Skip to main content

2021 | OriginalPaper | Buchkapitel

Resilience Evaluation of Complex Urban Public Spaces

verfasst von : Hui Xu, Yang Li, Yongtao Tan, Liudan Jiao, Yuting Yang, Xiaofeng Hu

Erschienen in: Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a main kind of infrastructure in urban areas, the complex urban public spaces (CUPSs) (such as complex rail transit station, multi-layer railway station) are threatened by various kinds of disasters due to the multi-layer complicated network structure and crowd people. Resilience ability of the CUPSs shows high significance for disaster response and risk mitigation through absorbing and adapting the impact of disasters. In view of this, this paper formulated a theoretical framework to evaluate the resilience of the CUPSs. According to the implication of resilience, it is defined as the ratio between preparedness and vulnerability. Practically, the three level of practical index systems were established for the two dimensions, respectively. The methods Efficacy Coefficient Method (ECM) and Analytic Hierarchy Process (AHP) were adopted to determine the scores of preparedness and vulnerability, and further the resilience level of the CUPSs was measured. This paper evaluates the resilience of the CUPSs from the perspectives of system internal structure and external environment. The resilience evaluation of the CUPSs is conductive to promote urban infrastructure construction and development. Besides, the evaluation results could provide useful references for urban managers and decision makers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Xu, H., & Xue, B. (2017). Key indicators for the resilience of complex urban public spaces. Journal of Building Engineering, 12, 306–313.CrossRef Xu, H., & Xue, B. (2017). Key indicators for the resilience of complex urban public spaces. Journal of Building Engineering, 12, 306–313.CrossRef
2.
Zurück zum Zitat Cashman, A. C. (2011). Case study of institutional and social responses to flooding: Reforming for resilience? Journal of Flood Risk Management, 4, 33–41.CrossRef Cashman, A. C. (2011). Case study of institutional and social responses to flooding: Reforming for resilience? Journal of Flood Risk Management, 4, 33–41.CrossRef
3.
Zurück zum Zitat U.S. Department of Homeland Security. (2013). NIPP 2013: Partnering for Critical Infrastructure Security and Resilience. Washington DC. U.S. Department of Homeland Security. (2013). NIPP 2013: Partnering for Critical Infrastructure Security and Resilience. Washington DC.
4.
Zurück zum Zitat Department of Homeland Security. (2015). National preparedness goal-second edition. National Preparedness Goal, 78, 177. Department of Homeland Security. (2015). National preparedness goal-second edition. National Preparedness Goal, 78, 177.
5.
Zurück zum Zitat Woolf, S., Twigg, J., Parikh, P., Karaoglou, A., et al. (2016). Towards measurable resilience: A novel framework tool for the assessment of resilience levels in slums. International Journal of Disaster Risk Reduction, 19, 280–302.CrossRef Woolf, S., Twigg, J., Parikh, P., Karaoglou, A., et al. (2016). Towards measurable resilience: A novel framework tool for the assessment of resilience levels in slums. International Journal of Disaster Risk Reduction, 19, 280–302.CrossRef
6.
Zurück zum Zitat Kammouh, O., Zamani Noori, A., Cimellaro, G. P., & Mahin, S. A. (2019). Resilience assessment of urban communities. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 5. Kammouh, O., Zamani Noori, A., Cimellaro, G. P., & Mahin, S. A. (2019). Resilience assessment of urban communities. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 5.
7.
Zurück zum Zitat Yang, Y., Ng, S. T., Zhou, S., Xu, F. J., et al. (2019). A physics-based framework for analyzing the resilience of interdependent civil infrastructure systems: A climatic extreme event case in Hong Kong. Sustainable Cities and Society, 47, 101485.CrossRef Yang, Y., Ng, S. T., Zhou, S., Xu, F. J., et al. (2019). A physics-based framework for analyzing the resilience of interdependent civil infrastructure systems: A climatic extreme event case in Hong Kong. Sustainable Cities and Society, 47, 101485.CrossRef
8.
Zurück zum Zitat Zhang, W., & Wang, N. (2016). Resilience-based risk mitigation for road networks. Structural Safety, 62, 57–65.CrossRef Zhang, W., & Wang, N. (2016). Resilience-based risk mitigation for road networks. Structural Safety, 62, 57–65.CrossRef
9.
Zurück zum Zitat Nan, C., & Sansavini, G. (2017). A quantitative method for assessing resilience of interdependent infrastructures. Reliability Engineering and System Safety, 157, 35–53.CrossRef Nan, C., & Sansavini, G. (2017). A quantitative method for assessing resilience of interdependent infrastructures. Reliability Engineering and System Safety, 157, 35–53.CrossRef
10.
Zurück zum Zitat Ouyang, M. (2017). A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks. European Journal of Operational Research, 262, 1072–1084.CrossRef Ouyang, M. (2017). A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks. European Journal of Operational Research, 262, 1072–1084.CrossRef
11.
Zurück zum Zitat Aydin, N. Y., Duzgun, H. S., Heinimann, H. R., Wenzel, F., et al. (2018). Framework for improving the resilience and recovery of transportation networks under geohazard risks. International Journal of Disaster Risk Reduction, 31, 832–843.CrossRef Aydin, N. Y., Duzgun, H. S., Heinimann, H. R., Wenzel, F., et al. (2018). Framework for improving the resilience and recovery of transportation networks under geohazard risks. International Journal of Disaster Risk Reduction, 31, 832–843.CrossRef
12.
Zurück zum Zitat Karamouz, M., Taheri, M., Khalili, P., & Chen, X. (2019). Building infrastructure resilience in coastal flood risk management. Journal of Water Resources Planning and Management, 145. Karamouz, M., Taheri, M., Khalili, P., & Chen, X. (2019). Building infrastructure resilience in coastal flood risk management. Journal of Water Resources Planning and Management, 145.
13.
Zurück zum Zitat Jin, J. G., Tang, L. C., Sun, L., & Lee, D. H. (2014). Enhancing metro network resilience via localized integration with bus services. Transportation Research Part E: Logistics and Transportation Review, 63, 17–30.CrossRef Jin, J. G., Tang, L. C., Sun, L., & Lee, D. H. (2014). Enhancing metro network resilience via localized integration with bus services. Transportation Research Part E: Logistics and Transportation Review, 63, 17–30.CrossRef
14.
Zurück zum Zitat Zhang, D, M., Du, F., Huang, H., Zhang, F., et al. (2018). Resiliency assessment of urban rail transit networks: Shanghai metro as an example. Safety Science, 106, 230–243. Zhang, D, M., Du, F., Huang, H., Zhang, F., et al. (2018). Resiliency assessment of urban rail transit networks: Shanghai metro as an example. Safety Science, 106, 230–243.
15.
Zurück zum Zitat Didier, M., Broccardo, M., Esposito, S., & Stojadinovic, B. (2018). A compositional demand/supply framework to quantify the resilience of civil infrastructure systems (Re-CoDeS). Sustainable and Resilient Infrastructure, 3, 86–102.CrossRef Didier, M., Broccardo, M., Esposito, S., & Stojadinovic, B. (2018). A compositional demand/supply framework to quantify the resilience of civil infrastructure systems (Re-CoDeS). Sustainable and Resilient Infrastructure, 3, 86–102.CrossRef
16.
Zurück zum Zitat Rehak, D., Senovsky, P., Hromada, M., & Lovecek, T. (2019). Complex approach to assessing resilience of critical infrastructure elements. International Journal of Critical Infrastructure Protection, 25, 125–138.CrossRef Rehak, D., Senovsky, P., Hromada, M., & Lovecek, T. (2019). Complex approach to assessing resilience of critical infrastructure elements. International Journal of Critical Infrastructure Protection, 25, 125–138.CrossRef
17.
Zurück zum Zitat Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., et al. (2003). A Framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19, 733–752.CrossRef Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., et al. (2003). A Framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19, 733–752.CrossRef
18.
Zurück zum Zitat Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32, 3639–3649.CrossRef Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32, 3639–3649.CrossRef
19.
Zurück zum Zitat Henry, D., & Emmanuel, R.-M. (2012). Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering and System Safety, 99, 114–122.CrossRef Henry, D., & Emmanuel, R.-M. (2012). Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering and System Safety, 99, 114–122.CrossRef
21.
Zurück zum Zitat Kusumastuti, R. D., Viverita, Husodo, Z. A., Suardi, L., et al. (2014). Developing a resilience index towards natural disasters in Indonesia. International Journal of Disaster Risk Reduction, 10, 327–340. Kusumastuti, R. D., Viverita, Husodo, Z. A., Suardi, L., et al. (2014). Developing a resilience index towards natural disasters in Indonesia. International Journal of Disaster Risk Reduction, 10, 327–340.
22.
Zurück zum Zitat United Nations International Strategy for Disaster Reduction. (2009). UNISDR Terminology on Disaster Risk Reduction, 21184, 1–41. United Nations International Strategy for Disaster Reduction. (2009). UNISDR Terminology on Disaster Risk Reduction, 21184, 1–41.
24.
Zurück zum Zitat Wang, L., Xue, X., Wang, Z., & Zhang, L. (2018). A unified assessment approach for urban infrastructure sustainability and resilience. In Advances in Civil Engineering. Wang, L., Xue, X., Wang, Z., & Zhang, L. (2018). A unified assessment approach for urban infrastructure sustainability and resilience. In Advances in Civil Engineering.
25.
Zurück zum Zitat Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268–281.CrossRef Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268–281.CrossRef
26.
Zurück zum Zitat Khademi, N., Balaei, B., Shahri, M., Mirzaei, M., et al. (2015). Transportation network vulnerability analysis for the case of a catastrophic earthquake. International Journal of Disaster Risk Reduction, 12, 234–254.CrossRef Khademi, N., Balaei, B., Shahri, M., Mirzaei, M., et al. (2015). Transportation network vulnerability analysis for the case of a catastrophic earthquake. International Journal of Disaster Risk Reduction, 12, 234–254.CrossRef
27.
Zurück zum Zitat Saaty, T. L. (2011). How to make a decision: The analytic hierarchy process. International Series in Operations Research and Management Science, 147, 577–591.CrossRef Saaty, T. L. (2011). How to make a decision: The analytic hierarchy process. International Series in Operations Research and Management Science, 147, 577–591.CrossRef
29.
Zurück zum Zitat Aczbl, J., & Saaty, T. L. (1983). Procedures for Synthesizing, 102, 93–102. Aczbl, J., & Saaty, T. L. (1983). Procedures for Synthesizing, 102, 93–102.
30.
Zurück zum Zitat Escobar, M. T., Aguarón, J., & Moreno-Jiménez, J. M. (2004). A note on AHP group consistency for the row geometric mean priorization procedure. European Journal of Operational Research, 153, 318–322.CrossRef Escobar, M. T., Aguarón, J., & Moreno-Jiménez, J. M. (2004). A note on AHP group consistency for the row geometric mean priorization procedure. European Journal of Operational Research, 153, 318–322.CrossRef
31.
Zurück zum Zitat Dong, Y., Zhang, G., Hong, W. C., & Xu, Y. (2010). Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems, 49, 281–289.CrossRef Dong, Y., Zhang, G., Hong, W. C., & Xu, Y. (2010). Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems, 49, 281–289.CrossRef
32.
Zurück zum Zitat Bernasconi, M., Choirat, C., & Seri, R. (2014). Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence. European Journal of Operational Research, 232, 584–592.CrossRef Bernasconi, M., Choirat, C., & Seri, R. (2014). Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence. European Journal of Operational Research, 232, 584–592.CrossRef
33.
Zurück zum Zitat Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108, 165–169.CrossRef Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108, 165–169.CrossRef
Metadaten
Titel
Resilience Evaluation of Complex Urban Public Spaces
verfasst von
Hui Xu
Yang Li
Yongtao Tan
Liudan Jiao
Yuting Yang
Xiaofeng Hu
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-8892-1_30

Premium Partner