Skip to main content

2021 | OriginalPaper | Buchkapitel

10. Removal of Heavy Metal Ions Using Magnetic Materials

verfasst von : Soh-Fong Lim, Agnes Yung-Weng Lee, S. N. David Chua, Bee-Huah Lim

Erschienen in: Integrated Natural Resources Management

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heavy metal ions contaminate water environment through point sources and nonpoint sources. Heavy metal ions are categorized as inorganic contaminants by both the WHO and the USEPA. The heavy metal ions are increasingly being introduced into the environment as pollutants and contaminants resulting from human activities.
Magnetic particles for water treatment applications have received considerable attention from researchers due to high separation efficiency. The magnetic particles behave similar to or even better than various commercial adsorbents. The magnetic particles also exhibit high selectivity for the target pollutants from the environment besides enabling ease of operation for reducing the particle separation steps from the flowing stream. A comprehensive and systematic understanding of synthesis and surface modifications of magnetic particles is significant to enhance their practicability in environmental technology. Although high removal performance and reactivity can be achieved by smaller particle size, the stability, toxicity, and recovery of the particles magnetically could be challenging.
In contrast, the active surface of magnetic particles may be forfeited, while surface modifications stabilize and reduce the toxicity of the particles. Reliable surface modifications are necessarily needed for the increment of the number of active sites to remove the heavy metals. For successful environmental applications of the magnetic particles, modification on the magnetic particles is principally crucial to balance the effects on their reactivity, capacity, and reusability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, New Jersey, USA Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, New Jersey, USA
2.
Zurück zum Zitat Harris IR, Willams AJ (2009) Magnetic materials. In: Rawlings RD (ed) Materials science and engineering – volume II. EOLSS, UK, pp 49–83 Harris IR, Willams AJ (2009) Magnetic materials. In: Rawlings RD (ed) Materials science and engineering – volume II. EOLSS, UK, pp 49–83
3.
Zurück zum Zitat Birčáková Z, Kollár P, Füzer J, Bureš R, Fáberová M (2020) Magnetic properties of selected Fe-based soft magnetic composites interpreted in terms of Jiles-Atherton model parameters. J Magn Magn Mater 502:166514CrossRef Birčáková Z, Kollár P, Füzer J, Bureš R, Fáberová M (2020) Magnetic properties of selected Fe-based soft magnetic composites interpreted in terms of Jiles-Atherton model parameters. J Magn Magn Mater 502:166514CrossRef
4.
Zurück zum Zitat Spellman FR (2014) Fundamentals of electricity, 3rd edn. CRC Press, Boca Raton, FL, USA Spellman FR (2014) Fundamentals of electricity, 3rd edn. CRC Press, Boca Raton, FL, USA
5.
Zurück zum Zitat Spellman FR, Bieber RM (2011) The science of renewable energy. CRC Press, Boca Raton, FL, USA Spellman FR, Bieber RM (2011) The science of renewable energy. CRC Press, Boca Raton, FL, USA
6.
Zurück zum Zitat Allia P, Barrera G, Tiberto P (2020) Hysteresis effects in magnetic nanoparticles: a simplified rate-equation approach. J Magn Magn Mater 496:165927CrossRef Allia P, Barrera G, Tiberto P (2020) Hysteresis effects in magnetic nanoparticles: a simplified rate-equation approach. J Magn Magn Mater 496:165927CrossRef
7.
Zurück zum Zitat Dobrzański LA, Drak M, Ziębowicz B (2006) Materials with specific magnetic properties. J Achiev Mater Manuf Eng 17(1–2):37–40 Dobrzański LA, Drak M, Ziębowicz B (2006) Materials with specific magnetic properties. J Achiev Mater Manuf Eng 17(1–2):37–40
8.
Zurück zum Zitat Hatch GP, Stelter RR (2001) Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J Magn Magn Mater 225:262–276CrossRef Hatch GP, Stelter RR (2001) Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J Magn Magn Mater 225:262–276CrossRef
9.
Zurück zum Zitat Buschow KHJ, de Boer FR (2004) Physics of magnetism and magnetic materials. Kluwer Academic, Moscow Buschow KHJ, de Boer FR (2004) Physics of magnetism and magnetic materials. Kluwer Academic, Moscow
10.
Zurück zum Zitat Acharya SS, Medicherla VRR, Bapna K, Ali K, Biswas D, Maiti K, Rawat R (2020) Exchange correlation and magnetism in bcc Fe 0.8 Ni 0.2 alloy. J Electron Spectrosc Relat Phenom 240:146933CrossRef Acharya SS, Medicherla VRR, Bapna K, Ali K, Biswas D, Maiti K, Rawat R (2020) Exchange correlation and magnetism in bcc Fe 0.8 Ni 0.2 alloy. J Electron Spectrosc Relat Phenom 240:146933CrossRef
11.
Zurück zum Zitat Czichos H, Saito T, Smith LE (2011) Springer handbook of metrology and testing. Springer Handbook of Metrology and Testing, New YorkCrossRef Czichos H, Saito T, Smith LE (2011) Springer handbook of metrology and testing. Springer Handbook of Metrology and Testing, New YorkCrossRef
12.
Zurück zum Zitat Coey JMD (2009) Magnetism and magnetic materials. Cambridge University Press, New York Coey JMD (2009) Magnetism and magnetic materials. Cambridge University Press, New York
13.
Zurück zum Zitat Callister WDJ (2007) Material science and engineering an introduction. Wiley, USA Callister WDJ (2007) Material science and engineering an introduction. Wiley, USA
14.
Zurück zum Zitat Chen Q (2020) Nanobismuth enhanced plasmonic, emission and faraday rotation properties of diamagnetic tellurite glasses. J Alloys Compd 828:154448CrossRef Chen Q (2020) Nanobismuth enhanced plasmonic, emission and faraday rotation properties of diamagnetic tellurite glasses. J Alloys Compd 828:154448CrossRef
15.
Zurück zum Zitat Rao RS (2012) Electromagnetic waves and transmission lines. PHI Learning, New Delhi, India Rao RS (2012) Electromagnetic waves and transmission lines. PHI Learning, New Delhi, India
16.
Zurück zum Zitat Pal M, De A (2009) Polymer-iron oxide based magnetic nanocomposites. In: Merhari L (ed) Hybrid nanocomposites for nanotechnology: electronic, optical, magnetic and biomedical applications. Springer Science+Business Media, New York, pp 455–506CrossRef Pal M, De A (2009) Polymer-iron oxide based magnetic nanocomposites. In: Merhari L (ed) Hybrid nanocomposites for nanotechnology: electronic, optical, magnetic and biomedical applications. Springer Science+Business Media, New York, pp 455–506CrossRef
17.
Zurück zum Zitat Buschow KHJ, de Boer FR (2003) Physics of magnetism and magnetic materials, Springer, US Buschow KHJ, de Boer FR (2003) Physics of magnetism and magnetic materials, Springer, US
18.
Zurück zum Zitat Thanh NT (2012) Magnetic nanopartic. Ramimoghadam D, Bagheri S, Hamid SBA (2015) Stable monodisperse nanomagnetic colloidal suspensions: an overview. Colloids and Surfaces B: Biointerfaces 133:388–411. Les: from fabrication to clinical applications. Florida: Taylor & Francis, USA Thanh NT (2012) Magnetic nanopartic. Ramimoghadam D, Bagheri S, Hamid SBA (2015) Stable monodisperse nanomagnetic colloidal suspensions: an overview. Colloids and Surfaces B: Biointerfaces 133:388–411. Les: from fabrication to clinical applications. Florida: Taylor & Francis, USA
19.
Zurück zum Zitat Wu W, He QG, Jiang CZ (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRef Wu W, He QG, Jiang CZ (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRef
20.
Zurück zum Zitat Ramimoghadam D, Bagheri S, Hamid SBA (2015) Stable monodisperse nanomagnetic colloidal suspensions: an overview. Colloids Surf B: Biointerfaces 133:388–411CrossRef Ramimoghadam D, Bagheri S, Hamid SBA (2015) Stable monodisperse nanomagnetic colloidal suspensions: an overview. Colloids Surf B: Biointerfaces 133:388–411CrossRef
21.
Zurück zum Zitat Zheng YM, Lim SF, Chen JP (2009) Preparation and characterization of zirconium based magnetic sorbent for arsenate removal. J Colloid Interface Sci 338(1):22–29CrossRef Zheng YM, Lim SF, Chen JP (2009) Preparation and characterization of zirconium based magnetic sorbent for arsenate removal. J Colloid Interface Sci 338(1):22–29CrossRef
22.
Zurück zum Zitat Zhu JH, Wei SY, Chen MJ, Gu HB, Rapole SB, Pallavkar S, Ho TC, Hopper J, Guo ZH (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467CrossRef Zhu JH, Wei SY, Chen MJ, Gu HB, Rapole SB, Pallavkar S, Ho TC, Hopper J, Guo ZH (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467CrossRef
23.
Zurück zum Zitat Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRef Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRef
24.
Zurück zum Zitat Kumar CSSR (2009) Magnetic nanomaterials. Wiley-VCH, Weinheim Kumar CSSR (2009) Magnetic nanomaterials. Wiley-VCH, Weinheim
25.
Zurück zum Zitat Dauda KT, Atasie VN, Adeoye OB (2015) The kinetics and equilibrium studies of the adsorption of (Cu2+, Pb2+) from industrial wastewater using rice husk as adsorbent. Int J Adv Res Chem Sci (IJARCS) 2(4):13–21 Dauda KT, Atasie VN, Adeoye OB (2015) The kinetics and equilibrium studies of the adsorption of (Cu2+, Pb2+) from industrial wastewater using rice husk as adsorbent. Int J Adv Res Chem Sci (IJARCS) 2(4):13–21
26.
Zurück zum Zitat Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(1–3):38–49CrossRef Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(1–3):38–49CrossRef
27.
Zurück zum Zitat Boyer TH, Singer PC (2005) Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Res 39(7):1265–1276CrossRef Boyer TH, Singer PC (2005) Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Res 39(7):1265–1276CrossRef
28.
Zurück zum Zitat Hou X, Feng J, Liu X, Ren Y, Fan Z, Wei T, Meng J, Zhang M (2011) Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater. J Colloid Interface Sci 362(2):477–485CrossRef Hou X, Feng J, Liu X, Ren Y, Fan Z, Wei T, Meng J, Zhang M (2011) Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater. J Colloid Interface Sci 362(2):477–485CrossRef
29.
Zurück zum Zitat Hu J, Chen GH, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536CrossRef Hu J, Chen GH, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536CrossRef
30.
Zurück zum Zitat Reng XJ, Luan ZK, Di ZC, Zhang ZG, Zhu CL (2005) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon 43:855–894CrossRef Reng XJ, Luan ZK, Di ZC, Zhang ZG, Zhu CL (2005) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon 43:855–894CrossRef
31.
Zurück zum Zitat Ngomsik A, Bee A, Siaugue J, Cabuil V, Cote G (2006) Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Res 40(9):1848–1856CrossRef Ngomsik A, Bee A, Siaugue J, Cabuil V, Cote G (2006) Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Res 40(9):1848–1856CrossRef
32.
Zurück zum Zitat Lim SF, Zheng YM, Zou SW, Chen JP (2008) Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environ Sci Technol 42(7):2551–2556CrossRef Lim SF, Zheng YM, Zou SW, Chen JP (2008) Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environ Sci Technol 42(7):2551–2556CrossRef
33.
Zurück zum Zitat Lim SF, Zheng YM, Chen JP (2009) Organic arsenic adsorption onto a magnetic sorbent. Langmuir 25(9):4973–4978CrossRef Lim SF, Zheng YM, Chen JP (2009) Organic arsenic adsorption onto a magnetic sorbent. Langmuir 25(9):4973–4978CrossRef
34.
Zurück zum Zitat Lim SF, Zheng YM, Zou SW, Chen JP (2009) Uptake of arsenate by an alginate-encapsulated magnetic sorbent: process performance and characterization of adsorption chemistry. J Colloid Interface Sci 333(1):33–39CrossRef Lim SF, Zheng YM, Zou SW, Chen JP (2009) Uptake of arsenate by an alginate-encapsulated magnetic sorbent: process performance and characterization of adsorption chemistry. J Colloid Interface Sci 333(1):33–39CrossRef
35.
Zurück zum Zitat Zhou LM, Wang YP, Liu ZR, Huang QW (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002CrossRef Zhou LM, Wang YP, Liu ZR, Huang QW (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002CrossRef
36.
Zurück zum Zitat Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299CrossRef Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299CrossRef
37.
Zurück zum Zitat Chen YW, Wang JL (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168(1):286–292CrossRef Chen YW, Wang JL (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168(1):286–292CrossRef
38.
Zurück zum Zitat Inbaraj BS, Chen BH (2012) In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles. J Int J Nanomed 7:4419–4432 Inbaraj BS, Chen BH (2012) In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles. J Int J Nanomed 7:4419–4432
39.
Zurück zum Zitat Peng XL, Xu F, Zhang WZ, Wang JY, Zeng C, Niu MJ, Chmielewská E (2014) Magnetic Fe3O4 @ silica–xanthan gum composites for aqueous removal and recovery of Pb2+. Colloids Surf A Physicochem Eng Asp 443:27–36CrossRef Peng XL, Xu F, Zhang WZ, Wang JY, Zeng C, Niu MJ, Chmielewská E (2014) Magnetic Fe3O4 @ silica–xanthan gum composites for aqueous removal and recovery of Pb2+. Colloids Surf A Physicochem Eng Asp 443:27–36CrossRef
40.
Zurück zum Zitat Zhao MH, Xu Y, Zhang CS, Rongm HW, Zeng GM (2016) New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100(15):6509–6518CrossRef Zhao MH, Xu Y, Zhang CS, Rongm HW, Zeng GM (2016) New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100(15):6509–6518CrossRef
41.
Zurück zum Zitat Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41(14):5114–5119CrossRef Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41(14):5114–5119CrossRef
42.
Zurück zum Zitat Mahdavian AR, Mirrahimi MA (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159:264–271CrossRef Mahdavian AR, Mirrahimi MA (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159:264–271CrossRef
43.
Zurück zum Zitat Feng LY, Cao MH, Ma XY, Zhu YS, Hu CW (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217–218:439–446CrossRef Feng LY, Cao MH, Ma XY, Zhu YS, Hu CW (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217–218:439–446CrossRef
44.
Zurück zum Zitat Lim SF, Lee AYW, Kam YS, Chua SND (2018) Synthesis and characterization of alginate encapsulated zirconium-based ferromagnetic sorbent for adsorptive removal of dyes. Int J Eng Technol 7(3.18):87–90CrossRef Lim SF, Lee AYW, Kam YS, Chua SND (2018) Synthesis and characterization of alginate encapsulated zirconium-based ferromagnetic sorbent for adsorptive removal of dyes. Int J Eng Technol 7(3.18):87–90CrossRef
45.
Zurück zum Zitat Navratil JD, Shing Tsair MT (2003) Magnetic separation of iron and heavy metals from water. Water Sci Technol 47(1):29–32CrossRef Navratil JD, Shing Tsair MT (2003) Magnetic separation of iron and heavy metals from water. Water Sci Technol 47(1):29–32CrossRef
46.
Zurück zum Zitat Lim SF, Lee AYW, Chua SND, Lim BH, Jain P (2020) Kinetic study on heavy metal divalent ions removal using zirconium-based magnetic sorbent. Int J of Integr Eng 12(3):225–234 Lim SF, Lee AYW, Chua SND, Lim BH, Jain P (2020) Kinetic study on heavy metal divalent ions removal using zirconium-based magnetic sorbent. Int J of Integr Eng 12(3):225–234
47.
Zurück zum Zitat Low KG, Lim SF (2014) Study on electrostatic extrusion method for synthesizing calcium alginate encapsulated Iron oxide. J Appl Sci Process Eng 1:1 Low KG, Lim SF (2014) Study on electrostatic extrusion method for synthesizing calcium alginate encapsulated Iron oxide. J Appl Sci Process Eng 1:1
48.
Zurück zum Zitat Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305CrossRef Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305CrossRef
49.
Zurück zum Zitat Reddy DHK, Yun YS (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111CrossRef Reddy DHK, Yun YS (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111CrossRef
50.
Zurück zum Zitat Anuradha Jabasingh S, Ravi T, Yimam A (2018) Magnetic hetero-structures as prospective sorbents to aid arsenic elimination from life water streams. Water Sci 32(1):151–170CrossRef Anuradha Jabasingh S, Ravi T, Yimam A (2018) Magnetic hetero-structures as prospective sorbents to aid arsenic elimination from life water streams. Water Sci 32(1):151–170CrossRef
51.
Zurück zum Zitat Mueller NC, Braun J, Bruns J, Černik M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558CrossRef Mueller NC, Braun J, Bruns J, Černik M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558CrossRef
Metadaten
Titel
Removal of Heavy Metal Ions Using Magnetic Materials
verfasst von
Soh-Fong Lim
Agnes Yung-Weng Lee
S. N. David Chua
Bee-Huah Lim
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-55172-8_10