Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2024

12.04.2024 | Research

Representing stimulus motion with waves in adaptive neural fields

verfasst von: Sage Shaw, Zachary P Kilpatrick

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abouzeid, A., & Ermentrout, B. (2009). Type-ii phase resetting curve is optimal for stochastic synchrony. Physical Review E, 80(1), 011911.CrossRef Abouzeid, A., & Ermentrout, B. (2009). Type-ii phase resetting curve is optimal for stochastic synchrony. Physical Review E, 80(1), 011911.CrossRef
Zurück zum Zitat Aitken, F., Menelaou, G., Warrington, O., et al. (2020). Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex. PLoS biology, 18(12), e3001023.PubMedPubMedCentralCrossRef Aitken, F., Menelaou, G., Warrington, O., et al. (2020). Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex. PLoS biology, 18(12), e3001023.PubMedPubMedCentralCrossRef
Zurück zum Zitat Alamia, A., & VanRullen, R. (2023). A traveling waves perspective on temporal binding. Journal of Cognitive Neuroscience, pp 1–9. Alamia, A., & VanRullen, R. (2023). A traveling waves perspective on temporal binding. Journal of Cognitive Neuroscience, pp 1–9.
Zurück zum Zitat Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.PubMedCrossRef Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.PubMedCrossRef
Zurück zum Zitat Anstis, S. M. (1980). The perception of apparent movement. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 290(1038), 153–168.PubMedCrossRef Anstis, S. M. (1980). The perception of apparent movement. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 290(1038), 153–168.PubMedCrossRef
Zurück zum Zitat Bart, E., Bao, S., & Holcman, D. (2005). Modeling the spontaneous activity of the auditory cortex. Journal of Computational Neuroscience, 19(3), 357–378.PubMedCrossRef Bart, E., Bao, S., & Holcman, D. (2005). Modeling the spontaneous activity of the auditory cortex. Journal of Computational Neuroscience, 19(3), 357–378.PubMedCrossRef
Zurück zum Zitat Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. Journal of computational neuroscience, 4, 57–77.PubMedCrossRef Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. Journal of computational neuroscience, 4, 57–77.PubMedCrossRef
Zurück zum Zitat Bill, J., Gershman, S. J., & Drugowitsch, J. (2022). Visual motion perception as online hierarchical inference. Nature Communications, 13(1), 7403.PubMedPubMedCentralCrossRef Bill, J., Gershman, S. J., & Drugowitsch, J. (2022). Visual motion perception as online hierarchical inference. Nature Communications, 13(1), 7403.PubMedPubMedCentralCrossRef
Zurück zum Zitat Blom, T., Feuerriegel, D., Johnson, P., et al. (2020). Predictions drive neural representations of visual events ahead of incoming sensory information. Proceedings of the National Academy of Sciences, 117(13), 7510–7515.CrossRef Blom, T., Feuerriegel, D., Johnson, P., et al. (2020). Predictions drive neural representations of visual events ahead of incoming sensory information. Proceedings of the National Academy of Sciences, 117(13), 7510–7515.CrossRef
Zurück zum Zitat Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area mt. Annu Rev Neurosci, 28, 157–189.PubMedCrossRef Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area mt. Annu Rev Neurosci, 28, 157–189.PubMedCrossRef
Zurück zum Zitat Bressloff, P. C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D: Nonlinear Phenomena, 155(1), 83–100.CrossRef Bressloff, P. C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D: Nonlinear Phenomena, 155(1), 83–100.CrossRef
Zurück zum Zitat Bressloff, P. C. (2011). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45(3), 033001.CrossRef Bressloff, P. C. (2011). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45(3), 033001.CrossRef
Zurück zum Zitat Bressloff, P. C., & Webber, M. A. (2012). Neural field model of binocular rivalry waves. Journal of Computational Neuroscience, 32(2), 233.PubMedCrossRef Bressloff, P. C., & Webber, M. A. (2012). Neural field model of binocular rivalry waves. Journal of Computational Neuroscience, 32(2), 233.PubMedCrossRef
Zurück zum Zitat Bressloff, P. C., Folias, S. E., Prat, A., et al. (2003). Oscillatory waves in inhomogeneous neural media. Physical review letters, 91(17), 178101.PubMedCrossRef Bressloff, P. C., Folias, S. E., Prat, A., et al. (2003). Oscillatory waves in inhomogeneous neural media. Physical review letters, 91(17), 178101.PubMedCrossRef
Zurück zum Zitat Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural computation, 16(4), 673–715.PubMedCrossRef Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural computation, 16(4), 673–715.PubMedCrossRef
Zurück zum Zitat Burak, Y., & Fiete, I. R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS computational biology, 5(2), e1000291.PubMedPubMedCentralCrossRef Burak, Y., & Fiete, I. R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS computational biology, 5(2), e1000291.PubMedPubMedCentralCrossRef
Zurück zum Zitat Burt, P., & Sperling, G. (1981). Time, distance, and feature trade-offs in visual apparent motion. Psychological review, 88(2), 171.PubMedCrossRef Burt, P., & Sperling, G. (1981). Time, distance, and feature trade-offs in visual apparent motion. Psychological review, 88(2), 171.PubMedCrossRef
Zurück zum Zitat Chemla, S., Reynaud, A., Di Volo, M., et al. (2019). Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate. Journal of Neuroscience, 39(22), 4282–4298.PubMedCrossRef Chemla, S., Reynaud, A., Di Volo, M., et al. (2019). Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate. Journal of Neuroscience, 39(22), 4282–4298.PubMedCrossRef
Zurück zum Zitat Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol Cybern, 93, 91–108.PubMedCrossRef Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol Cybern, 93, 91–108.PubMedCrossRef
Zurück zum Zitat Coombes, S., & Owen, M. R. (2004). Evans functions for integral neural field equations with heaviside firing rate function. SIAM Journal on Applied Dynamical Systems, 3(4), 574–600.CrossRef Coombes, S., & Owen, M. R. (2004). Evans functions for integral neural field equations with heaviside firing rate function. SIAM Journal on Applied Dynamical Systems, 3(4), 574–600.CrossRef
Zurück zum Zitat Coombes, S., Venkov, N. A., Shiau, L., et al. (2007). Modeling electrocortical activity through improved local approximations of integral neural field equations. Physical Review E, 76(5), 051901.CrossRef Coombes, S., Venkov, N. A., Shiau, L., et al. (2007). Modeling electrocortical activity through improved local approximations of integral neural field equations. Physical Review E, 76(5), 051901.CrossRef
Zurück zum Zitat Coombes, S., Schmidt, H., & Bojak, I. (2012). Interface dynamics in planar neural field models. The Journal of Mathematical Neuroscience, 2(1), 1–27.CrossRef Coombes, S., Schmidt, H., & Bojak, I. (2012). Interface dynamics in planar neural field models. The Journal of Mathematical Neuroscience, 2(1), 1–27.CrossRef
Zurück zum Zitat Dahlem, M. A. (2013). Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(4), 046101. Dahlem, M. A. (2013). Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(4), 046101.
Zurück zum Zitat Eckert, M. P, & Zeil, J. (2001). Towards an ecology of motion vision. Motion vision: computational, neural, and ecological constraints, pp 333–369. Eckert, M. P, & Zeil, J. (2001). Towards an ecology of motion vision. Motion vision: computational, neural, and ecological constraints, pp 333–369.
Zurück zum Zitat Ekman, M., Kok, P., & de Lange, F. P. (2017). Time-compressed preplay of anticipated events in human primary visual cortex. Nature Communications, 8(1), 15276.PubMedPubMedCentralCrossRef Ekman, M., Kok, P., & de Lange, F. P. (2017). Time-compressed preplay of anticipated events in human primary visual cortex. Nature Communications, 8(1), 15276.PubMedPubMedCentralCrossRef
Zurück zum Zitat Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological review, 109(3), 545.PubMedCrossRef Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological review, 109(3), 545.PubMedCrossRef
Zurück zum Zitat Ermentrout, B. (1996). Type i membranes, phase resetting curves, and synchrony. Neural computation, 8(5), 979–1001.PubMedCrossRef Ermentrout, B. (1996). Type i membranes, phase resetting curves, and synchrony. Neural computation, 8(5), 979–1001.PubMedCrossRef
Zurück zum Zitat Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on progress in physics, 61(4), 353.CrossRef Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on progress in physics, 61(4), 353.CrossRef
Zurück zum Zitat Ermentrout, G. B., & Kleinfeld, D. (2001). Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron, 29(1), 33–44.PubMedCrossRef Ermentrout, G. B., & Kleinfeld, D. (2001). Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron, 29(1), 33–44.PubMedCrossRef
Zurück zum Zitat Ermentrout, G. B., & McLeod, J. B. (1993). Existence and uniqueness of travelling waves for a neural network. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 123(3), 461–478.CrossRef Ermentrout, G. B., & McLeod, J. B. (1993). Existence and uniqueness of travelling waves for a neural network. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 123(3), 461–478.CrossRef
Zurück zum Zitat Ermentrout, G. B., Jalics, J. Z., & Rubin, J. E. (2010). Stimulus-driven traveling solutions in continuum neuronal models with a general smooth firing rate function. SIAM Journal on Applied Mathematics, 70(8), 3039–3064.CrossRef Ermentrout, G. B., Jalics, J. Z., & Rubin, J. E. (2010). Stimulus-driven traveling solutions in continuum neuronal models with a general smooth firing rate function. SIAM Journal on Applied Mathematics, 70(8), 3039–3064.CrossRef
Zurück zum Zitat Faye, G., & Kilpatrick, Z. P. (2018). Threshold of front propagation in neural fields: An interface dynamics approach. SIAM Journal on Applied Mathematics, 78(5), 2575–2596.CrossRef Faye, G., & Kilpatrick, Z. P. (2018). Threshold of front propagation in neural fields: An interface dynamics approach. SIAM Journal on Applied Mathematics, 78(5), 2575–2596.CrossRef
Zurück zum Zitat Folias, S. E. (2011). Nonlinear analysis of breathing pulses in a synaptically coupled neural network. SIAM Journal on Applied Dynamical Systems, 10(2), 744–787.CrossRef Folias, S. E. (2011). Nonlinear analysis of breathing pulses in a synaptically coupled neural network. SIAM Journal on Applied Dynamical Systems, 10(2), 744–787.CrossRef
Zurück zum Zitat Folias, S. E., & Bressloff, P. C. (2004). Breathing pulses in an excitatory neural network. SIAM Journal on Applied Dynamical Systems, 3(3), 378–407.CrossRef Folias, S. E., & Bressloff, P. C. (2004). Breathing pulses in an excitatory neural network. SIAM Journal on Applied Dynamical Systems, 3(3), 378–407.CrossRef
Zurück zum Zitat Folias, S. E., & Bressloff, P. C. (2005). Stimulus-locked traveling waves and breathers in an excitatory neural network. SIAM journal on Applied Mathematics, 65(6), 2067–2092.CrossRef Folias, S. E., & Bressloff, P. C. (2005). Stimulus-locked traveling waves and breathers in an excitatory neural network. SIAM journal on Applied Mathematics, 65(6), 2067–2092.CrossRef
Zurück zum Zitat Fortune, E. S., & Rose, G. J. (2001). Short-term synaptic plasticity as a temporal filter. Trends in neurosciences, 24(7), 381–385.PubMedCrossRef Fortune, E. S., & Rose, G. J. (2001). Short-term synaptic plasticity as a temporal filter. Trends in neurosciences, 24(7), 381–385.PubMedCrossRef
Zurück zum Zitat Gepshtein, S., & Kubovy, M. (2007). The lawful perception of apparent motion. Journal of Vision, 7(8), 9–9.PubMedCrossRef Gepshtein, S., & Kubovy, M. (2007). The lawful perception of apparent motion. Journal of Vision, 7(8), 9–9.PubMedCrossRef
Zurück zum Zitat Goulet, J., & Ermentrout, G. B. (2011). The mechanisms for compression and reflection of cortical waves. Biological cybernetics, 105, 253–268.PubMedCrossRef Goulet, J., & Ermentrout, G. B. (2011). The mechanisms for compression and reflection of cortical waves. Biological cybernetics, 105, 253–268.PubMedCrossRef
Zurück zum Zitat Huang, X., Troy, W. C., Yang, Q., et al. (2004). Spiral waves in disinhibited mammalian neocortex. Journal of Neuroscience, 24(44), 9897–9902.PubMedCrossRef Huang, X., Troy, W. C., Yang, Q., et al. (2004). Spiral waves in disinhibited mammalian neocortex. Journal of Neuroscience, 24(44), 9897–9902.PubMedCrossRef
Zurück zum Zitat Hürlimann, F., Kiper, D. C., & Carandini, M. (2002). Testing the bayesian model of perceived speed. Vision research, 42(19), 2253–2257.PubMedCrossRef Hürlimann, F., Kiper, D. C., & Carandini, M. (2002). Testing the bayesian model of perceived speed. Vision research, 42(19), 2253–2257.PubMedCrossRef
Zurück zum Zitat Hutt, A., Bestehorn, M., & Wennekers, T. (2003). Pattern formation in intracortical neuronal fields. Network: Computation in Neural Systems, 14(2), 351 Hutt, A., Bestehorn, M., & Wennekers, T. (2003). Pattern formation in intracortical neuronal fields. Network: Computation in Neural Systems, 14(2), 351
Zurück zum Zitat Itskov, V., Hansel, D., & Tsodyks, M. (2011). Short-term facilitation may stabilize parametric working memory trace. Frontiers in computational neuroscience, 5, 40.PubMedPubMedCentralCrossRef Itskov, V., Hansel, D., & Tsodyks, M. (2011). Short-term facilitation may stabilize parametric working memory trace. Frontiers in computational neuroscience, 5, 40.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kane, S. A., & Zamani, M. (2014). Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras. Journal of Experimental Biology, 217(2), 225–234.PubMedPubMedCentralCrossRef Kane, S. A., & Zamani, M. (2014). Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras. Journal of Experimental Biology, 217(2), 225–234.PubMedPubMedCentralCrossRef
Zurück zum Zitat Keener, J. P. (2000a). Homogenization and propagation in the bistable equation. Physica D: Nonlinear Phenomena, 136(1), 1–17.CrossRef Keener, J. P. (2000a). Homogenization and propagation in the bistable equation. Physica D: Nonlinear Phenomena, 136(1), 1–17.CrossRef
Zurück zum Zitat Keener, J. P. (2000b). Propagation of waves in an excitable medium with discrete release sites. SIAM Journal on Applied Mathematics, 61(1), 317–334.CrossRef Keener, J. P. (2000b). Propagation of waves in an excitable medium with discrete release sites. SIAM Journal on Applied Mathematics, 61(1), 317–334.CrossRef
Zurück zum Zitat Kilpatrick, Z. P. (2015). Stochastic synchronization of neural activity waves. Physical Review E, 91(4), 040701.CrossRef Kilpatrick, Z. P. (2015). Stochastic synchronization of neural activity waves. Physical Review E, 91(4), 040701.CrossRef
Zurück zum Zitat Kilpatrick, Z. P. (2018). Synaptic mechanisms of interference in working memory. Scientific Reports, 8(1), 1–20.CrossRef Kilpatrick, Z. P. (2018). Synaptic mechanisms of interference in working memory. Scientific Reports, 8(1), 1–20.CrossRef
Zurück zum Zitat Kilpatrick, Z. P., & Bressloff, P. C. (2010a). Binocular rivalry in a competitive neural network with synaptic depression. SIAM Journal on Applied Dynamical Systems, 9(4), 1303–1347.CrossRef Kilpatrick, Z. P., & Bressloff, P. C. (2010a). Binocular rivalry in a competitive neural network with synaptic depression. SIAM Journal on Applied Dynamical Systems, 9(4), 1303–1347.CrossRef
Zurück zum Zitat Kilpatrick, Z. P., & Bressloff, P. C. (2010b). Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Physica D: Nonlinear Phenomena, 239(9), 547–560.CrossRef Kilpatrick, Z. P., & Bressloff, P. C. (2010b). Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Physica D: Nonlinear Phenomena, 239(9), 547–560.CrossRef
Zurück zum Zitat Kilpatrick, Z. P., & Bressloff, P. C. (2010c). Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. Journal of Computational Neuroscience, 28(2), 193–209.PubMedCrossRef Kilpatrick, Z. P., & Bressloff, P. C. (2010c). Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. Journal of Computational Neuroscience, 28(2), 193–209.PubMedCrossRef
Zurück zum Zitat Kilpatrick, Z. P., & Bressloff, P. C. (2010d). Stability of bumps in piecewise smooth neural fields with nonlinear adaptation. Physica D: Nonlinear Phenomena, 239(12), 1048–1060.CrossRef Kilpatrick, Z. P., & Bressloff, P. C. (2010d). Stability of bumps in piecewise smooth neural fields with nonlinear adaptation. Physica D: Nonlinear Phenomena, 239(12), 1048–1060.CrossRef
Zurück zum Zitat Kilpatrick, Z. P., & Ermentrout, B. (2012). Response of traveling waves to transient inputs in neural fields. Physical Review E, 85, 021910.CrossRef Kilpatrick, Z. P., & Ermentrout, B. (2012). Response of traveling waves to transient inputs in neural fields. Physical Review E, 85, 021910.CrossRef
Zurück zum Zitat Kilpatrick, Z. P., & Faye, G. (2014). Pulse bifurcations in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 13(2), 830–860.CrossRef Kilpatrick, Z. P., & Faye, G. (2014). Pulse bifurcations in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 13(2), 830–860.CrossRef
Zurück zum Zitat Kilpatrick, Z. P., Folias, S. E., & Bressloff, P. C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7(1), 161–185.CrossRef Kilpatrick, Z. P., Folias, S. E., & Bressloff, P. C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7(1), 161–185.CrossRef
Zurück zum Zitat Knill, D. C., & Pouget, A. (2004). The bayesian brain: the role of uncertainty in neural coding and computation. TRENDS in Neurosciences, 27(12), 712–719.PubMedCrossRef Knill, D. C., & Pouget, A. (2004). The bayesian brain: the role of uncertainty in neural coding and computation. TRENDS in Neurosciences, 27(12), 712–719.PubMedCrossRef
Zurück zum Zitat Koffka, K. (2013). Principles of Gestalt psychology, (Vol. 44). Routledge. Koffka, K. (2013). Principles of Gestalt psychology, (Vol. 44). Routledge.
Zurück zum Zitat Kolers, P. A. (2013). Aspects of motion perception: International series of monographs in experimental psychology, (Vol. 16). Elsevier. Kolers, P. A. (2013). Aspects of motion perception: International series of monographs in experimental psychology, (Vol. 16). Elsevier.
Zurück zum Zitat Korte, A. (1915). Kinematoskopische untersuchungen. Zeitschrift fur Psychologie, 65. Korte, A. (1915). Kinematoskopische untersuchungen. Zeitschrift fur Psychologie, 65.
Zurück zum Zitat Loxley, P., & Robinson, P. (2009). Soliton model of competitive neural dynamics during binocular rivalry. Physical review letters, 102(25), 258701.PubMedCrossRef Loxley, P., & Robinson, P. (2009). Soliton model of competitive neural dynamics during binocular rivalry. Physical review letters, 102(25), 258701.PubMedCrossRef
Zurück zum Zitat Lu, Y., Sato, Y., & Si, Amari. (2011). Traveling bumps and their collisions in a two-dimensional neural field. Neural Computation, 23(5), 1248–1260.PubMedCrossRef Lu, Y., Sato, Y., & Si, Amari. (2011). Traveling bumps and their collisions in a two-dimensional neural field. Neural Computation, 23(5), 1248–1260.PubMedCrossRef
Zurück zum Zitat Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2003). Interception of real and apparent motion targets: psychophysics in humans and monkeys. Experimental Brain Research, 152, 106–112.PubMedCrossRef Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2003). Interception of real and apparent motion targets: psychophysics in humans and monkeys. Experimental Brain Research, 152, 106–112.PubMedCrossRef
Zurück zum Zitat Muckli, L., Kohler, A., Kriegeskorte, N., et al. (2005). Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoS biology, 3(8), e265.PubMedPubMedCentralCrossRef Muckli, L., Kohler, A., Kriegeskorte, N., et al. (2005). Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoS biology, 3(8), e265.PubMedPubMedCentralCrossRef
Zurück zum Zitat Muller, L., Chavane, F., Reynolds, J., et al. (2018). Cortical travelling waves: mechanisms and computational principles. Nature Reviews Neuroscience, 19(5), 255–268.PubMedPubMedCentralCrossRef Muller, L., Chavane, F., Reynolds, J., et al. (2018). Cortical travelling waves: mechanisms and computational principles. Nature Reviews Neuroscience, 19(5), 255–268.PubMedPubMedCentralCrossRef
Zurück zum Zitat Nagy, M., Ákos, Z., Biro, D., et al. (2010). Hierarchical group dynamics in pigeon flocks. Nature, 464(7290), 890–893.PubMedCrossRef Nagy, M., Ákos, Z., Biro, D., et al. (2010). Hierarchical group dynamics in pigeon flocks. Nature, 464(7290), 890–893.PubMedCrossRef
Zurück zum Zitat O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28(9), 2252–2260.PubMedCrossRef O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28(9), 2252–2260.PubMedCrossRef
Zurück zum Zitat Pang, Z., Alamia, A., & VanRullen, R. (2020). Turning the stimulus on and off changes the direction of \(\alpha\) traveling waves. Eneuro, 7(6). Pang, Z., Alamia, A., & VanRullen, R. (2020). Turning the stimulus on and off changes the direction of \(\alpha\) traveling waves. Eneuro, 7(6).
Zurück zum Zitat Pinto, D. J., & Ermentrout, G. B. (2001), Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses. SIAM Journal on Applied Mathematics, 62(1), 206–225. Pinto, D. J., & Ermentrout, G. B. (2001), Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses. SIAM Journal on Applied Mathematics, 62(1), 206–225.
Zurück zum Zitat Ramachandran, V. S., & Anstis, S. M. (1986). The perception of apparent motion. Scientific American, 254(6), 102–109.PubMedCrossRef Ramachandran, V. S., & Anstis, S. M. (1986). The perception of apparent motion. Scientific American, 254(6), 102–109.PubMedCrossRef
Zurück zum Zitat Richardson, K. A., Schiff, S. J., & Gluckman, B. J. (2005). Control of traveling waves in the mammalian cortex. Physical review letters, 94(2), 028103.PubMedPubMedCentralCrossRef Richardson, K. A., Schiff, S. J., & Gluckman, B. J. (2005). Control of traveling waves in the mammalian cortex. Physical review letters, 94(2), 028103.PubMedPubMedCentralCrossRef
Zurück zum Zitat Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature neuroscience, 9(4), 578–585.PubMedCrossRef Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature neuroscience, 9(4), 578–585.PubMedCrossRef
Zurück zum Zitat Tenenbaum, J. B., Kemp, C., Griffiths, T. L., et al. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.PubMedCrossRef Tenenbaum, J. B., Kemp, C., Griffiths, T. L., et al. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.PubMedCrossRef
Zurück zum Zitat Torney, C. J., Hopcraft, J. G. C., Morrison, T. A., et al. (2018). From single steps to mass migration: the problem of scale in the movement ecology of the serengeti wildebeest. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1746), 20170012.CrossRef Torney, C. J., Hopcraft, J. G. C., Morrison, T. A., et al. (2018). From single steps to mass migration: the problem of scale in the movement ecology of the serengeti wildebeest. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1746), 20170012.CrossRef
Zurück zum Zitat Townsend, R. G., Solomon, S. S., Martin, P. R., et al. (2017). Visual motion discrimination by propagating patterns in primate cerebral cortex. Journal of Neuroscience, 37(42), 10074–10084.PubMedCrossRef Townsend, R. G., Solomon, S. S., Martin, P. R., et al. (2017). Visual motion discrimination by propagating patterns in primate cerebral cortex. Journal of Neuroscience, 37(42), 10074–10084.PubMedCrossRef
Zurück zum Zitat Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835.PubMedCrossRef Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835.PubMedCrossRef
Zurück zum Zitat Ullman, S. (1979). The interpretation of visual motion. Massachusetts Inst of Technology Pr. Ullman, S. (1979). The interpretation of visual motion. Massachusetts Inst of Technology Pr.
Zurück zum Zitat Venkov, N. A., Coombes, S., & Matthews, P. C. (2007). Dynamic instabilities in scalar neural field equations with space-dependent delays. Physica D: Nonlinear Phenomena, 232(1), 1–15.CrossRef Venkov, N. A., Coombes, S., & Matthews, P. C. (2007). Dynamic instabilities in scalar neural field equations with space-dependent delays. Physica D: Nonlinear Phenomena, 232(1), 1–15.CrossRef
Zurück zum Zitat Wallach, H. (1935). Über visuell wahrgenommene bewegungsrichtung. Psychologische Forschung, 20, 325–380.CrossRef Wallach, H. (1935). Über visuell wahrgenommene bewegungsrichtung. Psychologische Forschung, 20, 325–380.CrossRef
Zurück zum Zitat Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature neuroscience, 5(6), 598–604.PubMedCrossRef Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature neuroscience, 5(6), 598–604.PubMedCrossRef
Zurück zum Zitat Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.PubMedCrossRef Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.PubMedCrossRef
Zurück zum Zitat Gao, X., Xu, W., Wang, Z., Takagaki, K., Li, B., Wu, J. Y. (2012). Interactions between two propagating waves in rat visual cortex. Neuroscience, 216, 57–69.PubMedCrossRef Gao, X., Xu, W., Wang, Z., Takagaki, K., Li, B., Wu, J. Y. (2012). Interactions between two propagating waves in rat visual cortex. Neuroscience, 216, 57–69.PubMedCrossRef
Zurück zum Zitat Wu, J. Y., Huang, X., & Zhang, C. (2008a). Propagating waves of activity in the neocortex: What they are, what they do. The Neuroscientist, 14(5), 487–502.PubMedPubMedCentralCrossRef Wu, J. Y., Huang, X., & Zhang, C. (2008a). Propagating waves of activity in the neocortex: What they are, what they do. The Neuroscientist, 14(5), 487–502.PubMedPubMedCentralCrossRef
Zurück zum Zitat Wu, S., Hamaguchi, K., & Si, Amari. (2008b). Dynamics and computation of continuous attractors. Neural computation, 20(4), 994–1025.PubMedCrossRef Wu, S., Hamaguchi, K., & Si, Amari. (2008b). Dynamics and computation of continuous attractors. Neural computation, 20(4), 994–1025.PubMedCrossRef
Zurück zum Zitat Xie, X., Hahnloser, R. H., & Seung, H. S. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 041902.CrossRef Xie, X., Hahnloser, R. H., & Seung, H. S. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 041902.CrossRef
Zurück zum Zitat York, L. C., & van Rossum, M. C. (2009). Recurrent networks with short term synaptic depression. Journal of computational neuroscience, 27(3), 607.PubMedCrossRef York, L. C., & van Rossum, M. C. (2009). Recurrent networks with short term synaptic depression. Journal of computational neuroscience, 27(3), 607.PubMedCrossRef
Zurück zum Zitat Zanos, T. P., Mineault, P. J., Nasiotis, K. T., et al. (2015). A sensorimotor role for traveling waves in primate visual cortex. Neuron, 85(3), 615–627.PubMedCrossRef Zanos, T. P., Mineault, P. J., Nasiotis, K. T., et al. (2015). A sensorimotor role for traveling waves in primate visual cortex. Neuron, 85(3), 615–627.PubMedCrossRef
Zurück zum Zitat Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6), 2112–2126.PubMedCrossRef Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6), 2112–2126.PubMedCrossRef
Metadaten
Titel
Representing stimulus motion with waves in adaptive neural fields
verfasst von
Sage Shaw
Zachary P Kilpatrick
Publikationsdatum
12.04.2024
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2024
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-024-00869-z

Premium Partner