 90(1), 012805.CrossRef Larremore, D. B., Clauset, A., & Jacobs, A. Z. (2014). Efficiently inferring community structure in bipartite networks. Physical Review E, 90(1), 012805.CrossRef
104.
Zurück zum Zitat Li, R.-H., Gao, S., Qin, L., Wang, G., Yang, W., & Yu, J. X. (2020). Ordering heuristics for k-clique listing. PVLDB, 13(12), 2536–2548. Li, R.-H., Gao, S., Qin, L., Wang, G., Yang, W., & Yu, J. X. (2020). Ordering heuristics for k-clique listing. PVLDB, 13(12), 2536–2548.
105.
Zurück zum Zitat Li, R.-H., Qin, L., Ye, F., Yu, J. X., Xiao, X., Xiao, N., & Zheng, Z. (2018). Skyline community search in multi-valued networks. In SIGMOD (pp. 457–472). Li, R.-H., Qin, L., Ye, F., Yu, J. X., Xiao, X., Xiao, N., & Zheng, Z. (2018). Skyline community search in multi-valued networks. In SIGMOD (pp. 457–472).
106.
Zurück zum Zitat Li, R.-H., Qin, L., Yu, J. X., & Mao, R. (2015). Influential community search in large networks. PVLDB, 8(5), 509–520. Li, R.-H., Qin, L., Yu, J. X., & Mao, R. (2015). Influential community search in large networks. PVLDB, 8(5), 509–520.
108.
Zurück zum Zitat Li, R.-H., Yu, J. X., & Mao, R. (2013). Efficient core maintenance in large dynamic graphs. TKDE, 26(10), 2453–2465. Li, R.-H., Yu, J. X., & Mao, R. (2013). Efficient core maintenance in large dynamic graphs. TKDE, 26(10), 2453–2465.
116.
Zurück zum Zitat Liu, Q., Zhao, M., Huang, X., Xu, J., & Gao, Y. (2020). Truss-based community search over large directed graphs. In SIGMOD (pp. 2183–2197). Liu, Q., Zhao, M., Huang, X., Xu, J., & Gao, Y. (2020). Truss-based community search over large directed graphs. In SIGMOD (pp. 2183–2197).
117.
Zurück zum Zitat Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., and Gao, Y. (2020). Vac: Vertex-centric attributed community search. In ICDE (pp. 937–948). IEEE. Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., and Gao, Y. (2020). Vac: Vertex-centric attributed community search. In ICDE (pp. 937–948). IEEE.
119.
Zurück zum Zitat Liu, X., & Murata, T. (2010). Community detection in large-scale bipartite networks. Transactions of the Japanese Society for Artificial Intelligence, 25(1), 16–24.CrossRef Liu, X., & Murata, T. (2010). Community detection in large-scale bipartite networks. Transactions of the Japanese Society for Artificial Intelligence, 25(1), 16–24.CrossRef
120.
Zurück zum Zitat Luo, L., Fang, Y., Cao, X., Zhang, X., & Zhang, W. (2021). Detecting communities from heterogeneous graphs: A context path-based graph neural network model. In CIKM (pp. 1170–1180). Luo, L., Fang, Y., Cao, X., Zhang, X., & Zhang, W. (2021). Detecting communities from heterogeneous graphs: A context path-based graph neural network model. In CIKM (pp. 1170–1180).
124.
Zurück zum Zitat Ma, C., Fang, Y., Cheng, R., Lakshmanan, L. V., Zhang, W., & Lin, X. (2020). Efficient algorithms for densest subgraph discovery on large directed graphs. In SIGMOD (pp. 1051–1066). ACM. Ma, C., Fang, Y., Cheng, R., Lakshmanan, L. V., Zhang, W., & Lin, X. (2020). Efficient algorithms for densest subgraph discovery on large directed graphs. In SIGMOD (pp. 1051–1066). ACM.
125.
Zurück zum Zitat Ma, C., Fang, Y., Cheng, R., Lakshmanan, L. V., Zhang, W., & Lin, X. (2021). Efficient directed densest subgraph discovery. ACM SIGMOD Record, 50(1), 33–40.CrossRef Ma, C., Fang, Y., Cheng, R., Lakshmanan, L. V., Zhang, W., & Lin, X. (2021). Efficient directed densest subgraph discovery. ACM SIGMOD Record, 50(1), 33–40.CrossRef
126.
Zurück zum Zitat Ma, C., Fang, Y., Cheng, R., Lakshmanan, L. V., Zhang, W., & Lin, X. (2021). On directed densest subgraph discovery. ACM Transactions on Database Systems (TODS), 46(4), 1–45.MathSciNetCrossRef Ma, C., Fang, Y., Cheng, R., Lakshmanan, L. V., Zhang, W., & Lin, X. (2021). On directed densest subgraph discovery. ACM Transactions on Database Systems (TODS), 46(4), 1–45.MathSciNetCrossRef
131.
Zurück zum Zitat Mitzenmacher, M., Pachocki, J., Peng, R., Tsourakakis, C., & Xu, S. C. (2015). Scalable large near-clique detection in large-scale networks via sampling. In SIGKDD (pp. 815–824). ACM. Mitzenmacher, M., Pachocki, J., Peng, R., Tsourakakis, C., & Xu, S. C. (2015). Scalable large near-clique detection in large-scale networks via sampling. In SIGKDD (pp. 815–824). ACM.
132.
Zurück zum Zitat Montresor, A., De Pellegrini, F., & Miorandi, D. (2012). Distributed k-core decomposition. IEEE TPDS, 24(2), 288–300. Montresor, A., De Pellegrini, F., & Miorandi, D. (2012). Distributed k-core decomposition. IEEE TPDS, 24(2), 288–300.
140.
Zurück zum Zitat Qin, L., Li, R.-H., Chang, L., & Zhang, C. (2015). Locally densest subgraph discovery. In KDD (pp. 965–974). ACM. Qin, L., Li, R.-H., Chang, L., & Zhang, C. (2015). Locally densest subgraph discovery. In KDD (pp. 965–974). ACM.
141.
Zurück zum Zitat Saito, K., Yamada, T., & Kazama, K. (2008). Extracting communities from complex networks by the k-dense method. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 91(11), 3304–3311.CrossRef Saito, K., Yamada, T., & Kazama, K. (2008). Extracting communities from complex networks by the k-dense method. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 91(11), 3304–3311.CrossRef
142.
Zurück zum Zitat Sarıyüce, A. E., Gedik, B., Jacques-Silva, G., Wu, K.-L., & Çatalyürek, Ü. V. (2016). Incremental k-core decomposition: Algorithms and evaluation. VLDBJ, 25(3), 425–447.CrossRef Sarıyüce, A. E., Gedik, B., Jacques-Silva, G., Wu, K.-L., & Çatalyürek, Ü. V. (2016). Incremental k-core decomposition: Algorithms and evaluation. VLDBJ, 25(3), 425–447.CrossRef
144.
Zurück zum Zitat Schmidt, M. C., Samatova, N. F., Thomas, K., & Park, B.-H. (2009). A scalable, parallel algorithm for maximal clique enumeration. Journal of Parallel and Distributed Computing, 69(4), 417–428.CrossRef Schmidt, M. C., Samatova, N. F., Thomas, K., & Park, B.-H. (2009). A scalable, parallel algorithm for maximal clique enumeration. Journal of Parallel and Distributed Computing, 69(4), 417–428.CrossRef
145.
147.
Zurück zum Zitat Shi, C., Li, Y., Zhang, J., Sun, Y., & Philip, S. Y. (2016). A survey of heterogeneous information network analysis. TKDE, 29(1), 17–37. Shi, C., Li, Y., Zhang, J., Sun, Y., & Philip, S. Y. (2016). A survey of heterogeneous information network analysis. TKDE, 29(1), 17–37.
148.
Zurück zum Zitat Shi, C., Wang, R., Li, Y., Yu, P. S., & Wu, B. (2014). Ranking-based clustering on general heterogeneous information networks by network projection. In CIKM (pp. 699–708). ACM. Shi, C., Wang, R., Li, Y., Yu, P. S., & Wu, B. (2014). Ranking-based clustering on general heterogeneous information networks by network projection. In CIKM (pp. 699–708). ACM.
152.
Zurück zum Zitat Sun, Y., Aggarwal, C. C., & Han, J. (2012). Relation strength-aware clustering of heterogeneous information networks with incomplete attributes. PVLDB, 5(5), 394–405. Sun, Y., Aggarwal, C. C., & Han, J. (2012). Relation strength-aware clustering of heterogeneous information networks with incomplete attributes. PVLDB, 5(5), 394–405.
154.
Zurück zum Zitat Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., & Wu, T. (2009). Rankclus: Integrating clustering with ranking for heterogeneous information network analysis. In EDBT (pp. 565–576). ACM. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., & Wu, T. (2009). Rankclus: Integrating clustering with ranking for heterogeneous information network analysis. In EDBT (pp. 565–576). ACM.
155.
Zurück zum Zitat Sun, Y., Norick, B., Han, J., Yan, X., Yu, P. S., & Yu, X. (2012). Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. In SIGKDD (pp. 1348–1356). ACM. Sun, Y., Norick, B., Han, J., Yan, X., Yu, P. S., & Yu, X. (2012). Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. In SIGKDD (pp. 1348–1356). ACM.
157.
Zurück zum Zitat Sun, Y., Yu, Y., & Han, J. (2009). Ranking-based clustering of heterogeneous information networks with star network schema. In SIGKDD (pp. 797–806). ACM. Sun, Y., Yu, Y., & Han, J. (2009). Ranking-based clustering of heterogeneous information networks with star network schema. In SIGKDD (pp. 797–806). ACM.
160.
Zurück zum Zitat Tatti, N., & Gionis, A. (2015). Density-friendly graph decomposition. In WWW (pp. 1089–1099). Tatti, N., & Gionis, A. (2015). Density-friendly graph decomposition. In WWW (pp. 1089–1099).
161.
Zurück zum Zitat Tomita, E., Tanaka, A., & Takahashi, H. (2006). The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science, 363(1), 28–42.MathSciNetMATHCrossRef Tomita, E., Tanaka, A., & Takahashi, H. (2006). The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science, 363(1), 28–42.MathSciNetMATHCrossRef
162.
Zurück zum Zitat Tsourakakis, C. (2015). The k-clique densest subgraph problem. In WWW (pp. 1122–1132). Tsourakakis, C. (2015). The k-clique densest subgraph problem. In WWW (pp. 1122–1132).
163.
Zurück zum Zitat Verma, A., & Butenko, S. (2013). Network clustering via clique relaxations: A community based. Graph Partitioning and Graph Clustering, 588, 129.MathSciNetMATHCrossRef Verma, A., & Butenko, S. (2013). Network clustering via clique relaxations: A community based. Graph Partitioning and Graph Clustering, 588, 129.MathSciNetMATHCrossRef
164.
Zurück zum Zitat Wang, J., & Cheng, J. (2012). Truss decomposition in massive networks. PVLDB, 5(9), 812–823. Wang, J., & Cheng, J. (2012). Truss decomposition in massive networks. PVLDB, 5(9), 812–823.
166.
Zurück zum Zitat Wang, K., Cao, X., Lin, X., Zhang, W., & Qin, L. (2018). Efficient computing of radius-bounded k-cores. In ICDE (pp. 233–244). IEEE. Wang, K., Cao, X., Lin, X., Zhang, W., & Qin, L. (2018). Efficient computing of radius-bounded k-cores. In ICDE (pp. 233–244). IEEE.
174.
Zurück zum Zitat Wang, Z., Yuan, Y., Zhou, X., & Qin, H. (2020). Effective and efficient community search in directed graphs across heterogeneous social networks. In Australasian Database Conference (ADC) (pp. 161–172). Wang, Z., Yuan, Y., Zhou, X., & Qin, H. (2020). Effective and efficient community search in directed graphs across heterogeneous social networks. In Australasian Database Conference (ADC) (pp. 161–172).
175.
Zurück zum Zitat Wen, D., Qin, L., Zhang, Y., Lin, X., & Yu, J. X. (2016). I/O efficient core graph decomposition at web scale. In ICDE (pp. 133–144). IEEE. Wen, D., Qin, L., Zhang, Y., Lin, X., & Yu, J. X. (2016). I/O efficient core graph decomposition at web scale. In ICDE (pp. 133–144). IEEE.
178.
Zurück zum Zitat Yan, X., Zhou, X. J., & Han, J. (2005). Mining closed relational graphs with connectivity constraints. In SIGKDD (pp. 324–333). ACM. Yan, X., Zhou, X. J., & Han, J. (2005). Mining closed relational graphs with connectivity constraints. In SIGKDD (pp. 324–333). ACM.
184.
Zurück zum Zitat Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (2007). Out-of-core coherent closed quasi-clique mining from large dense graph databases. TODS, 32(2), 13–es. Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (2007). Out-of-core coherent closed quasi-clique mining from large dense graph databases. TODS, 32(2), 13–es.
186.
Zurück zum Zitat Zhang, F., Zhang, Y., Qin, L., Zhang, W., & Lin, X. (2017). When engagement meets similarity: Efficient (k, r)-core computation on social networks. PVLDB, 10(10), 998–1009. Zhang, F., Zhang, Y., Qin, L., Zhang, W., & Lin, X. (2017). When engagement meets similarity: Efficient (k, r)-core computation on social networks. PVLDB, 10(10), 998–1009.
188.
Zurück zum Zitat Zhang, Y., & Parthasarathy, S. (2012). Extracting analyzing and visualizing triangle k-core motifs within networks. In ICDE (pp. 1049–1060). IEEE. Zhang, Y., & Parthasarathy, S. (2012). Extracting analyzing and visualizing triangle k-core motifs within networks. In ICDE (pp. 1049–1060). IEEE.
192.
Zurück zum Zitat Zhang, Y., & Yu, J. X. (2019). Unboundedness and efficiency of truss maintenance in evolving graphs. In SIGMOD (pp. 1024–1041). ACM. Zhang, Y., & Yu, J. X. (2019). Unboundedness and efficiency of truss maintenance in evolving graphs. In SIGMOD (pp. 1024–1041). ACM.
193.
Zurück zum Zitat Zhang, Y., Yu, J. X., Zhang, Y., & Qin, L. (2017). A fast order-based approach for core maintenance. In ICDE (pp. 337–348). IEEE. Zhang, Y., Yu, J. X., Zhang, Y., & Qin, L. (2017). A fast order-based approach for core maintenance. In ICDE (pp. 337–348). IEEE.
194.
Zurück zum Zitat Zhang, Z., Huang, X., Xu, J., Choi, B., & Shang, Z. (2019). Keyword-centric community search. In ICDE (pp. 422–433). IEEE. Zhang, Z., Huang, X., Xu, J., Choi, B., & Shang, Z. (2019). Keyword-centric community search. In ICDE (pp. 422–433). IEEE.
196.
Zurück zum Zitat Zhou, R., Liu, C., Yu, J. X., Liang, W., Chen, B., & Li, J. (2012). Finding maximal k-edge-connected subgraphs from a large graph. In EDBT (pp. 480–491). Zhou, R., Liu, C., Yu, J. X., Liang, W., Chen, B., & Li, J. (2012). Finding maximal k-edge-connected subgraphs from a large graph. In EDBT (pp. 480–491).
197.
Zurück zum Zitat Zhou, R., Liu, C., Yu, J. X., Liang, W., & Zhang, Y. (2014). Efficient truss maintenance in evolving networks. arXiv preprint arXiv:1402.2807. Zhou, R., Liu, C., Yu, J. X., Liang, W., & Zhang, Y. (2014). Efficient truss maintenance in evolving networks. arXiv preprint arXiv:1402.2807.
199.
Zurück zum Zitat Zhou, Y., & Liu, L. (2013). Social influence based clustering of heterogeneous information networks. In KDD (pp. 338–346). ACM. Zhou, Y., & Liu, L. (2013). Social influence based clustering of heterogeneous information networks. In KDD (pp. 338–346). ACM.
201.
Zurück zum Zitat Zhou, Z., & Amini, A. A. (2019). Analysis of spectral clustering algorithms for community detection: The general bipartite setting. Journal of Machine Learning Research, 20, 47–1.MathSciNetMATH Zhou, Z., & Amini, A. A. (2019). Analysis of spectral clustering algorithms for community detection: The general bipartite setting. Journal of Machine Learning Research, 20, 47–1.MathSciNetMATH
202.
Zurück zum Zitat Zhou, Z., & Amini, A. A. (2020). Optimal bipartite network clustering. Journal of Machine Learning Research, 21(40), 1–68.MathSciNetMATH Zhou, Z., & Amini, A. A. (2020). Optimal bipartite network clustering. Journal of Machine Learning Research, 21(40), 1–68.MathSciNetMATH
205.
Zurück zum Zitat Zhu, Y., He, J., Ye, J., Qin, L., Huang, X., & Yu, J. X. (2020). When structure meets keywords: Cohesive attributed community search. In CIKM (pp. 1913–1922). Zhu, Y., He, J., Ye, J., Qin, L., Huang, X., & Yu, J. X. (2020). When structure meets keywords: Cohesive attributed community search. In CIKM (pp. 1913–1922).
Metadaten
Titel
Related Work on CSMs and Solutions
verfasst von
Yixiang Fang
Kai Wang
Xuemin Lin
Wenjie Zhang
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-97568-5_6