Skip to main content

2024 | OriginalPaper | Buchkapitel

Research on Hydrate Formation Risk in the Wellbore of Deepwater Dual-Source Co-production

verfasst von : Peng Liu, Shujie Liu, Jihao Pei, Jianbo Zhang, Weiqi Fu, Zhiyuan Wang

Erschienen in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrate reservoirs with underlying natural gas are currently considered to be the most promising hydrate reservoirs for commercial exploitation. However, during the production process, the temperature-pressure conditions and multiphase flow conditions after mixing are complex due to the differences in the physical parameters of each layer of fluid, and it is much more difficult to predict the secondary formation of hydrates. In order to accurately calculate the hydrate generation regions, a new prediction model of wellbore temperature and pressure field under the conditions of deepwater dual-source co-production was proposed, and the distribution pattern of the hydrate generation region in the wellbore was investigated based on this model. The results revealed that in the process of deepwater dual-source co-production, due to the influence of deepwater low-temperature environment, the section of gas line above the mudline had an extremely higher risk of hydrate formation. For the section of wellbore below the mudline, the inflow of relatively low-temperature fluid from the hydrate layer caused a sudden temperature drop in the wellbore, resulting in a corresponding increase in the risk of hydrate formation. Meanwhile, the larger the production rate of hydrate layer, the more obvious the temperature drop was. Hydrate production increased from 2 thousand m3/d to 300 thousand m3/d, temperature drop increased from 2.8 ℃ to 7.1 ℃, the hydrate generation region expanded from 200 m–1780 m to 20m-1900m. With the increase of shallow gas production rate, the temperature in the wellbore rose, the cooling effect of hydrate layer fluid weakened, and the risk of hydrate formation decreased accordingly. Shallow gas production increased from 10 thousand m3/d to 600 thousand m3/d, temperature drop decreased from 3.1 ℃ to 1.5 ℃, no hydrate generation below the mudline, and hydrate generation area above the mudline shifted upward from 180 m–1770 m to 0 m–690 m. The increased in shallow gas water content removed hydrate generation risk from wellbores below the mudline, but had little effect above the mudline. Reduced gas-liquid separation efficiency resulted in increased liquid production in the gas pipeline, a shift in the phase equilibrium curve toward lower temperatures, and a slight reduction in the risk of hydrate generation. The results of this paper can provide a reference for the prevention of secondary hydrate generation in the wellbore of deepwater dual-source co-production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sloan, E.D.: A changing hydrate paradigm—from apprehension to avoidance to risk management. Fluid Phase Equilib. 228–229, 67–74 (2005)CrossRef Sloan, E.D.: A changing hydrate paradigm—from apprehension to avoidance to risk management. Fluid Phase Equilib. 228–229, 67–74 (2005)CrossRef
2.
Zurück zum Zitat Jassim, E., Abdi, M.A., Muzychka, Y.: A new approach to investigate hydrate deposition in gas-dominated flowlines. J. Nat. Gas Sci. Eng. 2(4), 163–177 (2010)CrossRef Jassim, E., Abdi, M.A., Muzychka, Y.: A new approach to investigate hydrate deposition in gas-dominated flowlines. J. Nat. Gas Sci. Eng. 2(4), 163–177 (2010)CrossRef
3.
Zurück zum Zitat Perfeldt, C.M., et al.: Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues. J. Nat. Gas Sci. Eng. 27, 852–861 (2015)CrossRef Perfeldt, C.M., et al.: Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues. J. Nat. Gas Sci. Eng. 27, 852–861 (2015)CrossRef
4.
Zurück zum Zitat Wu, Y.S., Pruess, K.: An analytical solution for wellbore heat transmission in layered formations. SPE Reserv. Eng. 5(4), 531–538 (1990)CrossRef Wu, Y.S., Pruess, K.: An analytical solution for wellbore heat transmission in layered formations. SPE Reserv. Eng. 5(4), 531–538 (1990)CrossRef
5.
Zurück zum Zitat Gao, Y.H., Sun, B.J., Xu, B.Y., Wu, X.R., Chen, Y., Zhao, X.X., et al.: A wellbore/formation-coupled heat-transfer model in deepwater drilling and its application in the prediction of hydrate-reservoir dissociation. SPE J. 22(3), 756–766 (2017)CrossRef Gao, Y.H., Sun, B.J., Xu, B.Y., Wu, X.R., Chen, Y., Zhao, X.X., et al.: A wellbore/formation-coupled heat-transfer model in deepwater drilling and its application in the prediction of hydrate-reservoir dissociation. SPE J. 22(3), 756–766 (2017)CrossRef
6.
Zurück zum Zitat Cheng, W.L., Han, B.B., et al.: Study on wellbore heat loss during hot water with multiple fluids injection in offshore well. Appl. Therm. Eng. 95, 247–263 (2016)CrossRef Cheng, W.L., Han, B.B., et al.: Study on wellbore heat loss during hot water with multiple fluids injection in offshore well. Appl. Therm. Eng. 95, 247–263 (2016)CrossRef
7.
Zurück zum Zitat Lin, R.Y., Shao, C.B., Li, J.: Study on two-phase flow and heat transfer in offshore wells. J. Petrol. Sci. Eng. 111, 42–49 (2013)CrossRef Lin, R.Y., Shao, C.B., Li, J.: Study on two-phase flow and heat transfer in offshore wells. J. Petrol. Sci. Eng. 111, 42–49 (2013)CrossRef
8.
Zurück zum Zitat Liu, Z., Sun, B.J., Wang, Z.Y., et al.: Prediction and management of hydrate reformation risk in pipelines during offshore gas hydrate development by depressurization. Fuel 291, 120116 (2021)CrossRef Liu, Z., Sun, B.J., Wang, Z.Y., et al.: Prediction and management of hydrate reformation risk in pipelines during offshore gas hydrate development by depressurization. Fuel 291, 120116 (2021)CrossRef
9.
Zurück zum Zitat Moridis, G.J.: Numerical studies of gas production from methane hydrates. In: SPE Gas Technology Symposium. Society of Petroleum Engineers. SPE 75691 (2002) Moridis, G.J.: Numerical studies of gas production from methane hydrates. In: SPE Gas Technology Symposium. Society of Petroleum Engineers. SPE 75691 (2002)
10.
Zurück zum Zitat Gao, Y.H., et al.: Two phase flow heat transfer analysis at different flow patterns in the wellbore. Appl. Therm. Eng. 117, 544–552 (2017)CrossRef Gao, Y.H., et al.: Two phase flow heat transfer analysis at different flow patterns in the wellbore. Appl. Therm. Eng. 117, 544–552 (2017)CrossRef
11.
Zurück zum Zitat Wang, Z.Y., et al.: A new hydrate deposition prediction model for gas-dominated systems with free water. Chem. Eng. Sci. 163, 145–154 (2017)CrossRef Wang, Z.Y., et al.: A new hydrate deposition prediction model for gas-dominated systems with free water. Chem. Eng. Sci. 163, 145–154 (2017)CrossRef
12.
Zurück zum Zitat Aman, Z.M., et al.: Hydrate formation and deposition in a gas-dominant flowloop: Initial studies of the effect of velocity and subcooling. J. Nat. Gas Sci. Eng. 35, 1490–1498 (2016)CrossRef Aman, Z.M., et al.: Hydrate formation and deposition in a gas-dominant flowloop: Initial studies of the effect of velocity and subcooling. J. Nat. Gas Sci. Eng. 35, 1490–1498 (2016)CrossRef
13.
Zurück zum Zitat Wang, Z.Y., et al.: Modeling of hydrate layer growth in horizontal gas-dominated pipelines with free water. J. Nat. Gas Sci. Eng. 50, 364–373 (2018)CrossRef Wang, Z.Y., et al.: Modeling of hydrate layer growth in horizontal gas-dominated pipelines with free water. J. Nat. Gas Sci. Eng. 50, 364–373 (2018)CrossRef
14.
Zurück zum Zitat Liu, Z., et al.: Risk and preventive strategies of hydrate reformation in offshore gas hydrate production trials: a case study in the Eastern Nankai Trough. J. Nat. Gas Sci. Eng. 103, 104602 (2022)CrossRef Liu, Z., et al.: Risk and preventive strategies of hydrate reformation in offshore gas hydrate production trials: a case study in the Eastern Nankai Trough. J. Nat. Gas Sci. Eng. 103, 104602 (2022)CrossRef
15.
Zurück zum Zitat Bondarev, E.A., Gabysheva, L.N., Kanibolotskii, M.A.: Simulation of the formation of hydrates during gas flow in tubes. Fluid Dyn. 17(5), 740–746 (1982)CrossRef Bondarev, E.A., Gabysheva, L.N., Kanibolotskii, M.A.: Simulation of the formation of hydrates during gas flow in tubes. Fluid Dyn. 17(5), 740–746 (1982)CrossRef
16.
Zurück zum Zitat Nicholas, J.W., et al.: Assessing the feasibility of hydrate deposition on pipeline walls—adhesion force measurements of clathrate hydrate particles on carbon steel. J. Colloid Interface Sci. 331(2), 322–328 (2009)CrossRef Nicholas, J.W., et al.: Assessing the feasibility of hydrate deposition on pipeline walls—adhesion force measurements of clathrate hydrate particles on carbon steel. J. Colloid Interface Sci. 331(2), 322–328 (2009)CrossRef
17.
Zurück zum Zitat Creek, J.L.: Efficient hydrate plug prevention. Energy Fuels 26(7), 4112–4116 (2012)CrossRef Creek, J.L.: Efficient hydrate plug prevention. Energy Fuels 26(7), 4112–4116 (2012)CrossRef
18.
Zurück zum Zitat Rao, I., et al.: Gas hydrate deposition on a cold surface in water-saturated gas systems. Ind. Eng. Chem. Res. 52(18), 6262–6269 (2013)CrossRef Rao, I., et al.: Gas hydrate deposition on a cold surface in water-saturated gas systems. Ind. Eng. Chem. Res. 52(18), 6262–6269 (2013)CrossRef
19.
Zurück zum Zitat Sohn, Y.H., et al.: Hydrate plug formation risk with varying watercut and inhibitor concentrations. Chem. Eng. Sci. 126, 711–718 (2015)CrossRef Sohn, Y.H., et al.: Hydrate plug formation risk with varying watercut and inhibitor concentrations. Chem. Eng. Sci. 126, 711–718 (2015)CrossRef
Metadaten
Titel
Research on Hydrate Formation Risk in the Wellbore of Deepwater Dual-Source Co-production
verfasst von
Peng Liu
Shujie Liu
Jihao Pei
Jianbo Zhang
Weiqi Fu
Zhiyuan Wang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_25