Skip to main content

2015 | OriginalPaper | Buchkapitel

Rigid Spacecraft Fault-Tolerant Control Using Adaptive Fast Terminal Sliding Mode

verfasst von : Pyare Mohan Tiwari, S. Janardhanan, Mashuq un-Nabi

Erschienen in: Advances and Applications in Sliding Mode Control systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In addition to the robustness against inertia uncertainty and external disturbances, the efficient and quick fault-tolerant property is expected by the on-board attitude controller for any spacecraft mission. In comparison to the active fault tolerant control methods, the passive fault-tolerant methods are simpler and require less computation time and power. The finite-time sliding mode using the terminal sliding mode has been proven the efficacy to address the attitude control related issues, but in most of the cases, fault-tolerant issues were not taken into account. The objective of the chapter here is to propose a passive fault-tolerant control by using the finite-time sliding mode control. Firstly, an extensive review has been given to discuss the application of terminal sliding mode and its variants for the attitude control problem. Then, in control design, a non-singular fast terminal sliding mode has been integrated together with the adaptive control, and an adaptive non-singular fast terminal sliding mode control has been designed. In most of the finite time fault-tolerant designed using terminal sliding modes, the controllers gains are remain to constant; which can be cause for chattering. Therefore, to limit the chattering effect, and to avoid the need of upper bounds of uncertainty and external disturbances, adaptive estimate laws have been designed to estimate the controller’s gains. Finite time stability has been analyzed by the Lyapunov theorem. Further, to show the fault-tolerance effectiveness of the proposed control law in attitude stabilization and tracking, various simulation results have been presented. The proposed control law is quick, and robust enough to negate the effects of external disturbances, mass inertia uncertainty, and actuator faults.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bustan, D., Sani, S.K.H., Pariz, N.: Adaptive fault-tolerant spacecraft attitude control design with transient response Control. IEEE/ASME Trans. Mechatron. 19(4), 1404–1411 (2013) Bustan, D., Sani, S.K.H., Pariz, N.: Adaptive fault-tolerant spacecraft attitude control design with transient response Control. IEEE/ASME Trans. Mechatron. 19(4), 1404–1411 (2013)
Zurück zum Zitat Ding, S., Li, S.: Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques. Aerosp. Sci. Technol. 13(4–5), 256–265 (2009)CrossRef Ding, S., Li, S.: Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques. Aerosp. Sci. Technol. 13(4–5), 256–265 (2009)CrossRef
Zurück zum Zitat Erdong, J., Zhaowei, S.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)CrossRefMATH Erdong, J., Zhaowei, S.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)CrossRefMATH
Zurück zum Zitat Feng, Y., Yu, X.H., Man, Z.: Non-singular terminal sliding mode control of rigid manipulator. Automatica 38(12), 2159–2167 (2002)CrossRefMathSciNetMATH Feng, Y., Yu, X.H., Man, Z.: Non-singular terminal sliding mode control of rigid manipulator. Automatica 38(12), 2159–2167 (2002)CrossRefMathSciNetMATH
Zurück zum Zitat Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE. Trans. Ind. Electron. 40(1), 1–12 (1993) Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE. Trans. Ind. Electron. 40(1), 1–12 (1993)
Zurück zum Zitat Hu, Q., Huo, X., Xiao, B., Zhang, Z.: Robust finite-time control for spacecraft attitude stabilization under actuator fault. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 226(3), 416–428 (2012) Hu, Q., Huo, X., Xiao, B., Zhang, Z.: Robust finite-time control for spacecraft attitude stabilization under actuator fault. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 226(3), 416–428 (2012)
Zurück zum Zitat Hu, Q., Xing, Huo, Xiao, B.: Reaction wheel fault tolerant control for spacecraft attittude stabilization with finite time convergence. Int. J. Robust Nonlinear Control 23(15), 1737–1752 (2012) Hu, Q., Xing, Huo, Xiao, B.: Reaction wheel fault tolerant control for spacecraft attittude stabilization with finite time convergence. Int. J. Robust Nonlinear Control 23(15), 1737–1752 (2012)
Zurück zum Zitat Hu, Q., Li, B., Zhang, Aihua: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1–2), 53–71 (2013)CrossRefMathSciNetMATH Hu, Q., Li, B., Zhang, Aihua: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1–2), 53–71 (2013)CrossRefMathSciNetMATH
Zurück zum Zitat Li, S., Wang, Z., Fei, S.: Comments on paper: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 15(3), 193–195 (2011)CrossRef Li, S., Wang, Z., Fei, S.: Comments on paper: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 15(3), 193–195 (2011)CrossRef
Zurück zum Zitat Lu, K., Xia, Y.: Finite-time attitude stabilization for rigid spacecraft. Intern. J. Robust Nonlinear Control (2013). doi:10.1002/rnc.3071 Lu, K., Xia, Y.: Finite-time attitude stabilization for rigid spacecraft. Intern. J. Robust Nonlinear Control (2013). doi:10.​1002/​rnc.​3071
Zurück zum Zitat Lu, K., Xia, Y., Fu, M.: Controller design for rigid spacecraft attitude tracking with actuator saturation. Inf. Sci. 220, 343–366 (2013)CrossRefMathSciNetMATH Lu, K., Xia, Y., Fu, M.: Controller design for rigid spacecraft attitude tracking with actuator saturation. Inf. Sci. 220, 343–366 (2013)CrossRefMathSciNetMATH
Zurück zum Zitat Lu, Kunfeng, Xia, Y., Fu, M.: Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory Appl. 7(11), 1529–1539 (2013)CrossRefMathSciNet Lu, Kunfeng, Xia, Y., Fu, M.: Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory Appl. 7(11), 1529–1539 (2013)CrossRefMathSciNet
Zurück zum Zitat Man, Z., Yu, X.H.: Terminal sliding mode control of MIMO linear systems. IEEE. Trans. on Circuits Syst. 44(11), 1065–1070 (1997)CrossRefMathSciNet Man, Z., Yu, X.H.: Terminal sliding mode control of MIMO linear systems. IEEE. Trans. on Circuits Syst. 44(11), 1065–1070 (1997)CrossRefMathSciNet
Zurück zum Zitat Tiwari, P.M., Janardhanan, S., Nabi, M.: A finite time convergent continuous time sliding mode controller for spacecraft attitude control. The 2010 IEEE International Workshop on Variable Structure Systems, 26–28 June 2010, Mexico City, pp. 399–403 (2010). doi:10.1109/VSS.2010.5544630 Tiwari, P.M., Janardhanan, S., Nabi, M.: A finite time convergent continuous time sliding mode controller for spacecraft attitude control. The 2010 IEEE International Workshop on Variable Structure Systems, 26–28 June 2010, Mexico City, pp. 399–403 (2010). doi:10.​1109/​VSS.​2010.​5544630
Zurück zum Zitat Tiwari, P.M., Janardhanan, S., Nabi, M.: Spacecraft attitude control using non-singular finite time convergence fast terminal sliding mode. Intern. J. Instrum. Technol. 1(2), 124–142 (2012)CrossRef Tiwari, P.M., Janardhanan, S., Nabi, M.: Spacecraft attitude control using non-singular finite time convergence fast terminal sliding mode. Intern. J. Instrum. Technol. 1(2), 124–142 (2012)CrossRef
Zurück zum Zitat Tiwari, P.M., Janardhanan, S., Nabi, M.: Rigid spacecraft attitude tracking using finite time sliding mode control. In: The 2014 International Conference on Advances in Control and Optimization of Dynamical Systems, 13–15 March 2014, India, pp. 263–270, (2014). doi:10.3182/20140313-3-IN-3024.00168 Tiwari, P.M., Janardhanan, S., Nabi, M.: Rigid spacecraft attitude tracking using finite time sliding mode control. In: The 2014 International Conference on Advances in Control and Optimization of Dynamical Systems, 13–15 March 2014, India, pp. 263–270, (2014). doi:10.​3182/​20140313-3-IN-3024.​00168
Zurück zum Zitat Venkataraman, S.T., Gulati, S.: Terminal sliding modes: A new approach. The 1991 International Conference on Advanced Robotics, 19–22 June 1991, Italy, pp. 443–448, (1991). doi:10.1109/ICAR.1991.240613 Venkataraman, S.T., Gulati, S.: Terminal sliding modes: A new approach. The 1991 International Conference on Advanced Robotics, 19–22 June 1991, Italy, pp. 443–448, (1991). doi:10.​1109/​ICAR.​1991.​240613
Zurück zum Zitat Vadali, S.R.: Variable-structure control of spacecraft large-Angle Maneuvers. J. Guidance 9(2), 235–239 (1986)CrossRefMATH Vadali, S.R.: Variable-structure control of spacecraft large-Angle Maneuvers. J. Guidance 9(2), 235–239 (1986)CrossRefMATH
Zurück zum Zitat Wertz, W.: Spacecraft Attitude Determination and Control. In: J. Wertz (ed.), Academic Publishers, New York (1978) Wertz, W.: Spacecraft Attitude Determination and Control. In: J. Wertz (ed.), Academic Publishers, New York (1978)
Zurück zum Zitat Xiao, B., Hu, Q., Wang, D., Poh, E.K.: Attitude tracking control of rigid spacecrafts with actuator misalignment and fault. IEEE Trans. Control System Technol. 21(6), 2360–2366 (2013)CrossRef Xiao, B., Hu, Q., Wang, D., Poh, E.K.: Attitude tracking control of rigid spacecrafts with actuator misalignment and fault. IEEE Trans. Control System Technol. 21(6), 2360–2366 (2013)CrossRef
Zurück zum Zitat Yeh, F.K.: Sliding-mode adaptive attitude controller design for spacecrafts with thrusters. IET Control Theory Appl. 4(7), 1254–1264 (2010)CrossRef Yeh, F.K.: Sliding-mode adaptive attitude controller design for spacecrafts with thrusters. IET Control Theory Appl. 4(7), 1254–1264 (2010)CrossRef
Zurück zum Zitat Yu, X.H., Man, Z.: On finite time mechanism: Terminal sliding modes. In: The 1996 IEEE International Workshop on Variable Structure Systems, 5–6 Dec 1996, Tokyo, pp. 164–167, (1996). doi:10.1109/VSS.1996.578596 Yu, X.H., Man, Z.: On finite time mechanism: Terminal sliding modes. In: The 1996 IEEE International Workshop on Variable Structure Systems, 5–6 Dec 1996, Tokyo, pp. 164–167, (1996). doi:10.​1109/​VSS.​1996.​578596
Zurück zum Zitat Yu, X.H., Man, Z.: Fast terminal sliding mode control for nonlinear dynamical systems. IEEE. Trans. Circuits Syst. I: Fundam. Theory Appl. 49(2), 261–264 (2002)CrossRefMathSciNet Yu, X.H., Man, Z.: Fast terminal sliding mode control for nonlinear dynamical systems. IEEE. Trans. Circuits Syst. I: Fundam. Theory Appl. 49(2), 261–264 (2002)CrossRefMathSciNet
Zurück zum Zitat Yu, S., Yu, X.H., Shirinzadeh, B., Man, Z.: Continuous finite-time control for Robotic manipulator with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)CrossRefMathSciNetMATH Yu, S., Yu, X.H., Shirinzadeh, B., Man, Z.: Continuous finite-time control for Robotic manipulator with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)CrossRefMathSciNetMATH
Zurück zum Zitat Yang, L., Yang, J.: Nonsingular fast terminal sliding mode control for nonlinear dynamical systems. Intern. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)CrossRefMATH Yang, L., Yang, J.: Nonsingular fast terminal sliding mode control for nonlinear dynamical systems. Intern. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)CrossRefMATH
Zurück zum Zitat Zou, A.-M., Kumar, K.D.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network. IEEE. Trans. Syst. Man Cybern. 41(4), 950–963 (2011)CrossRef Zou, A.-M., Kumar, K.D.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network. IEEE. Trans. Syst. Man Cybern. 41(4), 950–963 (2011)CrossRef
Zurück zum Zitat Zhang, A., Hu, Q., Friswell, M.: Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults. IET Control Theory Appl. 7(16), 2007–2020 (2013)CrossRefMathSciNet Zhang, A., Hu, Q., Friswell, M.: Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults. IET Control Theory Appl. 7(16), 2007–2020 (2013)CrossRefMathSciNet
Metadaten
Titel
Rigid Spacecraft Fault-Tolerant Control Using Adaptive Fast Terminal Sliding Mode
verfasst von
Pyare Mohan Tiwari
S. Janardhanan
Mashuq un-Nabi
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-11173-5_14

Premium Partner