Skip to main content

2016 | OriginalPaper | Buchkapitel

6. RF Circuits

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are two types of high-frequency circuits. One is a wideband circuit covering DC to RF or microwave frequencies. The other is a narrowband circuit operating at RF or microwave frequencies. The former is broadbanded by feedback while the latter operates in open loop, but occasionally with local feedback. The former is also for wireline baseband systems such as fiber and networking, but the latter is mostly for wireless RF transceivers. The key RF circuit elements are low-noise amplifier (LNA), mixer, power amplifier, and voltage-controlled oscillator (VCO). Most performance parameters for RF circuits can be enhanced mostly by optimizing open-loop parameters, but system-level DC parameters such as offset, image, and spurious tone can be self-trimmed. The bottleneck in RF system designs is the mixer spurious-free dynamic range (SFDR) performance. RF systems can be configured using global feedback and IF quantization concepts, which facilitate the integration of on-chip wireless systems. RF circuit and system issues are referred to the mixer SFDR performance, and various design concepts such as static and dynamic mixer linearity, impedance matching, loaded Q and fractional spur are addressed for efficient RF system implementations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Song, CMOS RF circuits for data communications applications. IEEE J. Solid State Circuits 21, 310–317 (1986)CrossRef B. Song, CMOS RF circuits for data communications applications. IEEE J. Solid State Circuits 21, 310–317 (1986)CrossRef
2.
Zurück zum Zitat F. Montaudon, R. Mina, S. Le Tual, L. Joet, D. Saias, R. Hossain, F. Sibille, C. Corre, V. Carrat, E. Chataigner, J. Lajoinie, S. Dedieu, F. Paillardet, E. Perea, A scalable 2.4-to-2.7GHz Wi-Fi/WiMAX discrete-time receiver in 65nm CMOS, ISSCC Dig. Tech. Papers, Feb. 2008, pp. 362–363 F. Montaudon, R. Mina, S. Le Tual, L. Joet, D. Saias, R. Hossain, F. Sibille, C. Corre, V. Carrat, E. Chataigner, J. Lajoinie, S. Dedieu, F. Paillardet, E. Perea, A scalable 2.4-to-2.7GHz Wi-Fi/WiMAX discrete-time receiver in 65nm CMOS, ISSCC Dig. Tech. Papers, Feb. 2008, pp. 362–363
3.
Zurück zum Zitat S. Lerstaveesin, M. Gupta, D. Kang, B. Song, A 48-860MHz CMOS low-IF direct conversion DTV tuner. IEEE J. Solid State Circuits 43, 2013–2024 (2008)CrossRef S. Lerstaveesin, M. Gupta, D. Kang, B. Song, A 48-860MHz CMOS low-IF direct conversion DTV tuner. IEEE J. Solid State Circuits 43, 2013–2024 (2008)CrossRef
4.
Zurück zum Zitat T. Cho, D. Kang, C. Heng, B. Song, A 2.4GHz dual-mode 0.18μm CMOS transceiver for bluetooth and 802.11b. IEEE J. Solid State Circuits 39, 1916–1926 (2004)CrossRef T. Cho, D. Kang, C. Heng, B. Song, A 2.4GHz dual-mode 0.18μm CMOS transceiver for bluetooth and 802.11b. IEEE J. Solid State Circuits 39, 1916–1926 (2004)CrossRef
5.
Zurück zum Zitat C. Lu, H. Wang, C. Peng, A. Goel, S. Son, P. Liang, A. Niknejad, H. Hwang, G. Chien, A 24.7dBm all-digital RF transmitter for multimode broadband applications in 40nm CMOS, ISSCC Dig. Tech. Papers, Feb. 2013, pp. 332–333 C. Lu, H. Wang, C. Peng, A. Goel, S. Son, P. Liang, A. Niknejad, H. Hwang, G. Chien, A 24.7dBm all-digital RF transmitter for multimode broadband applications in 40nm CMOS, ISSCC Dig. Tech. Papers, Feb. 2013, pp. 332–333
6.
Zurück zum Zitat D. Chowdhury, S. Thyagarajan, L. Ye, E. Alon, A. Niknejad, Fully-integrated efficient CMOS inverse class-D power amplifier for digital polar transmitters. IEEE J. Solid State Circuits 47, 1113–1122 (2012)CrossRef D. Chowdhury, S. Thyagarajan, L. Ye, E. Alon, A. Niknejad, Fully-integrated efficient CMOS inverse class-D power amplifier for digital polar transmitters. IEEE J. Solid State Circuits 47, 1113–1122 (2012)CrossRef
7.
Zurück zum Zitat T. Sano, M. Mizokami, H. Matsui, K. Ueda, K. Shibata, K. Toyota, T. Saitou, H. Sato, K. Yahagi, Y. Hayashi, A 6.3mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network, ISSCC Dig. Tech. Papers, Feb. 2015, pp. 240–241 T. Sano, M. Mizokami, H. Matsui, K. Ueda, K. Shibata, K. Toyota, T. Saitou, H. Sato, K. Yahagi, Y. Hayashi, A 6.3mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network, ISSCC Dig. Tech. Papers, Feb. 2015, pp. 240–241
8.
Zurück zum Zitat M. Perrott, T. Tewksbury, C. Sodini, A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation. IEEE J. Solid State Circuits 32, 2048–2060 (1997)CrossRef M. Perrott, T. Tewksbury, C. Sodini, A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation. IEEE J. Solid State Circuits 32, 2048–2060 (1997)CrossRef
9.
Zurück zum Zitat W. Rhee, A. Ali, B. Song, A 1.1 GHz CMOS fractional-N frequency synthesizer with a 3-b 3rd-order delta-sigma modulator, ISSCC Dig. Tech. Papers, 2000, pp. 198–199 W. Rhee, A. Ali, B. Song, A 1.1 GHz CMOS fractional-N frequency synthesizer with a 3-b 3rd-order delta-sigma modulator, ISSCC Dig. Tech. Papers, 2000, pp. 198–199
10.
Zurück zum Zitat B. De Muer, M. Steyaert, On the analysis of delta-sigma fractional-N frequency synthesizers for high-spectral purity, IEEE Trans. Circuits Syst. II, Nov. 2003, pp. 784–793 B. De Muer, M. Steyaert, On the analysis of delta-sigma fractional-N frequency synthesizers for high-spectral purity, IEEE Trans. Circuits Syst. II, Nov. 2003, pp. 784–793
11.
Zurück zum Zitat S. Norsworthy, R. Schreier, G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation (IEEE Press, New York, 1997) S. Norsworthy, R. Schreier, G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation (IEEE Press, New York, 1997)
12.
Zurück zum Zitat B. De Muer, M. Steyaert, A CMOS monolithic delta-sigma-controlled fractional-N frequency synthesizer for DCS-1800. IEEE J. Solid State Circuits 37, 835–844 (2002)CrossRef B. De Muer, M. Steyaert, A CMOS monolithic delta-sigma-controlled fractional-N frequency synthesizer for DCS-1800. IEEE J. Solid State Circuits 37, 835–844 (2002)CrossRef
13.
Zurück zum Zitat J. Craninckx, M. Steyaert, A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE J. Solid State Circuits 33, 2054–2065 (1998)CrossRefMATH J. Craninckx, M. Steyaert, A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE J. Solid State Circuits 33, 2054–2065 (1998)CrossRefMATH
14.
Zurück zum Zitat B. Miller, R. Conley, A multiple modulator fractional divider. IEEE Trans. Instrum. Meas. 40, 578–583 (1991)CrossRef B. Miller, R. Conley, A multiple modulator fractional divider. IEEE Trans. Instrum. Meas. 40, 578–583 (1991)CrossRef
15.
Zurück zum Zitat T. Riley, M. Copeland, T. Kwasniewski, Delta-sigma modulation in fractional-N frequency synthesis. IEEE J. Solid State Circuits 28, 553–559 (1993)CrossRef T. Riley, M. Copeland, T. Kwasniewski, Delta-sigma modulation in fractional-N frequency synthesis. IEEE J. Solid State Circuits 28, 553–559 (1993)CrossRef
16.
Zurück zum Zitat G. Gillette, Digiphase synthesizer, in Proceedings of 23rd Annual Frequency Control Symposium, 1969, pp. 201–210 G. Gillette, Digiphase synthesizer, in Proceedings of 23rd Annual Frequency Control Symposium, 1969, pp. 201–210
17.
Zurück zum Zitat W. Rhee, A. Ali, An on-chip compensation technique in fractional-N frequency synthesis, in IEEE International Symposium on Circuits and Systems, 1999, pp. 363–366 W. Rhee, A. Ali, An on-chip compensation technique in fractional-N frequency synthesis, in IEEE International Symposium on Circuits and Systems, 1999, pp. 363–366
18.
Zurück zum Zitat I. Bietti, E. Ternporitil, G. Albasini, R. Castello, An UMTS SD fractional synthesizer with 200kHz bandwidth and -128dBc/Hz @1MHz using spurs compensation and linearization techniques, in IEEE Custom Integrated Circuits Conference, 2003, pp. 463–466 I. Bietti, E. Ternporitil, G. Albasini, R. Castello, An UMTS SD fractional synthesizer with 200kHz bandwidth and -128dBc/Hz @1MHz using spurs compensation and linearization techniques, in IEEE Custom Integrated Circuits Conference, 2003, pp. 463–466
19.
Zurück zum Zitat S. Meninger, M. Perrott, A fractional-N frequency synthesizer architecture utilizing a mismatch compensated PFD/DAC structure for reduced quantization-induced phase noise, in IEEE Transactions on Circuits and Systems II, Nov. 2003, pp. 839–849 S. Meninger, M. Perrott, A fractional-N frequency synthesizer architecture utilizing a mismatch compensated PFD/DAC structure for reduced quantization-induced phase noise, in IEEE Transactions on Circuits and Systems II, Nov. 2003, pp. 839–849
20.
Zurück zum Zitat S. Pamarti, L. Jansson, I. Galton, A wideband 2.4GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation, IEEE J. Solid State Circuits 39, 49–62 (2004) S. Pamarti, L. Jansson, I. Galton, A wideband 2.4GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation, IEEE J. Solid State Circuits 39, 49–62 (2004)
21.
Zurück zum Zitat Y. Dufour, Method and apparatus for performing fractional division charge compensation in a frequency synthesizer, U.S. patent 6 130 561 (2000) Y. Dufour, Method and apparatus for performing fractional division charge compensation in a frequency synthesizer, U.S. patent 6 130 561 (2000)
22.
Zurück zum Zitat Y. Koo et al., A fully integrated frequency synthesizer with charge-averaging charge pump and dual path loop filter fro PCS and cellular CDMA wireless systems, IEEE J. Solid State Circuits 37, 536–542 (2002) Y. Koo et al., A fully integrated frequency synthesizer with charge-averaging charge pump and dual path loop filter fro PCS and cellular CDMA wireless systems, IEEE J. Solid State Circuits 37, 536–542 (2002)
23.
Zurück zum Zitat S. Pellerano et al., A dual band frequency synthesizer for 802.11a/b/g with fractional spur averaging technique, ISSCC Dig. Tech. Papers, 2005, pp. 20–22 S. Pellerano et al., A dual band frequency synthesizer for 802.11a/b/g with fractional spur averaging technique, ISSCC Dig. Tech. Papers, 2005, pp. 20–22
24.
Zurück zum Zitat M. Gupta, B. Song, A 1.8GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration, ISSCC Dig. Tech. Papers, Feb. 2006, pp. 478–479 M. Gupta, B. Song, A 1.8GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration, ISSCC Dig. Tech. Papers, Feb. 2006, pp. 478–479
25.
Zurück zum Zitat M. Gupta, B. Song, A 1.8GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration. IEEE J. Solid State Circuits 41, 2842–2851 (2006)CrossRef M. Gupta, B. Song, A 1.8GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration. IEEE J. Solid State Circuits 41, 2842–2851 (2006)CrossRef
26.
Zurück zum Zitat S. Dasgupta et al., Sign-sign LMS convergence with independent stochastic inputs. IEEE Trans. Inf Theory 36, 197–201 (1990)MathSciNetCrossRefMATH S. Dasgupta et al., Sign-sign LMS convergence with independent stochastic inputs. IEEE Trans. Inf Theory 36, 197–201 (1990)MathSciNetCrossRefMATH
Metadaten
Titel
RF Circuits
verfasst von
Bang-Sup Song
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-27921-3_6

Neuer Inhalt