Skip to main content
Erschienen in: Cognitive Computation 1/2015

01.02.2015

Robust and Sparse Linear Programming Twin Support Vector Machines

verfasst von: M. Tanveer

Erschienen in: Cognitive Computation | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a new linear programming formulation of exact 1-norm twin support vector machine (TWSVM) for classification whose solution is obtained by solving a pair of dual exterior penalty problems as unconstrained minimization problems using Newton–Armijo algorithm. The idea of our formulation is to reformulate TWSVM as a strongly convex problem by incorporated regularization techniques and then derive an exact 1-norm linear programming formulation for TWSVM to improve robustness and sparsity. The solution of two modified unconstrained minimization problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems in TWSVM and TBSVM, which leads to extremely simple and fast algorithm. One significant advantage of our proposed method is the implementation of structural risk minimization principle. However, only empirical risk is considered in the primal problems of TWSVM due to its complex structure and thus may incur overfitting and suboptimal in some cases. Our approach has the advantage that a pair of matrix equation of order equals to the number of input examples is solved at each iteration of the algorithm. The algorithm converges from any starting point that can be easily implemented in MATLAB without using any optimization packages. Computational comparisons of our proposed method against original TWSVM, GEPSVM and SVM have been made on both synthetic and benchmark datasets. Experimental results show that our method is better or comparable in both computation time and classification accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balasundaram S, Tanveer M. On Lagrangian twin support vector regression. Neural Comput Appl. 2013;22(1):257–67.CrossRef Balasundaram S, Tanveer M. On Lagrangian twin support vector regression. Neural Comput Appl. 2013;22(1):257–67.CrossRef
2.
Zurück zum Zitat Bradley PS, Mangasarian OL. Feature selection via concave minimization and support vector machines. In: Machine learning proceedings of the fifteenth international conference (ICML ’98). 1998; p. 82–90. Bradley PS, Mangasarian OL. Feature selection via concave minimization and support vector machines. In: Machine learning proceedings of the fifteenth international conference (ICML ’98). 1998; p. 82–90.
3.
Zurück zum Zitat Brown MPS, Grundy WN, Lin D. Knowledge-based analysis of microarray gene expression data using support vector machine. In: Proceedings of the national academy of sciences of USA. 2000; 97(1):262–7. Brown MPS, Grundy WN, Lin D. Knowledge-based analysis of microarray gene expression data using support vector machine. In: Proceedings of the national academy of sciences of USA. 2000; 97(1):262–7.
4.
Zurück zum Zitat Burges C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov. 1998;2:1–43.CrossRef Burges C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov. 1998;2:1–43.CrossRef
5.
Zurück zum Zitat Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput. 2012;4(4):477–96.CrossRef Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput. 2012;4(4):477–96.CrossRef
6.
Zurück zum Zitat Cambria E, Hussain A. Sentic computing: techniques, tools, and applications. In: Springer briefs in Cogn Comput; 2012. Cambria E, Hussain A. Sentic computing: techniques, tools, and applications. In: Springer briefs in Cogn Comput; 2012.
7.
Zurück zum Zitat Cao FL, Xie TF, Xu ZB. The estimate for approximation error of neural networks: a constructive approach. Neurocomputing. 2009;71(4):626–30. Cao FL, Xie TF, Xu ZB. The estimate for approximation error of neural networks: a constructive approach. Neurocomputing. 2009;71(4):626–30.
8.
Zurück zum Zitat Chang CC, Lin CJ. A library for support vector machines. LIBSVM: ACM Trans Intell Syst Technol. 2011;2(3):27:1– 27. Chang CC, Lin CJ. A library for support vector machines. LIBSVM: ACM Trans Intell Syst Technol. 2011;2(3):27:1– 27.
9.
Zurück zum Zitat Cortes C, Vapnik VN. Support vector networks. Mach Learn. 1995;20:273–97. Cortes C, Vapnik VN. Support vector networks. Mach Learn. 1995;20:273–97.
10.
Zurück zum Zitat Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel based learning method. Cambridge: Cambridge University Press; 2000.CrossRef Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel based learning method. Cambridge: Cambridge University Press; 2000.CrossRef
11.
Zurück zum Zitat Duda RO, Hart PR, Stork DG. Pattern classification. 2nd ed. London: Wiley; 2001. Duda RO, Hart PR, Stork DG. Pattern classification. 2nd ed. London: Wiley; 2001.
12.
Zurück zum Zitat Fiacco AV, McCormick GP. Nonlinear programming: sequential unconstrained minimization techniques. London: Wiley; 1968. Fiacco AV, McCormick GP. Nonlinear programming: sequential unconstrained minimization techniques. London: Wiley; 1968.
13.
Zurück zum Zitat Fung G, Mangasarian OL. Finite Newton method for Lagrangian support vector machine classification. Neurocomputing. 2003;55(1–2):39–55.CrossRef Fung G, Mangasarian OL. Finite Newton method for Lagrangian support vector machine classification. Neurocomputing. 2003;55(1–2):39–55.CrossRef
14.
Zurück zum Zitat Gao S, Ye Q, Ye N. 1-norm least squares twin support vector machines. Neurocomputing. 2011;74:3590–7.CrossRef Gao S, Ye Q, Ye N. 1-norm least squares twin support vector machines. Neurocomputing. 2011;74:3590–7.CrossRef
15.
Zurück zum Zitat Grassi M, Cambria E, Hussain A, Piazza F. Sentic web: a new paradigm for managing social media affective information. Cogn Comput. 2011;3(3):480–9.CrossRef Grassi M, Cambria E, Hussain A, Piazza F. Sentic web: a new paradigm for managing social media affective information. Cogn Comput. 2011;3(3):480–9.CrossRef
16.
Zurück zum Zitat Hiriart-Urruty J-B, Strodiot JJ, Nguyen VH. Generalized hessian matrix and second order optimality conditions for problems with CL1 data. Appl Math Optim. 1984;11:4356.CrossRef Hiriart-Urruty J-B, Strodiot JJ, Nguyen VH. Generalized hessian matrix and second order optimality conditions for problems with CL1 data. Appl Math Optim. 1984;11:4356.CrossRef
17.
Zurück zum Zitat Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell. 2007;29(5):905–910. Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell. 2007;29(5):905–910.
18.
Zurück zum Zitat Joachims T, Ndellec C, Rouveriol C. Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. 1998; (10): 137–142. Joachims T, Ndellec C, Rouveriol C. Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. 1998; (10): 137–142.
19.
Zurück zum Zitat Joachims T. Making large-scale support vector machine learning practical. In: Advances in Kernel methods: support vector learning. MIT Press, Cambridge; 1999. Joachims T. Making large-scale support vector machine learning practical. In: Advances in Kernel methods: support vector learning. MIT Press, Cambridge; 1999.
20.
Zurück zum Zitat Kumar MA, Gopal M. Application of smoothing technique on twin support vector machines. Pattern Recognit Lett. 2008;29:1842–8.CrossRef Kumar MA, Gopal M. Application of smoothing technique on twin support vector machines. Pattern Recognit Lett. 2008;29:1842–8.CrossRef
21.
Zurück zum Zitat Kumar MA, Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst Appl. 2009;36:7535–43.CrossRef Kumar MA, Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst Appl. 2009;36:7535–43.CrossRef
22.
Zurück zum Zitat Kumar MA, Khemchandani R, Gopal M, Chandra S. Knowledge based least squares twin support vector machines. Inf Sci. 2010;180(23):4606–18.CrossRef Kumar MA, Khemchandani R, Gopal M, Chandra S. Knowledge based least squares twin support vector machines. Inf Sci. 2010;180(23):4606–18.CrossRef
23.
Zurück zum Zitat Mangasarian OL. A finite Newton method for classification. Optim Methods Softw. 2002;17:913–29.CrossRef Mangasarian OL. A finite Newton method for classification. Optim Methods Softw. 2002;17:913–29.CrossRef
24.
Zurück zum Zitat Mangasarian OL. Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J Mach Learn Res. 2006;7:1517–30. Mangasarian OL. Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J Mach Learn Res. 2006;7:1517–30.
25.
Zurück zum Zitat Mangasarian OL, Wild EW. Multisurface proximal support vector classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell. 2006;28(1):69–74.PubMedCrossRef Mangasarian OL, Wild EW. Multisurface proximal support vector classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell. 2006;28(1):69–74.PubMedCrossRef
28.
Zurück zum Zitat Osuna E, Freund R, Girosi F. Training support vector machines: an application to face detection. In: Proceedings of computer vision and pattern recognition. 1997; p. 130–136. Osuna E, Freund R, Girosi F. Training support vector machines: an application to face detection. In: Proceedings of computer vision and pattern recognition. 1997; p. 130–136.
29.
Zurück zum Zitat Peng X. TSVR: an efficient twin support vector machine for regression. Neural Netw. 2010;23(3):365–72.PubMedCrossRef Peng X. TSVR: an efficient twin support vector machine for regression. Neural Netw. 2010;23(3):365–72.PubMedCrossRef
30.
Zurück zum Zitat Peng X. TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit. 2011;44:2678–92.CrossRef Peng X. TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit. 2011;44:2678–92.CrossRef
31.
Zurück zum Zitat Peng X. Building sparse twin support vector machine classifiers in primal space. Inf Sci. 2011;181:3967–80.CrossRef Peng X. Building sparse twin support vector machine classifiers in primal space. Inf Sci. 2011;181:3967–80.CrossRef
32.
Zurück zum Zitat Platt J. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges CJC, Smola AJ, editors. Advances in Kernel methods-support vector learning. Cambridge: MIT Press; 1999. p. 185–208. Platt J. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges CJC, Smola AJ, editors. Advances in Kernel methods-support vector learning. Cambridge: MIT Press; 1999. p. 185–208.
33.
Zurück zum Zitat Qi Z, Tian Y, Shi Y. A nonparallel support vector machine for a classification problem with universum learning. J Comput Appl Math. 2014;263:288–98.CrossRef Qi Z, Tian Y, Shi Y. A nonparallel support vector machine for a classification problem with universum learning. J Comput Appl Math. 2014;263:288–98.CrossRef
34.
Zurück zum Zitat Shao YH, Chen WJ, Deng NY. Nonparallel hyperplane support vector machine for binary classification problems. Inf Sci. 2014;263:22–35.CrossRef Shao YH, Chen WJ, Deng NY. Nonparallel hyperplane support vector machine for binary classification problems. Inf Sci. 2014;263:22–35.CrossRef
35.
Zurück zum Zitat Shao YH, Zhang CH, Wang XB, Deng NY. Improvements on twin support vector machines. IEEE Trans Neural Netw. 2011;22(6):962–8.PubMedCrossRef Shao YH, Zhang CH, Wang XB, Deng NY. Improvements on twin support vector machines. IEEE Trans Neural Netw. 2011;22(6):962–8.PubMedCrossRef
36.
Zurück zum Zitat Shao YH, Zhang CH, Yang ZM, Jing L, Deng NY. An \(\epsilon \)-twin support vector machine for regression. Neural Comput Appl. 2013;23(1):175–85.CrossRef Shao YH, Zhang CH, Yang ZM, Jing L, Deng NY. An \(\epsilon \)-twin support vector machine for regression. Neural Comput Appl. 2013;23(1):175–85.CrossRef
37.
Zurück zum Zitat Tanveer M. Smooth linear programming twin support vector machines. Int J Mach Learn Comput. 2013;3(2):240–4.CrossRef Tanveer M. Smooth linear programming twin support vector machines. Int J Mach Learn Comput. 2013;3(2):240–4.CrossRef
38.
Zurück zum Zitat Tian Y, Ping Y. Large-scale linear nonparallel support vector machine solver. Neural Netw. 2014;50:166–74.PubMedCrossRef Tian Y, Ping Y. Large-scale linear nonparallel support vector machine solver. Neural Netw. 2014;50:166–74.PubMedCrossRef
39.
Zurück zum Zitat Tikhonov AN, Arsen VY. Solutions of ill-posed problems. New York: Wiley; 1977. Tikhonov AN, Arsen VY. Solutions of ill-posed problems. New York: Wiley; 1977.
40.
Zurück zum Zitat Vapnik VN. Statistical learning theory. New York: Wiley; 1998. Vapnik VN. Statistical learning theory. New York: Wiley; 1998.
41.
Zurück zum Zitat Vapnik VN. The nature of statistical learning theory. 2nd ed. New York: Springer; 2000.CrossRef Vapnik VN. The nature of statistical learning theory. 2nd ed. New York: Springer; 2000.CrossRef
42.
Zurück zum Zitat Wang QF, Cambria E, Liu CL, Hussain A. Common sense knowledge for handwritten Chinese recognition. Cogn Comput. 2013;5(2):234–42.CrossRef Wang QF, Cambria E, Liu CL, Hussain A. Common sense knowledge for handwritten Chinese recognition. Cogn Comput. 2013;5(2):234–42.CrossRef
43.
Zurück zum Zitat Wu JD, Liu CT. Finger-vein pattern identification using svm and neural network technique. Expert Syst Appl. 2011;38(11):14284–9. Wu JD, Liu CT. Finger-vein pattern identification using svm and neural network technique. Expert Syst Appl. 2011;38(11):14284–9.
44.
Zurück zum Zitat Xu Y, Guo R, Wang L. A twin multi-class classification support vector machine. Cogn Comput. 2013;5(4):580–8.CrossRef Xu Y, Guo R, Wang L. A twin multi-class classification support vector machine. Cogn Comput. 2013;5(4):580–8.CrossRef
45.
Zurück zum Zitat Xu Y, Wang L. A weighted twin support vector regression. Knowl-Based Syst. 2012;33:92–101.CrossRef Xu Y, Wang L. A weighted twin support vector regression. Knowl-Based Syst. 2012;33:92–101.CrossRef
46.
Zurück zum Zitat Xu Y, Wang L, Zhong P. A rough margin-based \(\nu \)-twin support vector machine. Neural Comput Appl. 2012;21(6):1307–17.CrossRef Xu Y, Wang L, Zhong P. A rough margin-based \(\nu \)-twin support vector machine. Neural Comput Appl. 2012;21(6):1307–17.CrossRef
47.
Zurück zum Zitat Zhong P, Xu Y, Zhao Y. Training twin support vector regression via linear programming. Neural Comput Appl. 2012;21(2):399–407.CrossRef Zhong P, Xu Y, Zhao Y. Training twin support vector regression via linear programming. Neural Comput Appl. 2012;21(2):399–407.CrossRef
Metadaten
Titel
Robust and Sparse Linear Programming Twin Support Vector Machines
verfasst von
M. Tanveer
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2015
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-014-9278-8

Weitere Artikel der Ausgabe 1/2015

Cognitive Computation 1/2015 Zur Ausgabe

Premium Partner