Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2014 | Original Article | Ausgabe 5/2014

International Journal of Computer Assisted Radiology and Surgery 5/2014

Robotic learning of motion using demonstrations and statistical models for surgical simulation

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 5/2014
Autoren:
Tao Yang, Chee Kong Chui, Jiang Liu, Weimin Huang, Yi Su, Stephen K. Y. Chang

Abstract

Purpose

   In robotic-assisted surgical training, the expertise of surgeons in maneuvering surgical instruments may be utilized to provide the motion trajectories for teaching. However, the motion primitives for trajectory planning are not known until the motion trajectory is generalized. We hypothesize that a generic model that encodes surgical skills using demonstrations and statistical models can be used by the surgical training robot to determine the motion primitive base on the motion trajectory.

Methods

   The generic model was developed from twenty-two sets of motion trajectories of soft tissue division with laparoscopic scissors collected from a robotic laparoscopic surgical training system. Adaptive mean shift method with initial bandwidth determined by the plug-in-rule method was used to identify the primitives in the motion trajectories. Gaussian Mixture Model was applied to model the underlying motion structure. Gaussian Mixture Regression was then applied to reconstruct a generic motion trajectory for the task.

Results

   The generic model and proposed method were investigated in experiments. Motion trajectory of tissue division was model and reconstructed. The motion model which was trained based on primitives determined by adaptive mean shift method produced RMS error of \(3.05^{\circ }\) and \(3.08^{\circ }\) with respect to the demonstrated trajectories of left and right instruments, respectively. The RMS error was smaller than that of k-means method and fixed bandwidth mean shift method. The dexterous features in the demonstrations were also preserved.

Conclusions

   Surgical tasks can be modeled using Gaussian Mixture Model and motion primitives identified by adaptive mean shift method with minimum user intervention. Generic motion trajectory has been successfully reconstructed based on the motion model. Investigation on the effectiveness of this method and generic model for surgical training is ongoing.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2014

International Journal of Computer Assisted Radiology and Surgery 5/2014 Zur Ausgabe

Premium Partner

    Bildnachweise