Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2021

02.08.2021 | Review--Mechanical Engineering

Review of Natural Convection Within Various Shapes of Enclosures

verfasst von: Ammar Abdulkadhim, Isam Mejbel Abed, Nejla Mahjoub Said

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The previous studies related to the thermal-driven flow within enclosures had been summarized in the present work. Various geometries of enclosures like square, rectangular and triangular had been summarized. Besides, enclosures filled with different fluids had been taken into consideration like traditional and nanofluids as well as porous medium, Newtonian and non-Newtonian fluids and multilayer systems. The governing equations of heat transfer and fluid flows had been presented for different cases. Different numerical models like homogeneous, inhomogeneous and thermal non-equilibrium model, Darcy, Darcy extended–Forchheimer model, etc., had been summarized. The influence of various dimensionless parameters like Rayleigh, Darcy, Bejan and Hartmann number, nanofluid loading, diverse thermal cases of the applied boundary conditions, angle of inclination, the number for undulations, the existence of inner body and many others parameters acting and influencing hardly up on both of the entropy generation and the heat transfer was illustrated. The present review illustrates the physical mechanism behind the buoyancy thermally driven flow in terms of figures of contours as well as the Nusselt numbers profiles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lee, S., et al.: Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. J. Power Sources 112(2), 410–418 (2002)CrossRef Lee, S., et al.: Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. J. Power Sources 112(2), 410–418 (2002)CrossRef
2.
Zurück zum Zitat Arik, M.; Garg, J.; Bar-Cohen, A.: Thermal modeling and performance of high heat flux SOP packages. IEEE Trans. Adv. Packag. 27(2), 398–412 (2004)CrossRef Arik, M.; Garg, J.; Bar-Cohen, A.: Thermal modeling and performance of high heat flux SOP packages. IEEE Trans. Adv. Packag. 27(2), 398–412 (2004)CrossRef
3.
Zurück zum Zitat Singh, H.; Eames, P.C.: A review of natural convective heat transfer correlations in rectangular cross-section cavities and their potential applications to compound parabolic concentrating (CPC) solar collector cavities. Appl. Therm. Eng. 31(14–15), 2186–2196 (2011)CrossRef Singh, H.; Eames, P.C.: A review of natural convective heat transfer correlations in rectangular cross-section cavities and their potential applications to compound parabolic concentrating (CPC) solar collector cavities. Appl. Therm. Eng. 31(14–15), 2186–2196 (2011)CrossRef
4.
Zurück zum Zitat Baïri, A.; Zarco-Pernia, E.; de María, J.M.G.: A review on natural convection in enclosures for engineering applications The particular case of the parallelogrammic diode cavity. Appl. Thermal Eng. 63(1), 304–322 (2014)CrossRef Baïri, A.; Zarco-Pernia, E.; de María, J.M.G.: A review on natural convection in enclosures for engineering applications The particular case of the parallelogrammic diode cavity. Appl. Thermal Eng. 63(1), 304–322 (2014)CrossRef
5.
Zurück zum Zitat Hemmat Esfe, M., et al.: A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics. Appl. Thermal Eng. 178, 115487 (2020)CrossRef Hemmat Esfe, M., et al.: A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics. Appl. Thermal Eng. 178, 115487 (2020)CrossRef
6.
Zurück zum Zitat Das, D.; Roy, M.; Basak, T.: Studies on natural convection within enclosures of various (non-square) shapes—A review. Int. J. Heat Mass Transf. 106, 356–406 (2017)CrossRef Das, D.; Roy, M.; Basak, T.: Studies on natural convection within enclosures of various (non-square) shapes—A review. Int. J. Heat Mass Transf. 106, 356–406 (2017)CrossRef
7.
Zurück zum Zitat Biswal, P.; Basak, T.: Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: a review. Renew. Sustain. Energy Rev. 80, 1412–1457 (2017)CrossRef Biswal, P.; Basak, T.: Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: a review. Renew. Sustain. Energy Rev. 80, 1412–1457 (2017)CrossRef
8.
Zurück zum Zitat Miroshnichenko, I.V.; Sheremet, M.A.: Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: a review. Renew. Sustain. Energy Rev. 82, 40–59 (2018)CrossRef Miroshnichenko, I.V.; Sheremet, M.A.: Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: a review. Renew. Sustain. Energy Rev. 82, 40–59 (2018)CrossRef
9.
Zurück zum Zitat Pandey, S.; Park, Y.G.; Ha, M.Y.: An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes. Int. J. Heat Mass Transf. 138, 762–795 (2019)CrossRef Pandey, S.; Park, Y.G.; Ha, M.Y.: An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes. Int. J. Heat Mass Transf. 138, 762–795 (2019)CrossRef
10.
Zurück zum Zitat Sadeghi, M.S.; et al.: On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. J. Thermal Anal. Calorimet. 141, 1–22 (2020) Sadeghi, M.S.; et al.: On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. J. Thermal Anal. Calorimet. 141, 1–22 (2020)
11.
Zurück zum Zitat Basak, T.; Roy, S.; Balakrishnan, A.: Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 49(23–24), 4525–4535 (2006)MATHCrossRef Basak, T.; Roy, S.; Balakrishnan, A.: Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 49(23–24), 4525–4535 (2006)MATHCrossRef
12.
Zurück zum Zitat Aydin, O.; Ünal, A.; Ayhan, T.: Natural convection in rectangular enclosures heated from one side and cooled from the ceiling. Int. J. Heat Mass Transf. 42(13), 2345–2355 (1999)MATHCrossRef Aydin, O.; Ünal, A.; Ayhan, T.: Natural convection in rectangular enclosures heated from one side and cooled from the ceiling. Int. J. Heat Mass Transf. 42(13), 2345–2355 (1999)MATHCrossRef
13.
Zurück zum Zitat Sarris, I.; Lekakis, I.; Vlachos, N.: Natural convection in a 2D enclosure with sinusoidal upper wall temperature. Numer. Heat Transfer: Part A: Appl. 42(5), 513–530 (2002)CrossRef Sarris, I.; Lekakis, I.; Vlachos, N.: Natural convection in a 2D enclosure with sinusoidal upper wall temperature. Numer. Heat Transfer: Part A: Appl. 42(5), 513–530 (2002)CrossRef
14.
Zurück zum Zitat Haese, P.; Teubner, M.: Heat exchange in an attic space. Int. J. Heat Mass Transf. 45(25), 4925–4936 (2002)MATHCrossRef Haese, P.; Teubner, M.: Heat exchange in an attic space. Int. J. Heat Mass Transf. 45(25), 4925–4936 (2002)MATHCrossRef
15.
Zurück zum Zitat Salmun, H.: Convection patterns in a triangular domain. Int. J. Heat Mass Transf. 38(2), 351–362 (1995)MATHCrossRef Salmun, H.: Convection patterns in a triangular domain. Int. J. Heat Mass Transf. 38(2), 351–362 (1995)MATHCrossRef
16.
Zurück zum Zitat Wooding, R.: Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2(3), 273–285 (1957)MathSciNetMATHCrossRef Wooding, R.: Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2(3), 273–285 (1957)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Bhattacharya, M.; Basak, T.: On multiple steady states for natural convection (low Prandtl number fluid) within porous square enclosures: effect of nonuniformity of wall temperatures. Int. J. Heat Mass Transf. 59, 230–246 (2013)CrossRef Bhattacharya, M.; Basak, T.: On multiple steady states for natural convection (low Prandtl number fluid) within porous square enclosures: effect of nonuniformity of wall temperatures. Int. J. Heat Mass Transf. 59, 230–246 (2013)CrossRef
18.
Zurück zum Zitat Singh, A.K., et al.: Role of entropy generation on thermal management during natural convection in tilted porous square cavities. J. Taiwan Inst. Chem. Eng. 50, 153–172 (2015)CrossRef Singh, A.K., et al.: Role of entropy generation on thermal management during natural convection in tilted porous square cavities. J. Taiwan Inst. Chem. Eng. 50, 153–172 (2015)CrossRef
19.
Zurück zum Zitat Mansour, M.; Bakier, M.: Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid. Int. Commun. Heat Mass Transfer 44, 108–115 (2013)CrossRef Mansour, M.; Bakier, M.: Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid. Int. Commun. Heat Mass Transfer 44, 108–115 (2013)CrossRef
20.
Zurück zum Zitat Ghasemi, B.; Aminossadati, S.: Brownian motion of nanoparticles in a triangular enclosure with natural convection. Int. J. Therm. Sci. 49(6), 931–940 (2010)CrossRef Ghasemi, B.; Aminossadati, S.: Brownian motion of nanoparticles in a triangular enclosure with natural convection. Int. J. Therm. Sci. 49(6), 931–940 (2010)CrossRef
21.
Zurück zum Zitat Koo, J.; Kleinstreuer, C.: Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf. 48(13), 2652–2661 (2005)MATHCrossRef Koo, J.; Kleinstreuer, C.: Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf. 48(13), 2652–2661 (2005)MATHCrossRef
22.
Zurück zum Zitat Abu-Nada, E., et al.: Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49(3), 479–491 (2010)CrossRef Abu-Nada, E., et al.: Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49(3), 479–491 (2010)CrossRef
23.
Zurück zum Zitat Turan, O.; Chakraborty, N.; Poole, R.J.: Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls. J. Nonnewton. Fluid Mech. 165(15), 901–913 (2010)MATHCrossRef Turan, O.; Chakraborty, N.; Poole, R.J.: Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls. J. Nonnewton. Fluid Mech. 165(15), 901–913 (2010)MATHCrossRef
24.
Zurück zum Zitat Turan, O., et al.: Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J. Nonnewton. Fluid Mech. 166(17), 1049–1063 (2011)MATHCrossRef Turan, O., et al.: Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J. Nonnewton. Fluid Mech. 166(17), 1049–1063 (2011)MATHCrossRef
25.
Zurück zum Zitat Turan, O., et al.: Laminar natural convection of power-law fluids in a square enclosure submitted from below to a uniform heat flux density. J. Nonnewton. Fluid Mech. 199, 80–95 (2013)CrossRef Turan, O., et al.: Laminar natural convection of power-law fluids in a square enclosure submitted from below to a uniform heat flux density. J. Nonnewton. Fluid Mech. 199, 80–95 (2013)CrossRef
26.
Zurück zum Zitat Pishkar, I., et al.: Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux. J. Therm. Anal. Calorim. 138(2), 1697–1710 (2019)CrossRef Pishkar, I., et al.: Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux. J. Therm. Anal. Calorim. 138(2), 1697–1710 (2019)CrossRef
27.
Zurück zum Zitat Varol, Y.; Oztop, H.F.; Koca, A.: Effects of inclination angle on conduction—natural convection in divided enclosures filled with different fluids. Int. Commun. Heat Mass Transfer 37(2), 182–191 (2010)CrossRef Varol, Y.; Oztop, H.F.; Koca, A.: Effects of inclination angle on conduction—natural convection in divided enclosures filled with different fluids. Int. Commun. Heat Mass Transfer 37(2), 182–191 (2010)CrossRef
28.
Zurück zum Zitat Oztop, H.F., et al.: Conjugate natural convection in air filled tube inserted a square cavity. Int. Commun. Heat Mass Transfer 38(5), 590–596 (2011)CrossRef Oztop, H.F., et al.: Conjugate natural convection in air filled tube inserted a square cavity. Int. Commun. Heat Mass Transfer 38(5), 590–596 (2011)CrossRef
29.
Zurück zum Zitat Chen, S.; Liu, H.; Zheng, C.: Numerical study of turbulent double-diffusive natural convection in a square cavity by LES-based lattice Boltzmann model. Int. J. Heat Mass Transf. 55(17), 4862–4870 (2012)CrossRef Chen, S.; Liu, H.; Zheng, C.: Numerical study of turbulent double-diffusive natural convection in a square cavity by LES-based lattice Boltzmann model. Int. J. Heat Mass Transf. 55(17), 4862–4870 (2012)CrossRef
30.
Zurück zum Zitat Costa, V.A.F.: Natural convection in partially divided square enclosures: Effects of thermal boundary conditions and thermal conductivity of the partitions. Int. J. Heat Mass Transf. 55(25), 7812–7822 (2012)CrossRef Costa, V.A.F.: Natural convection in partially divided square enclosures: Effects of thermal boundary conditions and thermal conductivity of the partitions. Int. J. Heat Mass Transf. 55(25), 7812–7822 (2012)CrossRef
31.
Zurück zum Zitat Huelsz, G.; Rechtman, R.: Heat transfer due to natural convection in an inclined square cavity using the lattice Boltzmann equation method. Int. J. Therm. Sci. 65, 111–119 (2013)CrossRef Huelsz, G.; Rechtman, R.: Heat transfer due to natural convection in an inclined square cavity using the lattice Boltzmann equation method. Int. J. Therm. Sci. 65, 111–119 (2013)CrossRef
32.
Zurück zum Zitat Corcione, M.; Grignaffini, S.; Quintino, A.: Correlations for the double-diffusive natural convection in square enclosures induced by opposite temperature and concentration gradients. Int. J. Heat Mass Transf. 81, 811–819 (2015)CrossRef Corcione, M.; Grignaffini, S.; Quintino, A.: Correlations for the double-diffusive natural convection in square enclosures induced by opposite temperature and concentration gradients. Int. J. Heat Mass Transf. 81, 811–819 (2015)CrossRef
33.
Zurück zum Zitat Elatar, A.; Teamah, M.A.; Hassab, M.A.: Numerical study of laminar natural convection inside square enclosure with single horizontal fin. Int. J. Thermal Sci. 99, 41–51 (2016)CrossRef Elatar, A.; Teamah, M.A.; Hassab, M.A.: Numerical study of laminar natural convection inside square enclosure with single horizontal fin. Int. J. Thermal Sci. 99, 41–51 (2016)CrossRef
34.
Zurück zum Zitat Corcione, M.; Habib, E.: Buoyant heat transport in fluids across tilted square cavities discretely heated at one side. Int. J. Therm. Sci. 49(5), 797–808 (2010)CrossRef Corcione, M.; Habib, E.: Buoyant heat transport in fluids across tilted square cavities discretely heated at one side. Int. J. Therm. Sci. 49(5), 797–808 (2010)CrossRef
35.
Zurück zum Zitat Mukhopadhyay, A.: Analysis of entropy generation due to natural convection in square enclosures with multiple discrete heat sources. Int. Commun. Heat Mass Transfer 37(7), 867–872 (2010)CrossRef Mukhopadhyay, A.: Analysis of entropy generation due to natural convection in square enclosures with multiple discrete heat sources. Int. Commun. Heat Mass Transfer 37(7), 867–872 (2010)CrossRef
36.
Zurück zum Zitat Corvaro, F.; Paroncini, M.; Sotte, M.: Experimental PIV and interferometric analysis of natural convection in a square enclosure with partially active hot and cold walls. Int. J. Therm. Sci. 50(9), 1629–1638 (2011)CrossRef Corvaro, F.; Paroncini, M.; Sotte, M.: Experimental PIV and interferometric analysis of natural convection in a square enclosure with partially active hot and cold walls. Int. J. Therm. Sci. 50(9), 1629–1638 (2011)CrossRef
37.
Zurück zum Zitat Mobedi, M.; Özkol, Ü.; Sunden, B.: Visualization of diffusion and convection heat transport in a square cavity with natural convection. Int. J. Heat Mass Transf. 53(1), 99–109 (2010)MATHCrossRef Mobedi, M.; Özkol, Ü.; Sunden, B.: Visualization of diffusion and convection heat transport in a square cavity with natural convection. Int. J. Heat Mass Transf. 53(1), 99–109 (2010)MATHCrossRef
38.
Zurück zum Zitat Paroncini, M., et al.: A numerical and experimental analysis on natural convective heat transfer in a square enclosure with partially active side walls. Exp. Thermal Fluid Sci. 36, 118–125 (2012)CrossRef Paroncini, M., et al.: A numerical and experimental analysis on natural convective heat transfer in a square enclosure with partially active side walls. Exp. Thermal Fluid Sci. 36, 118–125 (2012)CrossRef
39.
Zurück zum Zitat Selimefendigil, F.; Öztop, H.F.; Al-Salem, K.: Natural convection of ferrofluids in partially heated square enclosures. J. Magn. Magn. Mater. 372, 122–133 (2014)CrossRef Selimefendigil, F.; Öztop, H.F.; Al-Salem, K.: Natural convection of ferrofluids in partially heated square enclosures. J. Magn. Magn. Mater. 372, 122–133 (2014)CrossRef
40.
Zurück zum Zitat Wang, L., et al.: Hybrid lattice Boltzmann-TVD simulation of natural convection of nanofluids in a partially heated square cavity using Buongiorno’s model. Appl. Therm. Eng. 146, 318–327 (2019)CrossRef Wang, L., et al.: Hybrid lattice Boltzmann-TVD simulation of natural convection of nanofluids in a partially heated square cavity using Buongiorno’s model. Appl. Therm. Eng. 146, 318–327 (2019)CrossRef
41.
Zurück zum Zitat Haghshenas, A.; Nasr, M.R.; Rahimian, M.H.: Numerical simulation of natural convection in an open-ended square cavity filled with porous medium by lattice Boltzmann method. Int. Commun. Heat Mass Transfer 37(10), 1513–1519 (2010)CrossRef Haghshenas, A.; Nasr, M.R.; Rahimian, M.H.: Numerical simulation of natural convection in an open-ended square cavity filled with porous medium by lattice Boltzmann method. Int. Commun. Heat Mass Transfer 37(10), 1513–1519 (2010)CrossRef
42.
Zurück zum Zitat Saleh, H.; Hashim, I.; Saeid, N.: Effect of time periodic boundary conditions on convective flows in a porous square enclosure with non-uniform internal heating. Transp. Porous Media 85(3), 885–903 (2010)MathSciNetCrossRef Saleh, H.; Hashim, I.; Saeid, N.: Effect of time periodic boundary conditions on convective flows in a porous square enclosure with non-uniform internal heating. Transp. Porous Media 85(3), 885–903 (2010)MathSciNetCrossRef
43.
Zurück zum Zitat Carvalho, P.H.S.; de Lemos, M.J.S.: Turbulent free convection in a porous square cavity using the thermal equilibirum model. Int. Commun. Heat Mass Transfer 49, 10–16 (2013)CrossRef Carvalho, P.H.S.; de Lemos, M.J.S.: Turbulent free convection in a porous square cavity using the thermal equilibirum model. Int. Commun. Heat Mass Transfer 49, 10–16 (2013)CrossRef
44.
Zurück zum Zitat Ramakrishna, D., et al.: Analysis of heatlines during natural convection within porous square enclosures: effects of thermal aspect ratio and thermal boundary conditions. Int. J. Heat Mass Transf. 59, 206–218 (2013)CrossRef Ramakrishna, D., et al.: Analysis of heatlines during natural convection within porous square enclosures: effects of thermal aspect ratio and thermal boundary conditions. Int. J. Heat Mass Transf. 59, 206–218 (2013)CrossRef
45.
Zurück zum Zitat Biswal, P.; Nag, A.; Basak, T.: Analysis of thermal management during natural convection within porous tilted square cavities via heatline and entropy generation. Int. J. Mech. Sci. 115–116, 596–615 (2016)CrossRef Biswal, P.; Nag, A.; Basak, T.: Analysis of thermal management during natural convection within porous tilted square cavities via heatline and entropy generation. Int. J. Mech. Sci. 115–116, 596–615 (2016)CrossRef
46.
Zurück zum Zitat Roy, M.; Roy, S.; Basak, T.: Finite element simulations on heatline trajectories for mixed convection in porous square enclosures: Effects of various moving walls. Eur. J. Mech. B. Fluids 59, 140–160 (2016)MathSciNetMATHCrossRef Roy, M.; Roy, S.; Basak, T.: Finite element simulations on heatline trajectories for mixed convection in porous square enclosures: Effects of various moving walls. Eur. J. Mech. B. Fluids 59, 140–160 (2016)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Ho, C.J., et al.: Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int. J. Therm. Sci. 49(8), 1345–1353 (2010)CrossRef Ho, C.J., et al.: Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int. J. Therm. Sci. 49(8), 1345–1353 (2010)CrossRef
48.
Zurück zum Zitat Lai, F.-H.; Yang, Y.-T.: Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int. J. Therm. Sci. 50(10), 1930–1941 (2011)CrossRef Lai, F.-H.; Yang, Y.-T.: Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int. J. Therm. Sci. 50(10), 1930–1941 (2011)CrossRef
49.
Zurück zum Zitat Basak, T.; Chamkha, A.J.: Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 55(21), 5526–5543 (2012)CrossRef Basak, T.; Chamkha, A.J.: Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 55(21), 5526–5543 (2012)CrossRef
50.
Zurück zum Zitat Oztop, H.F., et al.: A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition. Int. J. Heat Mass Transf. 55(19), 5076–5086 (2012)MathSciNetCrossRef Oztop, H.F., et al.: A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition. Int. J. Heat Mass Transf. 55(19), 5076–5086 (2012)MathSciNetCrossRef
51.
Zurück zum Zitat Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage. 52(1), 789–793 (2011)CrossRef Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage. 52(1), 789–793 (2011)CrossRef
52.
Zurück zum Zitat Sheikhzadeh, G.A.; Dastmalchi, M.; Khorasanizadeh, H.: Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure. Int. J. Therm. Sci. 66, 51–62 (2013)CrossRef Sheikhzadeh, G.A.; Dastmalchi, M.; Khorasanizadeh, H.: Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure. Int. J. Therm. Sci. 66, 51–62 (2013)CrossRef
53.
Zurück zum Zitat Hu, Y., et al.: Experimental and numerical study of natural convection in a square enclosure filled with nanofluid. Int. J. Heat Mass Transf. 78, 380–392 (2014)CrossRef Hu, Y., et al.: Experimental and numerical study of natural convection in a square enclosure filled with nanofluid. Int. J. Heat Mass Transf. 78, 380–392 (2014)CrossRef
54.
Zurück zum Zitat Leporini, M., et al.: Experimental and numerical investigation of natural convection in tilted square cavity filled with air. Exp. Thermal Fluid Sci. 99, 572–583 (2018)CrossRef Leporini, M., et al.: Experimental and numerical investigation of natural convection in tilted square cavity filled with air. Exp. Thermal Fluid Sci. 99, 572–583 (2018)CrossRef
55.
Zurück zum Zitat Dastmalchi, M.; Sheikhzadeh, G.A.; Abbasian Arani, A.A.: Double-diffusive natural convective in a porous square enclosure filled with nanofluid. Int. J. Thermal Sci. 95, 88–98 (2015)CrossRef Dastmalchi, M.; Sheikhzadeh, G.A.; Abbasian Arani, A.A.: Double-diffusive natural convective in a porous square enclosure filled with nanofluid. Int. J. Thermal Sci. 95, 88–98 (2015)CrossRef
56.
Zurück zum Zitat Fontes, D.H., et al.: Two numerical modelings of free convection heat transfer using nanofluids inside a square enclosure. Mech. Res. Commun. 66, 34–43 (2015)CrossRef Fontes, D.H., et al.: Two numerical modelings of free convection heat transfer using nanofluids inside a square enclosure. Mech. Res. Commun. 66, 34–43 (2015)CrossRef
57.
Zurück zum Zitat Sheremet, M.A.; Dinarvand, S.; Pop, I.: Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. Phys. E. 69, 332–341 (2015)CrossRef Sheremet, M.A.; Dinarvand, S.; Pop, I.: Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. Phys. E. 69, 332–341 (2015)CrossRef
58.
Zurück zum Zitat Sheremet, M.A.; Pop, I.; Nazar, R.: Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312–321 (2015)CrossRef Sheremet, M.A.; Pop, I.; Nazar, R.: Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312–321 (2015)CrossRef
59.
Zurück zum Zitat Mahian, O., et al.: Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int. J. Heat Mass Transf. 99, 792–804 (2016)CrossRef Mahian, O., et al.: Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int. J. Heat Mass Transf. 99, 792–804 (2016)CrossRef
60.
Zurück zum Zitat Motlagh, S.Y.; Taghizadeh, S.; Soltanipour, H.: Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model. Adv. Powder Technol. 27(6), 2526–2540 (2016)CrossRef Motlagh, S.Y.; Taghizadeh, S.; Soltanipour, H.: Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model. Adv. Powder Technol. 27(6), 2526–2540 (2016)CrossRef
61.
Zurück zum Zitat Alsabery, A., et al.: Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci. Rep. 7(1), 1–18 (2017)CrossRef Alsabery, A., et al.: Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci. Rep. 7(1), 1–18 (2017)CrossRef
62.
Zurück zum Zitat Estellé, P., et al.: Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J. Therm. Anal. Calorim. 128(3), 1765–1770 (2017)CrossRef Estellé, P., et al.: Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J. Therm. Anal. Calorim. 128(3), 1765–1770 (2017)CrossRef
63.
Zurück zum Zitat Garbadeen, I.D., et al.: Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int. Commun. Heat Mass Transfer 88, 1–8 (2017)CrossRef Garbadeen, I.D., et al.: Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int. Commun. Heat Mass Transfer 88, 1–8 (2017)CrossRef
64.
Zurück zum Zitat Liao, C.-C.: Heat transfer transitions of natural convection flows in a differentially heated square enclosure filled with nanofluids. Int. J. Heat Mass Transf. 115, 625–634 (2017)CrossRef Liao, C.-C.: Heat transfer transitions of natural convection flows in a differentially heated square enclosure filled with nanofluids. Int. J. Heat Mass Transf. 115, 625–634 (2017)CrossRef
65.
Zurück zum Zitat Emami, R.Y.; Siavashi, M.; Shahriari Moghaddam, G.: The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity. Adv. Powder Technl. 29(3), 519–536 (2018)CrossRef Emami, R.Y.; Siavashi, M.; Shahriari Moghaddam, G.: The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity. Adv. Powder Technl. 29(3), 519–536 (2018)CrossRef
66.
Zurück zum Zitat Al-Balushi, L.M.; Uddin, M.J.; Rahman, M.M.: Natural convective heat transfer in a square enclosure utilizing magnetic nanoparticles. Propulsion Power Res. 8(3), 194–209 (2019)CrossRef Al-Balushi, L.M.; Uddin, M.J.; Rahman, M.M.: Natural convective heat transfer in a square enclosure utilizing magnetic nanoparticles. Propulsion Power Res. 8(3), 194–209 (2019)CrossRef
67.
Zurück zum Zitat Al-Srayyih, B.M.; Gao, S.; Hussain, S.H.: Natural convection flow of a hybrid nanofluid in a square enclosure partially filled with a porous medium using a thermal non-equilibrium model. Phys. Fluids 31(4), 043609 (2019)CrossRef Al-Srayyih, B.M.; Gao, S.; Hussain, S.H.: Natural convection flow of a hybrid nanofluid in a square enclosure partially filled with a porous medium using a thermal non-equilibrium model. Phys. Fluids 31(4), 043609 (2019)CrossRef
68.
Zurück zum Zitat Wang, D.; Cheng, P.; Quan, X.: A solid-liquid local thermal non-equilibrium lattice Boltzmann model for heat transfer in nanofluids. Part II: natural convection of nanofluids in a square enclosure. Int. J. Heat Mass Transfer 130, 1358–1365 (2019)CrossRef Wang, D.; Cheng, P.; Quan, X.: A solid-liquid local thermal non-equilibrium lattice Boltzmann model for heat transfer in nanofluids. Part II: natural convection of nanofluids in a square enclosure. Int. J. Heat Mass Transfer 130, 1358–1365 (2019)CrossRef
69.
Zurück zum Zitat Wang, L., et al.: Thermal driven flows inside a square enclosure saturated with nanofluids: convection heat functions and transfer rate revisions from a homogenous model. Numerical Heat Transfer, Part B: Fundamentals 75(4), 265–288 (2019)CrossRef Wang, L., et al.: Thermal driven flows inside a square enclosure saturated with nanofluids: convection heat functions and transfer rate revisions from a homogenous model. Numerical Heat Transfer, Part B: Fundamentals 75(4), 265–288 (2019)CrossRef
70.
Zurück zum Zitat Ghasemi, B.; Aminossadati, S.; Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 50(9), 1748–1756 (2011)CrossRef Ghasemi, B.; Aminossadati, S.; Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 50(9), 1748–1756 (2011)CrossRef
71.
Zurück zum Zitat Ahmed, S.E., et al.: Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium. Nucl. Eng. Des. 266, 34–42 (2014)CrossRef Ahmed, S.E., et al.: Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium. Nucl. Eng. Des. 266, 34–42 (2014)CrossRef
72.
Zurück zum Zitat Bourantas, G.C.; Loukopoulos, V.C.: MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid. Int. J. Heat Mass Transf. 79, 930–944 (2014)CrossRef Bourantas, G.C.; Loukopoulos, V.C.: MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid. Int. J. Heat Mass Transf. 79, 930–944 (2014)CrossRef
73.
Zurück zum Zitat Javed, T.; Mehmood, Z.; Abbas, Z.: Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field. Phys. B 506, 122–132 (2017)CrossRef Javed, T.; Mehmood, Z.; Abbas, Z.: Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field. Phys. B 506, 122–132 (2017)CrossRef
74.
Zurück zum Zitat Mansour, M.A., et al.: Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3-Cu/water hybrid nanofluid filled with square porous cavity. Thermal Sci. Eng. Progress 6, 57–71 (2018)CrossRef Mansour, M.A., et al.: Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3-Cu/water hybrid nanofluid filled with square porous cavity. Thermal Sci. Eng. Progress 6, 57–71 (2018)CrossRef
75.
Zurück zum Zitat Mehryan, S.A.M., et al.: Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J. Mol. Liq. 263, 510–525 (2018)CrossRef Mehryan, S.A.M., et al.: Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J. Mol. Liq. 263, 510–525 (2018)CrossRef
76.
Zurück zum Zitat Rashad, A.M., et al.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018)CrossRef Rashad, A.M., et al.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018)CrossRef
77.
Zurück zum Zitat Song, K.W.; Tagawa, T.: Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int. J. Therm. Sci. 125, 52–65 (2018)CrossRef Song, K.W.; Tagawa, T.: Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int. J. Therm. Sci. 125, 52–65 (2018)CrossRef
78.
Zurück zum Zitat Hajiyan, M.; et al.: Effect of magnetic field-dependent thermal conductivity on natural convection of magnetic nanofluid inside a square enclosure. Int. J. Numer. Meth. Heat Fluid Flow 29(4), 1466–1489 (2019) Hajiyan, M.; et al.: Effect of magnetic field-dependent thermal conductivity on natural convection of magnetic nanofluid inside a square enclosure. Int. J. Numer. Meth. Heat Fluid Flow 29(4), 1466–1489 (2019)
79.
Zurück zum Zitat Al Kalbani, K.S.; Rahman, M.M.; Ziad Saghir, M.: Entropy generation in hydromagnetic nanofluids flow inside a tilted square enclosure under local thermal nonequilibrium condition. Int. J. Thermofluids 5–6, 100031 (2020)CrossRef Al Kalbani, K.S.; Rahman, M.M.; Ziad Saghir, M.: Entropy generation in hydromagnetic nanofluids flow inside a tilted square enclosure under local thermal nonequilibrium condition. Int. J. Thermofluids 5–6, 100031 (2020)CrossRef
80.
Zurück zum Zitat Zheng, Y.; et al.: Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field. J. Thermal Anal. Calorim. 141, 1–14 (2020) Zheng, Y.; et al.: Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field. J. Thermal Anal. Calorim. 141, 1–14 (2020)
81.
Zurück zum Zitat Kim, B.S., et al.: A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int. J. Heat Mass Transf. 51(7), 1888–1906 (2008)MATHCrossRef Kim, B.S., et al.: A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int. J. Heat Mass Transf. 51(7), 1888–1906 (2008)MATHCrossRef
82.
Zurück zum Zitat Lee, J.M.; Ha, M.Y.; Yoon, H.S.: Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. Int. J. Heat Mass Transf. 53(25), 5905–5919 (2010)MATHCrossRef Lee, J.M.; Ha, M.Y.; Yoon, H.S.: Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. Int. J. Heat Mass Transf. 53(25), 5905–5919 (2010)MATHCrossRef
83.
Zurück zum Zitat Hussain, S.H.; Hussein, A.K.: Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations. Int. Commun. Heat Mass Transfer 37(8), 1115–1126 (2010)CrossRef Hussain, S.H.; Hussein, A.K.: Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations. Int. Commun. Heat Mass Transfer 37(8), 1115–1126 (2010)CrossRef
84.
Zurück zum Zitat Park, Y.G.; Yoon, H.S.; Ha, M.Y.: Natural convection in square enclosure with hot and cold cylinders at different vertical locations. Int. J. Heat Mass Transf. 55(25), 7911–7925 (2012)CrossRef Park, Y.G.; Yoon, H.S.; Ha, M.Y.: Natural convection in square enclosure with hot and cold cylinders at different vertical locations. Int. J. Heat Mass Transf. 55(25), 7911–7925 (2012)CrossRef
85.
Zurück zum Zitat Park, H.K., et al.: A numerical study on natural convection in an inclined square enclosure with a circular cylinder. Int. J. Heat Mass Transf. 66, 295–314 (2013)CrossRef Park, H.K., et al.: A numerical study on natural convection in an inclined square enclosure with a circular cylinder. Int. J. Heat Mass Transf. 66, 295–314 (2013)CrossRef
86.
Zurück zum Zitat Park, Y.G.; Ha, M.Y.; Park, J.: Natural convection in a square enclosure with four circular cylinders positioned at different rectangular locations. Int. J. Heat Mass Transf. 81, 490–511 (2015)CrossRef Park, Y.G.; Ha, M.Y.; Park, J.: Natural convection in a square enclosure with four circular cylinders positioned at different rectangular locations. Int. J. Heat Mass Transf. 81, 490–511 (2015)CrossRef
87.
Zurück zum Zitat Roslan, R., et al.: Natural convection in an enclosure containing a sinusoidally heated cylindrical source. Int. J. Heat Mass Transf. 70, 119–127 (2014)CrossRef Roslan, R., et al.: Natural convection in an enclosure containing a sinusoidally heated cylindrical source. Int. J. Heat Mass Transf. 70, 119–127 (2014)CrossRef
88.
Zurück zum Zitat Alsabery, A.I., et al.: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201, 247–263 (2019)CrossRef Alsabery, A.I., et al.: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201, 247–263 (2019)CrossRef
89.
Zurück zum Zitat Umadevi, P.; Nithyadevi, N.: Convection in a sinusoidally heated square enclosure utilizing Ag−water nanofluid with heat generating solid body. Int. J. Mech. Sci. 131–132, 712–721 (2017)CrossRef Umadevi, P.; Nithyadevi, N.: Convection in a sinusoidally heated square enclosure utilizing Ag−water nanofluid with heat generating solid body. Int. J. Mech. Sci. 131–132, 712–721 (2017)CrossRef
90.
Zurück zum Zitat Dash, S.; Lee, T.: Natural convection in a square enclosure with a square heat source at different horizontal and diagonal eccentricities. Numer. Heat Transfer, Part A: Appl. 68(6), 686–710 (2015)CrossRef Dash, S.; Lee, T.: Natural convection in a square enclosure with a square heat source at different horizontal and diagonal eccentricities. Numer. Heat Transfer, Part A: Appl. 68(6), 686–710 (2015)CrossRef
91.
Zurück zum Zitat Pordanjani, A.H., et al.: Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int. J. Heat Mass Transf. 121, 565–578 (2018)CrossRef Pordanjani, A.H., et al.: Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int. J. Heat Mass Transf. 121, 565–578 (2018)CrossRef
92.
Zurück zum Zitat Usman, M.; Khan, Z.H.; Liu, M.B.: MHD natural convection and thermal control inside a cavity with obstacles under the radiation effects. Phys. A Stat. Mech. Appl. 535, 122443 (2019)MathSciNetCrossRef Usman, M.; Khan, Z.H.; Liu, M.B.: MHD natural convection and thermal control inside a cavity with obstacles under the radiation effects. Phys. A Stat. Mech. Appl. 535, 122443 (2019)MathSciNetCrossRef
93.
Zurück zum Zitat Vijaybabu, T.R.; Dhinakaran, S.: MHD Natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3−H2O nanofluid: An LBM study. Int. J. Mech. Sci. 153–154, 500–516 (2019)CrossRef Vijaybabu, T.R.; Dhinakaran, S.: MHD Natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3−H2O nanofluid: An LBM study. Int. J. Mech. Sci. 153–154, 500–516 (2019)CrossRef
94.
Zurück zum Zitat Hussain, S.H.; Rahomey, M.S.: Comparison of natural convection around a circular cylinder with different geometries of cylinders inside a square enclosure filled with Ag-nanofluid superposed porous-nanofluid layers. J. Heat Transfer 141(2), 1–12 (2019) Hussain, S.H.; Rahomey, M.S.: Comparison of natural convection around a circular cylinder with different geometries of cylinders inside a square enclosure filled with Ag-nanofluid superposed porous-nanofluid layers. J. Heat Transfer 141(2), 1–12 (2019)
95.
Zurück zum Zitat Dogonchi, A., et al.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim. 139(1), 661–671 (2020)CrossRef Dogonchi, A., et al.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim. 139(1), 661–671 (2020)CrossRef
96.
Zurück zum Zitat Hong, Y.K.; Baek, S.W.; Kim, M.Y.: Inverse natural convection problem with radiation in rectangular enclosure. Numer. Heat Transfer, Part A Appl. 57(5), 315–330 (2010)CrossRef Hong, Y.K.; Baek, S.W.; Kim, M.Y.: Inverse natural convection problem with radiation in rectangular enclosure. Numer. Heat Transfer, Part A Appl. 57(5), 315–330 (2010)CrossRef
97.
Zurück zum Zitat Sivasankaran, S.; Do, Y.; Sankar, M.: Effect of discrete heating on natural convection in a rectangular porous enclosure. Transp. Porous Media 86(1), 261–281 (2011)CrossRef Sivasankaran, S.; Do, Y.; Sankar, M.: Effect of discrete heating on natural convection in a rectangular porous enclosure. Transp. Porous Media 86(1), 261–281 (2011)CrossRef
98.
Zurück zum Zitat Alam, P., et al.: Numerical investigation of natural convection in a rectangular enclosure due to partial heating and cooling at vertical walls. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2403–2414 (2012)MathSciNetMATHCrossRef Alam, P., et al.: Numerical investigation of natural convection in a rectangular enclosure due to partial heating and cooling at vertical walls. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2403–2414 (2012)MathSciNetMATHCrossRef
99.
Zurück zum Zitat Nikbakhti, R.; Rahimi, A.B.: Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls. J. Taiwan Inst. Chem. Eng. 43(4), 535–541 (2012)CrossRef Nikbakhti, R.; Rahimi, A.B.: Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls. J. Taiwan Inst. Chem. Eng. 43(4), 535–541 (2012)CrossRef
100.
Zurück zum Zitat Cheong, H.T.; Siri, Z.; Sivasankaran, S.: Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition. Int. Commun. Heat Mass Transfer 45, 75–85 (2013)CrossRef Cheong, H.T.; Siri, Z.; Sivasankaran, S.: Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition. Int. Commun. Heat Mass Transfer 45, 75–85 (2013)CrossRef
101.
Zurück zum Zitat El Qarnia, H.; Draoui, A.; Lakhal, E.K.: Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources. Appl. Math. Model. 37(6), 3968–3981 (2013)CrossRef El Qarnia, H.; Draoui, A.; Lakhal, E.K.: Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources. Appl. Math. Model. 37(6), 3968–3981 (2013)CrossRef
102.
Zurück zum Zitat Li, D., et al.: Optical constants effect on laminar natural convection and radiation in rectangular enclosure with one vertical semitransparent wall. Int. J. Heat Mass Transf. 67, 724–733 (2013)CrossRef Li, D., et al.: Optical constants effect on laminar natural convection and radiation in rectangular enclosure with one vertical semitransparent wall. Int. J. Heat Mass Transf. 67, 724–733 (2013)CrossRef
103.
Zurück zum Zitat Wu, C.-H., et al.: The effects of boundary wettability on turbulent natural convection heat transfer in a rectangular enclosure. Int. J. Heat Mass Transf. 63, 249–254 (2013)CrossRef Wu, C.-H., et al.: The effects of boundary wettability on turbulent natural convection heat transfer in a rectangular enclosure. Int. J. Heat Mass Transf. 63, 249–254 (2013)CrossRef
104.
Zurück zum Zitat Kamkari, B.; Shokouhmand, H.; Bruno, F.: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int. J. Heat Mass Transf. 72, 186–200 (2014)CrossRef Kamkari, B.; Shokouhmand, H.; Bruno, F.: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int. J. Heat Mass Transf. 72, 186–200 (2014)CrossRef
105.
Zurück zum Zitat Oueslati, F.; Ben-Beya, B.; Lili, T.: Numerical investigation of thermosolutal natural convection in a rectangular enclosure of an aspect ratio four with heat and solute sources. Heat Mass Transf. 50(5), 721–736 (2014)CrossRef Oueslati, F.; Ben-Beya, B.; Lili, T.: Numerical investigation of thermosolutal natural convection in a rectangular enclosure of an aspect ratio four with heat and solute sources. Heat Mass Transf. 50(5), 721–736 (2014)CrossRef
106.
Zurück zum Zitat Qin, Q.; Xia, Z.A.; Tian, Z.F.: High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients. Int. J. Heat Mass Transf. 71, 405–423 (2014)CrossRef Qin, Q.; Xia, Z.A.; Tian, Z.F.: High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients. Int. J. Heat Mass Transf. 71, 405–423 (2014)CrossRef
107.
Zurück zum Zitat Elsherbiny, S.M.; Ismail, O.I.: Heat transfer in inclined air rectangular cavities with two localized heat sources. Alex. Eng. J. 54(4), 917–927 (2015)CrossRef Elsherbiny, S.M.; Ismail, O.I.: Heat transfer in inclined air rectangular cavities with two localized heat sources. Alex. Eng. J. 54(4), 917–927 (2015)CrossRef
108.
Zurück zum Zitat Morsli, S.; Sabeur, A.; El Ganaoui, M.: Influence of aspect ratio on the natural convection and entropy generation in rectangular cavities with wavy-wall. Energy Procedia 139, 29–36 (2017)CrossRef Morsli, S.; Sabeur, A.; El Ganaoui, M.: Influence of aspect ratio on the natural convection and entropy generation in rectangular cavities with wavy-wall. Energy Procedia 139, 29–36 (2017)CrossRef
109.
Zurück zum Zitat Zhang, D.-D., et al.: Free convective energy management of an inclined enclosure mounted with triple heating elements: multiple morphology optimizations with unique global energy supply. Int. J. Heat Mass Transf. 115, 406–420 (2017)CrossRef Zhang, D.-D., et al.: Free convective energy management of an inclined enclosure mounted with triple heating elements: multiple morphology optimizations with unique global energy supply. Int. J. Heat Mass Transf. 115, 406–420 (2017)CrossRef
110.
Zurück zum Zitat Hossain, M.; Asghar, S.; Gorla, R.S.R.: Buoyancy-driven flow of a viscous incompressible fluid in an open-ended rectangular cavity with permeable horizontal surfaces. Int. J. Numer. Meth. Heat Fluid Flow 20(7), 759–772 (2010) Hossain, M.; Asghar, S.; Gorla, R.S.R.: Buoyancy-driven flow of a viscous incompressible fluid in an open-ended rectangular cavity with permeable horizontal surfaces. Int. J. Numer. Meth. Heat Fluid Flow 20(7), 759–772 (2010)
111.
Zurück zum Zitat Al-Badawi, Y.M.; Duwairi, H.M.: MHD natural convection with Joule and viscous heating effects in iso-flux porous medium-filled enclosures. Appl. Math. Mech. 31(9), 1105–1112 (2010)MathSciNetMATHCrossRef Al-Badawi, Y.M.; Duwairi, H.M.: MHD natural convection with Joule and viscous heating effects in iso-flux porous medium-filled enclosures. Appl. Math. Mech. 31(9), 1105–1112 (2010)MathSciNetMATHCrossRef
112.
Zurück zum Zitat Wu, F.; Zhou, W.; Ma, X.: Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both side walls using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 85, 756–771 (2015)CrossRef Wu, F.; Zhou, W.; Ma, X.: Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both side walls using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 85, 756–771 (2015)CrossRef
113.
Zurück zum Zitat Rahimi, M., et al.: Natural convection of nanoparticle–water mixture near its density inversion in a rectangular enclosure. Int. Commun. Heat Mass Transfer 39(1), 131–137 (2012)CrossRef Rahimi, M., et al.: Natural convection of nanoparticle–water mixture near its density inversion in a rectangular enclosure. Int. Commun. Heat Mass Transfer 39(1), 131–137 (2012)CrossRef
114.
Zurück zum Zitat Alloui, Z., et al.: Natural convection of nanofluids in a shallow rectangular enclosure heated from the side. Canadian J. Chem. Eng. 90(1), 69–78 (2012)CrossRef Alloui, Z., et al.: Natural convection of nanofluids in a shallow rectangular enclosure heated from the side. Canadian J. Chem. Eng. 90(1), 69–78 (2012)CrossRef
115.
Zurück zum Zitat Shi, L., et al.: Controllable natural convection in a rectangular enclosure filled with Fe3O4@CNT nanofluids. Int. J. Heat Mass Transf. 140, 399–409 (2019)CrossRef Shi, L., et al.: Controllable natural convection in a rectangular enclosure filled with Fe3O4@CNT nanofluids. Int. J. Heat Mass Transf. 140, 399–409 (2019)CrossRef
116.
Zurück zum Zitat Wang, L., et al.: Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int. J. Heat Mass Transf. 128, 688–699 (2019)CrossRef Wang, L., et al.: Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int. J. Heat Mass Transf. 128, 688–699 (2019)CrossRef
117.
Zurück zum Zitat Bouhalleb, M.; Abbassi, H.: Natural convection in an inclined rectangular enclosure filled by CuO–H2O nanofluid, with sinusoidal temperature distribution. Int. J. Hydrogen Energy 40(39), 13676–13684 (2015)CrossRef Bouhalleb, M.; Abbassi, H.: Natural convection in an inclined rectangular enclosure filled by CuO–H2O nanofluid, with sinusoidal temperature distribution. Int. J. Hydrogen Energy 40(39), 13676–13684 (2015)CrossRef
118.
Zurück zum Zitat Ilyas, S.U.; Pendyala, R.; Narahari, M.: An experimental study on the natural convection heat transfer in rectangular enclosure using functionalized alumina-thermal oil-based nanofluids. Appl. Therm. Eng. 127, 765–775 (2017)CrossRef Ilyas, S.U.; Pendyala, R.; Narahari, M.: An experimental study on the natural convection heat transfer in rectangular enclosure using functionalized alumina-thermal oil-based nanofluids. Appl. Therm. Eng. 127, 765–775 (2017)CrossRef
119.
Zurück zum Zitat Salari, M.; Malekshah, E.H.; Malekshah, M.H.: Natural convection in a rectangular enclosure filled by two immiscible fluids of air and Al2O3-water nanofluid heated partially from side walls. Alex. Eng. J. 57(3), 1401–1412 (2018)CrossRef Salari, M.; Malekshah, E.H.; Malekshah, M.H.: Natural convection in a rectangular enclosure filled by two immiscible fluids of air and Al2O3-water nanofluid heated partially from side walls. Alex. Eng. J. 57(3), 1401–1412 (2018)CrossRef
120.
Zurück zum Zitat Teamah, M.A.; Elsafty, A.F.; Massoud, E.Z.: Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source. Int. J. Therm. Sci. 52, 161–175 (2012)CrossRef Teamah, M.A.; Elsafty, A.F.; Massoud, E.Z.: Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source. Int. J. Therm. Sci. 52, 161–175 (2012)CrossRef
121.
Zurück zum Zitat Teamah, M.A., et al.: Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source, part A: effect of Rayleigh number and inclination angle. Alex. Eng. J. 50(4), 269–282 (2011)MathSciNetCrossRef Teamah, M.A., et al.: Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source, part A: effect of Rayleigh number and inclination angle. Alex. Eng. J. 50(4), 269–282 (2011)MathSciNetCrossRef
122.
Zurück zum Zitat Mondal, S.; Sibanda, P.: Unsteady double diffusive convection in an inclined rectangular lid-driven enclosure with different magnetic field angles and non-uniform boundary conditions. Int. J. Heat Mass Transf. 90, 900–910 (2015)CrossRef Mondal, S.; Sibanda, P.: Unsteady double diffusive convection in an inclined rectangular lid-driven enclosure with different magnetic field angles and non-uniform boundary conditions. Int. J. Heat Mass Transf. 90, 900–910 (2015)CrossRef
123.
Zurück zum Zitat Chen, W.R.: Natural convection heat transfer between inner sphere and outer vertically eccentric cylinder. Int. J. Heat Mass Transf. 53(23), 5147–5155 (2010)MATHCrossRef Chen, W.R.: Natural convection heat transfer between inner sphere and outer vertically eccentric cylinder. Int. J. Heat Mass Transf. 53(23), 5147–5155 (2010)MATHCrossRef
124.
Zurück zum Zitat Seo, Y.M.; Ha, M.Y.; Park, Y.G.: A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part I: size effect of a circular cylinder or an elliptical cylinder. Int. J. Heat Mass Transfer 134, 420–436 (2019)CrossRef Seo, Y.M.; Ha, M.Y.; Park, Y.G.: A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part I: size effect of a circular cylinder or an elliptical cylinder. Int. J. Heat Mass Transfer 134, 420–436 (2019)CrossRef
125.
Zurück zum Zitat Seo, Y.M., et al.: 2020 Direct numerical simulation and artificial neural network modeling of heat transfer characteristics on natural convection with a sinusoidal cylinder in a long rectangular enclosure. Int. J. Heat Mass Transfer 152, 119564 (2020)CrossRef Seo, Y.M., et al.: 2020 Direct numerical simulation and artificial neural network modeling of heat transfer characteristics on natural convection with a sinusoidal cylinder in a long rectangular enclosure. Int. J. Heat Mass Transfer 152, 119564 (2020)CrossRef
126.
Zurück zum Zitat Seo, Y.M.; Ha, M.Y.; Park, Y.G.: A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part II: inclination angle effect of the elliptical cylinder. Int. J. Heat Mass Transfer 131, 795–806 (2019)CrossRef Seo, Y.M.; Ha, M.Y.; Park, Y.G.: A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part II: inclination angle effect of the elliptical cylinder. Int. J. Heat Mass Transfer 131, 795–806 (2019)CrossRef
127.
Zurück zum Zitat Kaluri, R.S.; Anandalakshmi, R.; Basak, T.: Bejan’s heatline analysis of natural convection in right-angled triangular enclosures: effects of aspect-ratio and thermal boundary conditions. Int. J. Therm. Sci. 49(9), 1576–1592 (2010)CrossRef Kaluri, R.S.; Anandalakshmi, R.; Basak, T.: Bejan’s heatline analysis of natural convection in right-angled triangular enclosures: effects of aspect-ratio and thermal boundary conditions. Int. J. Therm. Sci. 49(9), 1576–1592 (2010)CrossRef
128.
Zurück zum Zitat Basak, T.; Anandalakshmi, R.; Gunda, P.: Role of entropy generation during convective thermal processing in right-angled triangular enclosures with various wall heatings. Chem. Eng. Res. Des. 90(11), 1779–1799 (2012)CrossRef Basak, T.; Anandalakshmi, R.; Gunda, P.: Role of entropy generation during convective thermal processing in right-angled triangular enclosures with various wall heatings. Chem. Eng. Res. Des. 90(11), 1779–1799 (2012)CrossRef
129.
Zurück zum Zitat Basak, T.; Anandalakshmi, R.; Roy, M.: Heatlines based natural convection analysis in tilted isosceles triangular enclosures with linearly heated inclined walls: effect of various orientations. Int. Commun. Heat Mass Transfer 43, 39–45 (2013)CrossRef Basak, T.; Anandalakshmi, R.; Roy, M.: Heatlines based natural convection analysis in tilted isosceles triangular enclosures with linearly heated inclined walls: effect of various orientations. Int. Commun. Heat Mass Transfer 43, 39–45 (2013)CrossRef
130.
Zurück zum Zitat Saha, S.C.; Gu, Y.T.: Natural convection in a triangular enclosure heated from below and non-uniformly cooled from top. Int. J. Heat Mass Transf. 80, 529–538 (2015)CrossRef Saha, S.C.; Gu, Y.T.: Natural convection in a triangular enclosure heated from below and non-uniformly cooled from top. Int. J. Heat Mass Transf. 80, 529–538 (2015)CrossRef
131.
Zurück zum Zitat Das, D.; Lukose, L.; Basak, T.: Role of finite element based grids and simulations on evaluation of Nusselt numbers for heatfunctions within square and triangular cavities involving multiple discrete heaters. Int. Commun. Heat Mass Transfer 89, 39–46 (2017)CrossRef Das, D.; Lukose, L.; Basak, T.: Role of finite element based grids and simulations on evaluation of Nusselt numbers for heatfunctions within square and triangular cavities involving multiple discrete heaters. Int. Commun. Heat Mass Transfer 89, 39–46 (2017)CrossRef
132.
Zurück zum Zitat Das, D.; Lukose, L.; Basak, T.: Role of multiple discrete heaters to minimize entropy generation during natural convection in fluid filled square and triangular enclosures. Int. J. Heat Mass Transf. 127, 1290–1312 (2018)CrossRef Das, D.; Lukose, L.; Basak, T.: Role of multiple discrete heaters to minimize entropy generation during natural convection in fluid filled square and triangular enclosures. Int. J. Heat Mass Transf. 127, 1290–1312 (2018)CrossRef
133.
Zurück zum Zitat Anandalakshmi, R.; Kaluri, R.S.; Basak, T.: Heatline based thermal management for natural convection within right-angled porous triangular enclosures with various thermal conditions of walls. Energy 36(8), 4879–4896 (2011)CrossRef Anandalakshmi, R.; Kaluri, R.S.; Basak, T.: Heatline based thermal management for natural convection within right-angled porous triangular enclosures with various thermal conditions of walls. Energy 36(8), 4879–4896 (2011)CrossRef
134.
Zurück zum Zitat Bhardwaj, S.; Dalal, A.: Analysis of natural convection heat transfer and entropy generation inside porous right-angled triangular enclosure. Int. J. Heat Mass Transf. 65, 500–513 (2013)CrossRef Bhardwaj, S.; Dalal, A.: Analysis of natural convection heat transfer and entropy generation inside porous right-angled triangular enclosure. Int. J. Heat Mass Transf. 65, 500–513 (2013)CrossRef
135.
Zurück zum Zitat Mansour, M.A.; Ahmed, S.E.: A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect. Eng. Sci. Techol. Int. J. 18(3), 485–495 (2015) Mansour, M.A.; Ahmed, S.E.: A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect. Eng. Sci. Techol. Int. J. 18(3), 485–495 (2015)
136.
Zurück zum Zitat Biswal, P.; Basak, T.: Role of various concave/convex walls exposed to solar heating on entropy generation during natural convection within porous right angled triangular enclosures. Sol. Energy 137, 101–121 (2016)CrossRef Biswal, P.; Basak, T.: Role of various concave/convex walls exposed to solar heating on entropy generation during natural convection within porous right angled triangular enclosures. Sol. Energy 137, 101–121 (2016)CrossRef
137.
Zurück zum Zitat Izadi, M.: Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber. Chin. J. Chem. Eng. 28(5), 1203–1213 (2020)CrossRef Izadi, M.: Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber. Chin. J. Chem. Eng. 28(5), 1203–1213 (2020)CrossRef
138.
Zurück zum Zitat Izadi, M.; Bastani, B.; Sheremet, M.A.: Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach. Adv. Powder Technol. 31(6), 2493–2504 (2020)CrossRef Izadi, M.; Bastani, B.; Sheremet, M.A.: Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach. Adv. Powder Technol. 31(6), 2493–2504 (2020)CrossRef
139.
Zurück zum Zitat Aminossadati, S.M.; Ghasemi, B.: Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid. Comput. Math. Appl. 61(7), 1739–1753 (2011)MathSciNetMATHCrossRef Aminossadati, S.M.; Ghasemi, B.: Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid. Comput. Math. Appl. 61(7), 1739–1753 (2011)MathSciNetMATHCrossRef
140.
Zurück zum Zitat Rahman, M.M., et al.: Unsteady natural convection in Al2O3–water nanoliquid filled in isosceles triangular enclosure with sinusoidal thermal boundary condition on bottom wall. Superlattices Microstruct. 67, 181–196 (2014)CrossRef Rahman, M.M., et al.: Unsteady natural convection in Al2O3–water nanoliquid filled in isosceles triangular enclosure with sinusoidal thermal boundary condition on bottom wall. Superlattices Microstruct. 67, 181–196 (2014)CrossRef
141.
Zurück zum Zitat Bondareva, N.S., et al.: Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv. Powder Technol. 28(1), 244–255 (2017)CrossRef Bondareva, N.S., et al.: Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv. Powder Technol. 28(1), 244–255 (2017)CrossRef
142.
Zurück zum Zitat Sheremet, M.A.; Pop, I.: Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid. Int. J. Numer. Meth. Heat Fluid Flow 50(11), 2141–2153 (2015) Sheremet, M.A.; Pop, I.: Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid. Int. J. Numer. Meth. Heat Fluid Flow 50(11), 2141–2153 (2015)
143.
Zurück zum Zitat Sheremet, M.A.; Pop, I.; Shenoy, A.: Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Eur. Phys. J. Plus 131(3), 1–12 (2016)CrossRef Sheremet, M.A.; Pop, I.; Shenoy, A.: Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Eur. Phys. J. Plus 131(3), 1–12 (2016)CrossRef
144.
Zurück zum Zitat Sheremet, M.A.; Revnic, C.; Pop, I.: Natural convective heat transfer through two entrapped triangular cavities filled with a nanofluid: Buongiorno’s mathematical model. Int. J. Mech. Sci. 133, 484–494 (2017)CrossRef Sheremet, M.A.; Revnic, C.; Pop, I.: Natural convective heat transfer through two entrapped triangular cavities filled with a nanofluid: Buongiorno’s mathematical model. Int. J. Mech. Sci. 133, 484–494 (2017)CrossRef
145.
Zurück zum Zitat Liu, W., et al.: Natural convection and entropy generation of a nanofluid in two connected inclined triangular enclosures under magnetic field effects. Int. Commun. Heat Mass Transfer 108, 104309 (2019)CrossRef Liu, W., et al.: Natural convection and entropy generation of a nanofluid in two connected inclined triangular enclosures under magnetic field effects. Int. Commun. Heat Mass Transfer 108, 104309 (2019)CrossRef
146.
Zurück zum Zitat Dogonchi, A.; Selimefendigil, F.; Ganji, D.: Magneto-hydrodynamic natural convection of CuO-water nanofluid in complex shaped enclosure considering various nanoparticle shapes. Int. J. Numer. Meth. Heat Fluid Flow 29, 1663–1679 (2019) Dogonchi, A.; Selimefendigil, F.; Ganji, D.: Magneto-hydrodynamic natural convection of CuO-water nanofluid in complex shaped enclosure considering various nanoparticle shapes. Int. J. Numer. Meth. Heat Fluid Flow 29, 1663–1679 (2019)
147.
Zurück zum Zitat Ahmed, S.E., et al.: MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids. J. Therm. Anal. Calorim. 139(5), 3133–3149 (2020)CrossRef Ahmed, S.E., et al.: MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids. J. Therm. Anal. Calorim. 139(5), 3133–3149 (2020)CrossRef
148.
Zurück zum Zitat Mahmoudi, A.H.; Pop, I.; Shahi, M.: Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int. J. Therm. Sci. 59, 126–140 (2012)CrossRef Mahmoudi, A.H.; Pop, I.; Shahi, M.: Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int. J. Therm. Sci. 59, 126–140 (2012)CrossRef
149.
Zurück zum Zitat Chowdhury, R.; Parvin, S.; Khan, M.A.H.: Finite element analysis of double-diffusive natural convection in a porous triangular enclosure filled with Al2O3-water nanofluid in presence of heat generation. Heliyon 2(8), e00140 (2016)CrossRef Chowdhury, R.; Parvin, S.; Khan, M.A.H.: Finite element analysis of double-diffusive natural convection in a porous triangular enclosure filled with Al2O3-water nanofluid in presence of heat generation. Heliyon 2(8), e00140 (2016)CrossRef
150.
Zurück zum Zitat Rashad, A.; et al.: Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J. Heat Transfer 140(7), 1–13 (2018) Rashad, A.; et al.: Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J. Heat Transfer 140(7), 1–13 (2018)
151.
Zurück zum Zitat Rashidi, A.A.; Kianpour, E.: Investigation of natural convection heat transfer of MHD hybrid nanofluid in a triangular enclosure. J. Comput. Appl. Res. Mech. Eng. (JCARME) 10, 539–549 (2019) Rashidi, A.A.; Kianpour, E.: Investigation of natural convection heat transfer of MHD hybrid nanofluid in a triangular enclosure. J. Comput. Appl. Res. Mech. Eng. (JCARME) 10, 539–549 (2019)
152.
Zurück zum Zitat Afrand, M., et al.: Free convection and entropy generation of a nanofluid in a tilted triangular cavity exposed to a magnetic field with sinusoidal wall temperature distribution considering radiation effects. Int. Commun. Heat Mass Transfer 112, 104507 (2020)CrossRef Afrand, M., et al.: Free convection and entropy generation of a nanofluid in a tilted triangular cavity exposed to a magnetic field with sinusoidal wall temperature distribution considering radiation effects. Int. Commun. Heat Mass Transfer 112, 104507 (2020)CrossRef
153.
Zurück zum Zitat Yu, Z.-T., et al.: A parametric study of Prandtl number effects on laminar natural convection heat transfer from a horizontal circular cylinder to its coaxial triangular enclosure. Numer. Heat Transfer, Part A Appl. 58(7), 564–580 (2010)CrossRef Yu, Z.-T., et al.: A parametric study of Prandtl number effects on laminar natural convection heat transfer from a horizontal circular cylinder to its coaxial triangular enclosure. Numer. Heat Transfer, Part A Appl. 58(7), 564–580 (2010)CrossRef
154.
Zurück zum Zitat Yu, Z.-T., et al.: Unsteady natural convection heat transfer from a heated horizontal circular cylinder to its air-filled coaxial triangular enclosure. Int. J. Heat Mass Transf. 54(7), 1563–1571 (2011)MATHCrossRef Yu, Z.-T., et al.: Unsteady natural convection heat transfer from a heated horizontal circular cylinder to its air-filled coaxial triangular enclosure. Int. J. Heat Mass Transf. 54(7), 1563–1571 (2011)MATHCrossRef
155.
Zurück zum Zitat Selimefendigil, F.; Oztop, H.F.; Chamkha, A.J.: Analysis of mixed convection and entropy generation of nanofluid filled triangular enclosure with a flexible sidewall under the influence of a rotating cylinder. J. Therm. Anal. Calorim. 135(2), 911–923 (2019)CrossRef Selimefendigil, F.; Oztop, H.F.; Chamkha, A.J.: Analysis of mixed convection and entropy generation of nanofluid filled triangular enclosure with a flexible sidewall under the influence of a rotating cylinder. J. Therm. Anal. Calorim. 135(2), 911–923 (2019)CrossRef
156.
Zurück zum Zitat Amrani, A.I.; et al.: Combined natural convection and thermal radiation heat transfer in a triangular enclosure with an inner rectangular body. Defect Diffus. Forum 384, 49–68 (2018) Amrani, A.I.; et al.: Combined natural convection and thermal radiation heat transfer in a triangular enclosure with an inner rectangular body. Defect Diffus. Forum 384, 49–68 (2018)
157.
Zurück zum Zitat Arani, A.A.A.; Kazemi, M.: Analysis of fluid flow and heat transfer of nanofluid inside triangular enclosure equipped with rotational obstacle. J. Mech. Sci. Technol. 33(10), 4917–4929 (2019)CrossRef Arani, A.A.A.; Kazemi, M.: Analysis of fluid flow and heat transfer of nanofluid inside triangular enclosure equipped with rotational obstacle. J. Mech. Sci. Technol. 33(10), 4917–4929 (2019)CrossRef
158.
Zurück zum Zitat Dogonchi, A.; et al.: Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo–Christov theory of heat conduction. Int. J. Numer. Meth. Heat Fluid Flow 29, 4430–4444 (2019) Dogonchi, A.; et al.: Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo–Christov theory of heat conduction. Int. J. Numer. Meth. Heat Fluid Flow 29, 4430–4444 (2019)
Metadaten
Titel
Review of Natural Convection Within Various Shapes of Enclosures
verfasst von
Ammar Abdulkadhim
Isam Mejbel Abed
Nejla Mahjoub Said
Publikationsdatum
02.08.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05952-6

Weitere Artikel der Ausgabe 12/2021

Arabian Journal for Science and Engineering 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.