Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2019

10.07.2019 | Research Article - Petroleum Engineering

Relative Permeability Model Taking the Roughness and Actual Fluid Distributions into Consideration for Water Flooding Reservoirs

verfasst von: Zhongwei Wu, Chuanzhi Cui, Yongmao Hao, Yeheng Sun, Guangzhong Lv, Du Sun, Zifan Zhang

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reservoir relative permeability is greatly important to the development of water flooding reservoirs. Currently, most researches on relative permeability have not taken the roughness of pore surface and actual fluid distributions into consideration. In this paper, a novel relative permeability model for water flooding reservoirs taking the roughness and actual fluid distributions into consideration has been proposed by using the fractal theory. The novel model contains some key parameters, all of which have clear physical meanings, such as the immobile liquid film thickness, relative roughness, tortuosity fractal dimension \( D_{\text{T}} \) and pore fractal dimension \( D_{\text{f}} \). The predicted results of the novel fractal relative permeability model are consistent with published experimental data. That verifies the correctness of the novel fractal relative permeability model. Finally, sensitive factor analysis of novel relative permeability model is conducted. We can find that the wetting fluid relative permeability decreases as the immobile wetting fluid film thickness or relative roughness increases. When the tortuosity fractal dimension or pore fractal dimension increases, the wetting relative permeability and non-wetting relative permeability will both decrease. An increase in maximum pore diameter or the decreasing of minimum pore diameter results in the reduction in fractal dimension of flow channel and discontinuous saturation. The increasing of maximum pore diameter results in an increase in the relative permeability of wetting fluid. The minimum pore diameter has tiny effect on the relative permeability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amit, R.: Petroleum reservoir exploitation: switching from primary to secondary recovery. Oper. Res. 34(4), 534–549 (1986)MATHCrossRef Amit, R.: Petroleum reservoir exploitation: switching from primary to secondary recovery. Oper. Res. 34(4), 534–549 (1986)MATHCrossRef
2.
Zurück zum Zitat Lake, L.W.: Enhanced oil recovery. Prentice Hall, Englewood Cliffs, NJ (1989) Lake, L.W.: Enhanced oil recovery. Prentice Hall, Englewood Cliffs, NJ (1989)
3.
Zurück zum Zitat Adeniyi, O.D.; Nwalor, J.U.; Ako, C.T.: A review on water flooding problems in nigeria’s crude oil production. J. Dispers. Sci. Technol. 29(3), 362–365 (2008)CrossRef Adeniyi, O.D.; Nwalor, J.U.; Ako, C.T.: A review on water flooding problems in nigeria’s crude oil production. J. Dispers. Sci. Technol. 29(3), 362–365 (2008)CrossRef
4.
Zurück zum Zitat Cui, C.; Xu, J.; Wang, D.; Yang, Y.; Liu, Z.; Huang, Y.: A new water flooding characteristic curve at ultra-high water cut stage. Acta Pet. Sin. 36, 1267–1271 (2015) Cui, C.; Xu, J.; Wang, D.; Yang, Y.; Liu, Z.; Huang, Y.: A new water flooding characteristic curve at ultra-high water cut stage. Acta Pet. Sin. 36, 1267–1271 (2015)
5.
Zurück zum Zitat Zahid, A.; Sandersen, S.B.; Stenby, E.H.; Solms, N.V.; Shapiro, A.: Advanced water flooding in chalk reservoirs: understanding of underlying mechanisms. Colloids Surf. A 389(1–3), 281–290 (2011)CrossRef Zahid, A.; Sandersen, S.B.; Stenby, E.H.; Solms, N.V.; Shapiro, A.: Advanced water flooding in chalk reservoirs: understanding of underlying mechanisms. Colloids Surf. A 389(1–3), 281–290 (2011)CrossRef
6.
Zurück zum Zitat You, Qing; Wen, Quanyi; Fang, Jichao; et al.: Experimental study on lateral flooding for enhanced oil recovery in bottom-water reservoir with high water cut. J. Pet. Sci. Eng. 174, 747–756 (2019)CrossRef You, Qing; Wen, Quanyi; Fang, Jichao; et al.: Experimental study on lateral flooding for enhanced oil recovery in bottom-water reservoir with high water cut. J. Pet. Sci. Eng. 174, 747–756 (2019)CrossRef
7.
Zurück zum Zitat Xu, J.; Guo, C.; Jiang, R.; Wei, M.: Study on relative permeability characteristics affected by displacement pressure gradient: experimental study and numerical simulation. Fuel 163, 314–323 (2016)CrossRef Xu, J.; Guo, C.; Jiang, R.; Wei, M.: Study on relative permeability characteristics affected by displacement pressure gradient: experimental study and numerical simulation. Fuel 163, 314–323 (2016)CrossRef
8.
Zurück zum Zitat Abaci, S.; Edwards, J.S.; Whittaker, B.N.: Relative permeability measurements for two phase flow in unconsolidated sands. Mine Water Environ. 11(2), 11–26 (1992)CrossRef Abaci, S.; Edwards, J.S.; Whittaker, B.N.: Relative permeability measurements for two phase flow in unconsolidated sands. Mine Water Environ. 11(2), 11–26 (1992)CrossRef
9.
Zurück zum Zitat Johnson, E.F.; Bossler, D.P.; Naumann, V.O.: Calculation of relative permeability from displacement experiments. Pet Trans AIME 216, 370–372 (1959) Johnson, E.F.; Bossler, D.P.; Naumann, V.O.: Calculation of relative permeability from displacement experiments. Pet Trans AIME 216, 370–372 (1959)
10.
Zurück zum Zitat Brooks, R.H.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. Proc. Am. Soc. Civ. Eng. 92(2), 61–88 (1966) Brooks, R.H.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. Proc. Am. Soc. Civ. Eng. 92(2), 61–88 (1966)
11.
Zurück zum Zitat Parker, J.C.; Lenhard, R.J.; Kuppusamy, T.: Correction to “a parametric model for constitutive properties governing multiphase flow in porous media” by j. C. Parker, r. J. Lenhard, and t. Kuppusamy. Water Resour. Res. 23(9), 618–624 (1987)CrossRef Parker, J.C.; Lenhard, R.J.; Kuppusamy, T.: Correction to “a parametric model for constitutive properties governing multiphase flow in porous media” by j. C. Parker, r. J. Lenhard, and t. Kuppusamy. Water Resour. Res. 23(9), 618–624 (1987)CrossRef
12.
Zurück zum Zitat Corey, A.T.: The interrelation between gas and oil relative permeability. Prod. Mon. 19(1), 38–41 (1954) Corey, A.T.: The interrelation between gas and oil relative permeability. Prod. Mon. 19(1), 38–41 (1954)
13.
Zurück zum Zitat Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)CrossRef Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)CrossRef
14.
Zurück zum Zitat Lenhard, R.J.; Oostrom, M.: A parametric model for predicting relative permeability–saturation–capillary pressure relationships of oil–water systems in porous media with mixed wettability. Transp. Porous Media 31(1), 109–131 (1998)CrossRef Lenhard, R.J.; Oostrom, M.: A parametric model for predicting relative permeability–saturation–capillary pressure relationships of oil–water systems in porous media with mixed wettability. Transp. Porous Media 31(1), 109–131 (1998)CrossRef
15.
Zurück zum Zitat Jerauld, G.R.: General three-phase relative permeability model for prudhoe bay. SPE Reserv. Eng. 12(4), 255–263 (1997)CrossRef Jerauld, G.R.: General three-phase relative permeability model for prudhoe bay. SPE Reserv. Eng. 12(4), 255–263 (1997)CrossRef
16.
Zurück zum Zitat Zhang, J.; Song, K.: Eigen curve of relative permeability and its application. Acta Pet. Sin. 28(4), 104–107 (2007) Zhang, J.; Song, K.: Eigen curve of relative permeability and its application. Acta Pet. Sin. 28(4), 104–107 (2007)
17.
Zurück zum Zitat Cui, C.; Li, K.; Yang, Y.; Huang, Y.; Cao, Q.: Identification and quantitative description of large pore path in unconsolidated sandstone reservoir during the ultra-high water-cut stage. J. Pet. Sci. Eng. 122(122), 10–17 (2014) Cui, C.; Li, K.; Yang, Y.; Huang, Y.; Cao, Q.: Identification and quantitative description of large pore path in unconsolidated sandstone reservoir during the ultra-high water-cut stage. J. Pet. Sci. Eng. 122(122), 10–17 (2014)
18.
Zurück zum Zitat Krohn, C.E.; Thompson, A.H.: Fractal sandstone pores: automated measurements using scanning-electron-microscope images. Phys. Rev. B 33(9), 6366–6374 (1986)CrossRef Krohn, C.E.; Thompson, A.H.: Fractal sandstone pores: automated measurements using scanning-electron-microscope images. Phys. Rev. B 33(9), 6366–6374 (1986)CrossRef
19.
Zurück zum Zitat Li, K.; Zhao, H.: Fractal prediction model of spontaneous imbibition rate. Transp. Porous Media 91(2), 363–376 (2012)CrossRef Li, K.; Zhao, H.: Fractal prediction model of spontaneous imbibition rate. Transp. Porous Media 91(2), 363–376 (2012)CrossRef
20.
Zurück zum Zitat Yu, B.; Lee, L.J.; Cao, H.: A fractal in-plane permeability model for fabrics. Polym. Compos. 23(2), 201–221 (2002)CrossRef Yu, B.; Lee, L.J.; Cao, H.: A fractal in-plane permeability model for fabrics. Polym. Compos. 23(2), 201–221 (2002)CrossRef
21.
Zurück zum Zitat Yu, B.: Analysis of flow in fractal porous media. Appl. Mech. Rev. 61(5), 1239–1249 (2008)CrossRef Yu, B.: Analysis of flow in fractal porous media. Appl. Mech. Rev. 61(5), 1239–1249 (2008)CrossRef
22.
Zurück zum Zitat Yang, S.; Yu, B.; Zou, M.; Liang, M.: A fractal analysis of laminar flow resistance in roughened microchannels. Int. J. Heat Mass Transf. 77(4), 208–217 (2014)CrossRef Yang, S.; Yu, B.; Zou, M.; Liang, M.: A fractal analysis of laminar flow resistance in roughened microchannels. Int. J. Heat Mass Transf. 77(4), 208–217 (2014)CrossRef
23.
Zurück zum Zitat Yu, B.; Li, J.; Li, Z.; Zou, M.: Permeabilities of unsaturated fractal porous media. Int. J. Multiph. Flow 29(10), 1625–1642 (2003)MATHCrossRef Yu, B.; Li, J.; Li, Z.; Zou, M.: Permeabilities of unsaturated fractal porous media. Int. J. Multiph. Flow 29(10), 1625–1642 (2003)MATHCrossRef
24.
Zurück zum Zitat Liu, Y.; Cai, J.; Yin, J.; Huang, Z.: Document clustering based on semantic smoothing approach. Advances in intelligent Web Mastering, pp. 217–222. Springer, Berlin (2007)CrossRef Liu, Y.; Cai, J.; Yin, J.; Huang, Z.: Document clustering based on semantic smoothing approach. Advances in intelligent Web Mastering, pp. 217–222. Springer, Berlin (2007)CrossRef
25.
Zurück zum Zitat Lei, G.; Dong, P.C.; Mo, S.Y.; Gai, S.H.; Wu, Z.S.: A novel fractal model for two-phase relative permeability in porous media. Fractals 23(02), 35–45 (2015)CrossRef Lei, G.; Dong, P.C.; Mo, S.Y.; Gai, S.H.; Wu, Z.S.: A novel fractal model for two-phase relative permeability in porous media. Fractals 23(02), 35–45 (2015)CrossRef
26.
Zurück zum Zitat Xu, P.; Qiu, S.; Yu, B.; Jiang, Z.: Prediction of relative permeability in unsaturated porous media with a fractal approach. Int. J. Heat Mass Transf. 64(3), 829–837 (2013)CrossRef Xu, P.; Qiu, S.; Yu, B.; Jiang, Z.: Prediction of relative permeability in unsaturated porous media with a fractal approach. Int. J. Heat Mass Transf. 64(3), 829–837 (2013)CrossRef
27.
Zurück zum Zitat Yang, S.; Liang, M.; Yu, B.; Zou, M.: Permeability model for fractal porous media with rough surfaces. Microfluid. Nanofluid. 18(5–6), 1085–1093 (2015)CrossRef Yang, S.; Liang, M.; Yu, B.; Zou, M.: Permeability model for fractal porous media with rough surfaces. Microfluid. Nanofluid. 18(5–6), 1085–1093 (2015)CrossRef
28.
Zurück zum Zitat Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)MATH Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)MATH
29.
Zurück zum Zitat Li, A.F.: Reservoir Physics. China University of Petroleum Press, Shangdong (2011) Li, A.F.: Reservoir Physics. China University of Petroleum Press, Shangdong (2011)
30.
Zurück zum Zitat Jianhua, L.; Boming, Y.; Mingqing, Z.: A model for fractal dimension of rough surfaces. Chin. Phys. Lett. 26(11), 133–135 (2009) Jianhua, L.; Boming, Y.; Mingqing, Z.: A model for fractal dimension of rough surfaces. Chin. Phys. Lett. 26(11), 133–135 (2009)
31.
Zurück zum Zitat Yu, B.; Cheng, P.: A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 45(14), 2983–2993 (2002)MATHCrossRef Yu, B.; Cheng, P.: A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 45(14), 2983–2993 (2002)MATHCrossRef
32.
Zurück zum Zitat Boming, Yu; Li, Jianhua: Some fractal characters of porous media. Fractals 9(03), 365–372 (2001)CrossRef Boming, Yu; Li, Jianhua: Some fractal characters of porous media. Fractals 9(03), 365–372 (2001)CrossRef
33.
Zurück zum Zitat Bonnet, E.; Bour, O.; Odling, N.E.; Davy, P.; Main, I.; Cowie, P.; et al.: Scaling of fracture systems in geological media. Rev. Geophys. 39(3), 347–383 (2001)CrossRef Bonnet, E.; Bour, O.; Odling, N.E.; Davy, P.; Main, I.; Cowie, P.; et al.: Scaling of fracture systems in geological media. Rev. Geophys. 39(3), 347–383 (2001)CrossRef
34.
Zurück zum Zitat Xu, P.; Yu, B.: Developing a new form of permeability and kozeny–carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31(1), 74–81 (2008)CrossRef Xu, P.; Yu, B.: Developing a new form of permeability and kozeny–carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31(1), 74–81 (2008)CrossRef
35.
Zurück zum Zitat Jianhua, L.; Boming, Y.; Mingqing, Z.: A model for fractal dimension of rough surfaces. Chin. Phys. Lett. 26(11), 133–135 (2009) Jianhua, L.; Boming, Y.; Mingqing, Z.: A model for fractal dimension of rough surfaces. Chin. Phys. Lett. 26(11), 133–135 (2009)
36.
Zurück zum Zitat Denn, M.M.: Process Fluid Mechanics, p. 35. Prentice Hall, Upper Saddle River (1980) Denn, M.M.: Process Fluid Mechanics, p. 35. Prentice Hall, Upper Saddle River (1980)
37.
Zurück zum Zitat Boming, Yu; Li, Jianhua: Fractal dimensions for unsaturated porous media. Fractals 12(01), 17–22 (2004)MATHCrossRef Boming, Yu; Li, Jianhua: Fractal dimensions for unsaturated porous media. Fractals 12(01), 17–22 (2004)MATHCrossRef
38.
Zurück zum Zitat Jerauld, G.R.; Salter, S.J.: The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling. Transp. Porous Media 5(2), 103–151 (1990)CrossRef Jerauld, G.R.; Salter, S.J.: The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling. Transp. Porous Media 5(2), 103–151 (1990)CrossRef
39.
Zurück zum Zitat Sandberg, C.R.; Gournay, L.S.; Sippel, R.F.: The effect of fluid-flow rate and viscosity on laboratory determinations of oil-water relative permeabilities. Pet. Trans. AIME 213, 36–43 (1958) Sandberg, C.R.; Gournay, L.S.; Sippel, R.F.: The effect of fluid-flow rate and viscosity on laboratory determinations of oil-water relative permeabilities. Pet. Trans. AIME 213, 36–43 (1958)
Metadaten
Titel
Relative Permeability Model Taking the Roughness and Actual Fluid Distributions into Consideration for Water Flooding Reservoirs
verfasst von
Zhongwei Wu
Chuanzhi Cui
Yongmao Hao
Yeheng Sun
Guangzhong Lv
Du Sun
Zifan Zhang
Publikationsdatum
10.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2019
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04030-2

Weitere Artikel der Ausgabe 12/2019

Arabian Journal for Science and Engineering 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.