Skip to main content
Erschienen in: Journal of Elasticity 2/2015

01.02.2015

Reverse Poynting Effects in the Torsion of Soft Biomaterials

verfasst von: Cornelius O. Horgan, Jeremiah G. Murphy

Erschienen in: Journal of Elasticity | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The torsion of solid cylindrical bodies has been widely investigated in the context of isotropic nonlinear elasticity theory with application to the behavior of rubber-like materials. More recently, this problem for anisotropic materials has attracted attention in investigations of the biomechanics of soft tissues and has been applied, for example, to examine the mechanical behavior of passive papillary muscles of the heart. Here we consider the torsion of a solid circular cylinder composed of a transversely isotropic incompressible material described by a strain-energy function that depends on the full set of relevant invariants. Three specific strain-energy density functions modeling soft tissues are considered in detail. These models are quadratic in the anisotropic invariants, linear in the isotropic strain invariants and are consistent with the linear theory. The classic Poynting effect found for isotropic rubber-like materials where torsion induces elongation of the cylinder is shown to be significantly different for the transversely isotropic materials considered here. For sufficiently small angles of twist that are consistent with the physiological strain range, a reverse Poynting effect is demonstrated where the cylinder tends to shorten on twisting. The results obtained here have important implications for the development of accurate torsion test protocols for determination of material properties of soft biomaterials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers and biological tissue. Appl. Mech. Rev. 40, 1699–1734 (1989) ADSCrossRef Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers and biological tissue. Appl. Mech. Rev. 40, 1699–1734 (1989) ADSCrossRef
2.
Zurück zum Zitat Criscione, J.C., Lorenzen-Schmidt, I., Humphrey, J.D., Hunter, W.C.: Mechanical contribution of endocardium during finite extension and torsion experiments on papillary muscle. Ann. Biomed. Eng. 27, 123–130 (1999) CrossRef Criscione, J.C., Lorenzen-Schmidt, I., Humphrey, J.D., Hunter, W.C.: Mechanical contribution of endocardium during finite extension and torsion experiments on papillary muscle. Ann. Biomed. Eng. 27, 123–130 (1999) CrossRef
4.
Zurück zum Zitat Destrade, M., Mac Donald, B., Murphy, J.G., Saccomandi, G.: At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. Comput. Mech. 52, 959–969 (2013) CrossRefMATHMathSciNet Destrade, M., Mac Donald, B., Murphy, J.G., Saccomandi, G.: At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. Comput. Mech. 52, 959–969 (2013) CrossRefMATHMathSciNet
5.
Zurück zum Zitat Dokos, S., Smaill, B.H., Young, A.A., LeGrice, I.J.: Shear properties of passive ventricular myocardium. Am. J. Physiol., Heart Circ. Physiol. 283, H2650–H2659 (2002) Dokos, S., Smaill, B.H., Young, A.A., LeGrice, I.J.: Shear properties of passive ventricular myocardium. Am. J. Physiol., Heart Circ. Physiol. 283, H2650–H2659 (2002)
6.
Zurück zum Zitat El Hamdaoui, M., Merodio, J., Ogden, R.W., Rodriguez, J.: Finite elastic deformations of transversely isotropic circular tubes. Int. J. Solids Struct. 51, 1188–1196 (2014) CrossRef El Hamdaoui, M., Merodio, J., Ogden, R.W., Rodriguez, J.: Finite elastic deformations of transversely isotropic circular tubes. Int. J. Solids Struct. 51, 1188–1196 (2014) CrossRef
7.
Zurück zum Zitat Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. J. Ration. Mech. Anal. 3, 281–301 (1954). Reprinted in: Barenblatt, G.I., Joseph, D.D. (eds.): Collected Papers of R.S. Rivlin, vol. 1, pp. 467–487. Springer, New York (1997) MATHMathSciNet Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. J. Ration. Mech. Anal. 3, 281–301 (1954). Reprinted in: Barenblatt, G.I., Joseph, D.D. (eds.): Collected Papers of R.S. Rivlin, vol. 1, pp. 467–487. Springer, New York (1997) MATHMathSciNet
8.
Zurück zum Zitat Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013) CrossRef Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013) CrossRef
9.
Zurück zum Zitat Gennisson, J.-L., Catheline, S., Chaffa, S., Fink, M.: Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J. Acoust. Soc. Am. 114, 536–541 (2003) ADSCrossRef Gennisson, J.-L., Catheline, S., Chaffa, S., Fink, M.: Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J. Acoust. Soc. Am. 114, 536–541 (2003) ADSCrossRef
10.
Zurück zum Zitat Gorman, J.H., Gupta, K.B., Streicher, J.T., Gorman, R.C., Jackson, B.M., Ratcliffe, M.B., Bogen, D.K., Edmunds, L.H.: Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112, 712–726 (1996) CrossRef Gorman, J.H., Gupta, K.B., Streicher, J.T., Gorman, R.C., Jackson, B.M., Ratcliffe, M.B., Bogen, D.K., Edmunds, L.H.: Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112, 712–726 (1996) CrossRef
11.
Zurück zum Zitat Horgan, C.O., Murphy, J.G.: Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J. Elast. 98, 205–221 (2010) CrossRefMATHMathSciNet Horgan, C.O., Murphy, J.G.: Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J. Elast. 98, 205–221 (2010) CrossRefMATHMathSciNet
13.
Zurück zum Zitat Horgan, C.O., Murphy, J.G.: On the normal stresses in simple shearing of fiber-reinforced nonlinearly elastic materials. J. Elast. 104, 343–355 (2011) CrossRefMATHMathSciNet Horgan, C.O., Murphy, J.G.: On the normal stresses in simple shearing of fiber-reinforced nonlinearly elastic materials. J. Elast. 104, 343–355 (2011) CrossRefMATHMathSciNet
14.
Zurück zum Zitat Horgan, C.O., Murphy, J.G.: Torsion of incompressible fiber-reinforced nonlinearly elastic circular cylinders. J. Elast. 103, 235–246 (2011) CrossRefMATHMathSciNet Horgan, C.O., Murphy, J.G.: Torsion of incompressible fiber-reinforced nonlinearly elastic circular cylinders. J. Elast. 103, 235–246 (2011) CrossRefMATHMathSciNet
15.
Zurück zum Zitat Horgan, C.O., Murphy, J.G.: On the modeling of extension-torsion experimental data for transversely isotropic biological soft tissues. J. Elast. 108, 179–191 (2012) CrossRefMATHMathSciNet Horgan, C.O., Murphy, J.G.: On the modeling of extension-torsion experimental data for transversely isotropic biological soft tissues. J. Elast. 108, 179–191 (2012) CrossRefMATHMathSciNet
16.
Zurück zum Zitat Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005) ADSCrossRefMathSciNet Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005) ADSCrossRefMathSciNet
17.
Zurück zum Zitat Horgan, C.O., Smayda, M.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012) CrossRef Horgan, C.O., Smayda, M.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012) CrossRef
18.
Zurück zum Zitat Humphrey, J.D.: Cardiovascular Solid Mechanics. Springer, New York (2002) CrossRef Humphrey, J.D.: Cardiovascular Solid Mechanics. Springer, New York (2002) CrossRef
19.
Zurück zum Zitat Humphrey, J.D., Barazotto, R.L. Jr., Hunter, W.C.: Finite extension and torsion of papillary muscles: a theoretical framework. J. Biomech. 25, 541–547 (1992) CrossRef Humphrey, J.D., Barazotto, R.L. Jr., Hunter, W.C.: Finite extension and torsion of papillary muscles: a theoretical framework. J. Biomech. 25, 541–547 (1992) CrossRef
20.
Zurück zum Zitat Janmey, P.M., McCormick, M.E., Rammensee, S., Leight, J.L., Georges, P.C., MacKintosh, F.C.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007) ADSCrossRef Janmey, P.M., McCormick, M.E., Rammensee, S., Leight, J.L., Georges, P.C., MacKintosh, F.C.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007) ADSCrossRef
21.
Zurück zum Zitat Kang, H., Wen, Q., Janmey, P.M., Tang, J.X., Conti, E., MacKintosh, F.C.: Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels. J. Phys. Chem. B 113, 3799–3805 (2009) CrossRef Kang, H., Wen, Q., Janmey, P.M., Tang, J.X., Conti, E., MacKintosh, F.C.: Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels. J. Phys. Chem. B 113, 3799–3805 (2009) CrossRef
22.
Zurück zum Zitat Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005) ADSCrossRefMATH Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005) ADSCrossRefMATH
23.
Zurück zum Zitat Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. Lond. A 467, 3633–3646 (2011) ADSCrossRefMATHMathSciNet Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. Lond. A 467, 3633–3646 (2011) ADSCrossRefMATHMathSciNet
24.
Zurück zum Zitat Mihai, L.A., Goriely, A.: Numerical simulation of shear and the Poynting effects by the finite element method: an application of the generalized empirical inequalities in nonlinear elasticity. Int. J. Non-Linear Mech. 49, 1–14 (2013) CrossRef Mihai, L.A., Goriely, A.: Numerical simulation of shear and the Poynting effects by the finite element method: an application of the generalized empirical inequalities in nonlinear elasticity. Int. J. Non-Linear Mech. 49, 1–14 (2013) CrossRef
25.
Zurück zum Zitat Morrow, D.A., Haut Donahue, T.L., Odegard, G.M., Kaufman, K.R.: Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 3, 124–129 (2010) CrossRef Morrow, D.A., Haut Donahue, T.L., Odegard, G.M., Kaufman, K.R.: Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 3, 124–129 (2010) CrossRef
26.
Zurück zum Zitat Murphy, J.G.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A, Solids 42, 90–96 (2013) ADSCrossRefMathSciNet Murphy, J.G.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A, Solids 42, 90–96 (2013) ADSCrossRefMathSciNet
27.
Zurück zum Zitat Nardinocchi, P., Svaton, T., Teresi, L.: Torsional deformations in incompressible fiber-reinforced cylindrical pipes. Eur. J. Mech. A, Solids 29, 266–273 (2010) ADSCrossRef Nardinocchi, P., Svaton, T., Teresi, L.: Torsional deformations in incompressible fiber-reinforced cylindrical pipes. Eur. J. Mech. A, Solids 29, 266–273 (2010) ADSCrossRef
28.
Zurück zum Zitat Notomi, Y., Lysyansky, P., Setser, R.M., Shiota, T., Popovic, Z.B., Martin-Miklovic, M.G., Weaver, J.A., Oryszak, S.J., Greenberg, N.L., White, R.D., Thomas, J.D.: Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J. Am. Coll. Cardiol. 45, 2034–2041 (2005) CrossRef Notomi, Y., Lysyansky, P., Setser, R.M., Shiota, T., Popovic, Z.B., Martin-Miklovic, M.G., Weaver, J.A., Oryszak, S.J., Greenberg, N.L., White, R.D., Thomas, J.D.: Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J. Am. Coll. Cardiol. 45, 2034–2041 (2005) CrossRef
29.
Zurück zum Zitat Ogden, R.W.: Elements of the theory of finite elasticity. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications. London Mathematical Society Lecture Notes Series, vol. 283, pp. 1–57. Cambridge University Press, Cambridge (2001) CrossRef Ogden, R.W.: Elements of the theory of finite elasticity. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications. London Mathematical Society Lecture Notes Series, vol. 283, pp. 1–57. Cambridge University Press, Cambridge (2001) CrossRef
30.
Zurück zum Zitat Papazoglou, S., Rump, J., Braun, J., Sack, I.: Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 56, 489–497 (2006) CrossRef Papazoglou, S., Rump, J., Braun, J., Sack, I.: Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 56, 489–497 (2006) CrossRef
31.
Zurück zum Zitat Poynting, J.H.: On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. A 82, 546–559 (1909) ADSCrossRefMATH Poynting, J.H.: On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. A 82, 546–559 (1909) ADSCrossRefMATH
32.
Zurück zum Zitat Rivlin, R.S.: Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A 242, 173–195 (1949). Reprinted in: Barenblatt, G.I., Joseph, D.D. (eds.): Collected Papers of R.S. Rivlin, vol. 1, pp. 120–142. Springer, New York (1997) ADSCrossRefMATHMathSciNet Rivlin, R.S.: Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A 242, 173–195 (1949). Reprinted in: Barenblatt, G.I., Joseph, D.D. (eds.): Collected Papers of R.S. Rivlin, vol. 1, pp. 120–142. Springer, New York (1997) ADSCrossRefMATHMathSciNet
33.
Zurück zum Zitat Sinkus, R., Tanter, M., Catheline, S., Lorenzen, J., Kuhl, C., Sondermann, E., Fink, M.: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn. Reson. Med. 53, 372–387 (2005) CrossRef Sinkus, R., Tanter, M., Catheline, S., Lorenzen, J., Kuhl, C., Sondermann, E., Fink, M.: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn. Reson. Med. 53, 372–387 (2005) CrossRef
34.
Zurück zum Zitat Taber, L.A.: Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific, Singapore (2004) CrossRef Taber, L.A.: Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific, Singapore (2004) CrossRef
35.
Zurück zum Zitat Taber, L.A., Yang, M., Podszus, W.W.: Mechanics of ventricular torsion. J. Biomech. 29, 745–752 (1996) CrossRef Taber, L.A., Yang, M., Podszus, W.W.: Mechanics of ventricular torsion. J. Biomech. 29, 745–752 (1996) CrossRef
36.
Zurück zum Zitat Tibayan, F.A., Lai, D.T.M., Timek, T.A., Dagum, P., Liang, D., Daughters, G.T., Ingels, N.B., Miller, D.C.: Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg. 124, 43–49 (2002) CrossRef Tibayan, F.A., Lai, D.T.M., Timek, T.A., Dagum, P., Liang, D., Daughters, G.T., Ingels, N.B., Miller, D.C.: Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg. 124, 43–49 (2002) CrossRef
37.
Zurück zum Zitat Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flugge, S. (ed.) Handbuch der Physik (3rd edn.), vol. III/3. Springer, Berlin (2004) Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flugge, S. (ed.) Handbuch der Physik (3rd edn.), vol. III/3. Springer, Berlin (2004)
Metadaten
Titel
Reverse Poynting Effects in the Torsion of Soft Biomaterials
verfasst von
Cornelius O. Horgan
Jeremiah G. Murphy
Publikationsdatum
01.02.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 2/2015
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-014-9482-5

Weitere Artikel der Ausgabe 2/2015

Journal of Elasticity 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.