Skip to main content
Erschienen in: Neural Computing and Applications 6/2014

01.11.2014 | Original Article

Relevance vector machines approach for long-term flow prediction

verfasst von: Umut Okkan, Zafer Ali Serbes, Pijush Samui

Erschienen in: Neural Computing and Applications | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the past years, some artificial intelligence techniques like artificial neural networks have been widely used in the hydrological modeling studies. In spite of their some advantages, these techniques have some drawbacks including possibility of getting trapped in local minima, overtraining and subjectivity in the determining of model parameters. In the last few years, a new alternative kernel-based technique called a support vector machines (SVM) has been found to be popular in modeling studies due to its advantages over popular artificial intelligence techniques. In addition, the relevance vector machines (RVM) approach has been proposed to recast the main ideas behind SVM in a Bayesian context. The main purpose of this study is to examine the applicability and capability of the RVM on long-term flow prediction and to compare its performance with feed forward neural networks, SVM, and multiple linear regression models. Meteorological data (rainfall and temperature) and lagged data of rainfall were used in modeling application. Some mostly used statistical performance evaluation measures were considered to evaluate models. According to evaluations, RVM method provided an improvement in model performance as compared to other employed methods. In addition, it is an alternative way to popular soft computing methods for long-term flow prediction providing at least comparable efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cheng CT, Lin JY, Sun YG, Chau KW (2005) Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models. Lect Notes Comp Sci 3612:1152–1161CrossRef Cheng CT, Lin JY, Sun YG, Chau KW (2005) Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models. Lect Notes Comp Sci 3612:1152–1161CrossRef
2.
Zurück zum Zitat Lin JY, Cheng CT, Chau KW (2006) Using support vector machines for long-term discharge prediction. Hydro Sci J 51(4):599–612CrossRef Lin JY, Cheng CT, Chau KW (2006) Using support vector machines for long-term discharge prediction. Hydro Sci J 51(4):599–612CrossRef
3.
Zurück zum Zitat Box GEP, Jenkins GM (1970) Time series analysis forecasting and control. Holden-Day, San FranciscoMATH Box GEP, Jenkins GM (1970) Time series analysis forecasting and control. Holden-Day, San FranciscoMATH
4.
Zurück zum Zitat ASCE Task Committee (2000) Artificial neural networks in hydrology—I: preliminary concepts. J Hydrol Eng ASCE 5(2):115–123CrossRef ASCE Task Committee (2000) Artificial neural networks in hydrology—I: preliminary concepts. J Hydrol Eng ASCE 5(2):115–123CrossRef
5.
Zurück zum Zitat ASCE Task Committee (2000) Artificial neural networks in hydrology—II: hydrological applications. J Hydrol Eng ASCE 5(2):124–137CrossRef ASCE Task Committee (2000) Artificial neural networks in hydrology—II: hydrological applications. J Hydrol Eng ASCE 5(2):124–137CrossRef
6.
Zurück zum Zitat Campolo M, Andreussi P, Soldati A (1999) River flood forecasting with a neural network model. Wat Resour Res 35:1191–1197CrossRef Campolo M, Andreussi P, Soldati A (1999) River flood forecasting with a neural network model. Wat Resour Res 35:1191–1197CrossRef
7.
Zurück zum Zitat Cigizoglu HK (2005) Generalized regression neural networks in monthly flow forecasting. Civ Eng Environ Sys 22(2):71–84CrossRef Cigizoglu HK (2005) Generalized regression neural networks in monthly flow forecasting. Civ Eng Environ Sys 22(2):71–84CrossRef
8.
Zurück zum Zitat Razavi S, Araghinejad S (2009) Reservoir inflow modeling using temporal neural networks with forgetting factor approach. Wat Res Manage 23:39–55CrossRef Razavi S, Araghinejad S (2009) Reservoir inflow modeling using temporal neural networks with forgetting factor approach. Wat Res Manage 23:39–55CrossRef
9.
10.
Zurück zum Zitat Dutta S, Bandopadhyay S, Ganguli R, Misra D (2010) Machine learning algorithms and their application to Ore Reserve estimation of sparse and imprecise data. J Int Learn Syst Appl 2(2):86–96 Dutta S, Bandopadhyay S, Ganguli R, Misra D (2010) Machine learning algorithms and their application to Ore Reserve estimation of sparse and imprecise data. J Int Learn Syst Appl 2(2):86–96
11.
Zurück zum Zitat Espinoza M, Suykens JAK, Belmans R, De Moor B (2007) Electric load forecasting—using kernel based modeling for nonlinear system identification. IEEE Cont Sys Mag Spec Iss App Sys Iden 27(5):43–57CrossRef Espinoza M, Suykens JAK, Belmans R, De Moor B (2007) Electric load forecasting—using kernel based modeling for nonlinear system identification. IEEE Cont Sys Mag Spec Iss App Sys Iden 27(5):43–57CrossRef
12.
Zurück zum Zitat Vapnik V (1998) Statistical learning theory. Wiley, TorontoMATH Vapnik V (1998) Statistical learning theory. Wiley, TorontoMATH
13.
Zurück zum Zitat Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Science, SingaporeCrossRefMATH Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Science, SingaporeCrossRefMATH
14.
Zurück zum Zitat Sivapragasm C, Liong SY, Pasha MFK (2001) Rainfall and runoff forecasting with SSA–SVM approach. J Hydroinform 3(3):141–152 Sivapragasm C, Liong SY, Pasha MFK (2001) Rainfall and runoff forecasting with SSA–SVM approach. J Hydroinform 3(3):141–152
15.
Zurück zum Zitat Dibike YB, Velickov S, Slomatine D, Abbott MB (2001) Model induction with support vector machines: introduction and applications. J Comp Civ Eng 15(3):208–216CrossRef Dibike YB, Velickov S, Slomatine D, Abbott MB (2001) Model induction with support vector machines: introduction and applications. J Comp Civ Eng 15(3):208–216CrossRef
16.
Zurück zum Zitat Okkan U, Serbes ZA (2012) Rainfall–runoff modeling using least squares support vector machines. Environ 23:549–564MathSciNet Okkan U, Serbes ZA (2012) Rainfall–runoff modeling using least squares support vector machines. Environ 23:549–564MathSciNet
17.
Zurück zum Zitat Liong SY, Sivapragasam C (2002) Flood stage forecasting with support vector machines. J Am Wat Res Assoc 38(1):173–186CrossRef Liong SY, Sivapragasam C (2002) Flood stage forecasting with support vector machines. J Am Wat Res Assoc 38(1):173–186CrossRef
18.
Zurück zum Zitat Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol Proc 24:917–923CrossRef Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol Proc 24:917–923CrossRef
19.
Zurück zum Zitat Misra D, Oommen T, Agarwal A, Mishra SK, Thompson AM (2009) Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosyst Eng 103(4):527–535CrossRef Misra D, Oommen T, Agarwal A, Mishra SK, Thompson AM (2009) Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosyst Eng 103(4):527–535CrossRef
20.
Zurück zum Zitat Moshou D, Pantazi X-E, Kateris D, Gravalos I (2014) Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier. Biosyst Eng 117:15–22CrossRef Moshou D, Pantazi X-E, Kateris D, Gravalos I (2014) Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier. Biosyst Eng 117:15–22CrossRef
21.
Zurück zum Zitat Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244MathSciNetMATH Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244MathSciNetMATH
22.
Zurück zum Zitat Samui P, Dixon B (2012) Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrol Proc 26(9):1361–1369CrossRef Samui P, Dixon B (2012) Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrol Proc 26(9):1361–1369CrossRef
23.
Zurück zum Zitat Ghosh S, Mujumdar PP (2008) Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv Wat Res 31:132–146CrossRef Ghosh S, Mujumdar PP (2008) Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv Wat Res 31:132–146CrossRef
24.
Zurück zum Zitat Caesarendra W, Widodo A, Yang BS (2010) Application of relevance vector machine and logistic regression for machine degradation assessment. Mech Syst Signal Proc 24(4):1161–1171CrossRef Caesarendra W, Widodo A, Yang BS (2010) Application of relevance vector machine and logistic regression for machine degradation assessment. Mech Syst Signal Proc 24(4):1161–1171CrossRef
25.
Zurück zum Zitat Wang X, Ye M, Duanmu CJ (2009) Classification of data from electronic nose using relevance vector machines. Sens Actuator B Chem 140(1):143–148CrossRef Wang X, Ye M, Duanmu CJ (2009) Classification of data from electronic nose using relevance vector machines. Sens Actuator B Chem 140(1):143–148CrossRef
26.
Zurück zum Zitat Fei H, Jinwu X, Min L, Jianhong Y (2013) Product quality modelling and prediction based on wavelet relevance vector machines. Chemo Intel Lab Syst 121:33–41CrossRef Fei H, Jinwu X, Min L, Jianhong Y (2013) Product quality modelling and prediction based on wavelet relevance vector machines. Chemo Intel Lab Syst 121:33–41CrossRef
27.
Zurück zum Zitat Zio E, Di Maio F (2012) Fatigue crack growth estimation by relevance vector machine. Exp Syst Appl 39(12):10681–10692CrossRef Zio E, Di Maio F (2012) Fatigue crack growth estimation by relevance vector machine. Exp Syst Appl 39(12):10681–10692CrossRef
28.
Zurück zum Zitat Samui P, Lansivaara T, Kim D (2011) Utilization relevance vector machine for slope reliability analysis. Appl Soft Comp 11(5):4036–4040CrossRef Samui P, Lansivaara T, Kim D (2011) Utilization relevance vector machine for slope reliability analysis. Appl Soft Comp 11(5):4036–4040CrossRef
29.
Zurück zum Zitat Wei L, Yang Y, Nishikawa RM, Wernick MN, Edwards A (2005) Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans Med Imag 24(10):1278–1285CrossRef Wei L, Yang Y, Nishikawa RM, Wernick MN, Edwards A (2005) Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans Med Imag 24(10):1278–1285CrossRef
30.
Zurück zum Zitat Chen S, Gunn SR, Harris CJ (2001) The relevance vector machine technique for channel equalization application. IEEE Trans Neural Netw 12(6):1529–1532CrossRef Chen S, Gunn SR, Harris CJ (2001) The relevance vector machine technique for channel equalization application. IEEE Trans Neural Netw 12(6):1529–1532CrossRef
31.
Zurück zum Zitat Samui P, Sitharam TG (2011) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Haz Earth Syst Sci 11:1–9CrossRef Samui P, Sitharam TG (2011) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Haz Earth Syst Sci 11:1–9CrossRef
32.
Zurück zum Zitat Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Phil Trans R Soc 209:415–446CrossRefMATH Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Phil Trans R Soc 209:415–446CrossRefMATH
33.
34.
Zurück zum Zitat Mackay DJC (1992) A practical bayesian framework for backpropagation networks. Neural Comp 4(3):448–472CrossRef Mackay DJC (1992) A practical bayesian framework for backpropagation networks. Neural Comp 4(3):448–472CrossRef
35.
Zurück zum Zitat Khalil AF, McKee M, Kemblowski M, Asefa T, Bastidas L (2006) Multiobjective analysis of chaotic dynamic systems with sparse learning machines. Adv Wat Res 29(1):72–88CrossRef Khalil AF, McKee M, Kemblowski M, Asefa T, Bastidas L (2006) Multiobjective analysis of chaotic dynamic systems with sparse learning machines. Adv Wat Res 29(1):72–88CrossRef
36.
Zurück zum Zitat Ham F, Kostanic I (2001) Principles of neurocomputing for science and engineering. McGraw-Hill, USA Ham F, Kostanic I (2001) Principles of neurocomputing for science and engineering. McGraw-Hill, USA
37.
Zurück zum Zitat Fistikoglu O, Okkan U (2011) Statistical downscaling of monthly precipitation using NCEP/NCAR reanalysis data for Tahtali River basin in Turkey. J Hydrol Eng ASCE 16(2):157–164CrossRef Fistikoglu O, Okkan U (2011) Statistical downscaling of monthly precipitation using NCEP/NCAR reanalysis data for Tahtali River basin in Turkey. J Hydrol Eng ASCE 16(2):157–164CrossRef
38.
Zurück zum Zitat Okkan U, Serbes ZA (2013) The combined use of wavelet transform and black box models in reservoir inflow modeling. J Hydrol Hydromech 61(2):112–119CrossRef Okkan U, Serbes ZA (2013) The combined use of wavelet transform and black box models in reservoir inflow modeling. J Hydrol Hydromech 61(2):112–119CrossRef
39.
Zurück zum Zitat Hagan MT, Menhaj MB (1994) Training feed forward techniques with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef Hagan MT, Menhaj MB (1994) Training feed forward techniques with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef
40.
Zurück zum Zitat Sudheer KP, Goasin AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Proc 16(6):1325–1330CrossRef Sudheer KP, Goasin AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Proc 16(6):1325–1330CrossRef
41.
Zurück zum Zitat Pai PF, Hong WC (2005) Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers Manage 46(17):2669–2688CrossRef Pai PF, Hong WC (2005) Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers Manage 46(17):2669–2688CrossRef
42.
Zurück zum Zitat Pai PF (2006) System reliability forecasting by support vector machines with genetic algorithms. Math Comp Model 43(3–4):262–274MathSciNetCrossRefMATH Pai PF (2006) System reliability forecasting by support vector machines with genetic algorithms. Math Comp Model 43(3–4):262–274MathSciNetCrossRefMATH
43.
Zurück zum Zitat Zhu Y, Li C, Zhang Y (2004) A practical parameters selection method for SVM. Lect Notes Comp Sci 3173:518–523CrossRef Zhu Y, Li C, Zhang Y (2004) A practical parameters selection method for SVM. Lect Notes Comp Sci 3173:518–523CrossRef
44.
Zurück zum Zitat Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Ame Soc Agr Bio Eng 50:885–900 Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Ame Soc Agr Bio Eng 50:885–900
46.
Zurück zum Zitat Nash JE, Sutcliffe IV (1970) River flow forecasting through conceptual models. J Hydrol 273:282–290CrossRef Nash JE, Sutcliffe IV (1970) River flow forecasting through conceptual models. J Hydrol 273:282–290CrossRef
47.
Zurück zum Zitat Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydro Eng ASCE 4(2):135–143CrossRef Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydro Eng ASCE 4(2):135–143CrossRef
48.
Zurück zum Zitat Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Annal Math Stat 18:50–60MathSciNetCrossRefMATH Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Annal Math Stat 18:50–60MathSciNetCrossRefMATH
49.
Zurück zum Zitat Okkan U (2011) Application of Levenberg–Marquardt optimization algorithm based multilayer neural networks for hydrological time series modeling. Int J Opt Cont Theo App 1(1):53–63 Okkan U (2011) Application of Levenberg–Marquardt optimization algorithm based multilayer neural networks for hydrological time series modeling. Int J Opt Cont Theo App 1(1):53–63
Metadaten
Titel
Relevance vector machines approach for long-term flow prediction
verfasst von
Umut Okkan
Zafer Ali Serbes
Pijush Samui
Publikationsdatum
01.11.2014
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 6/2014
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-014-1626-9

Weitere Artikel der Ausgabe 6/2014

Neural Computing and Applications 6/2014 Zur Ausgabe