Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.11.2017 | Original Article | Ausgabe 8/2019

Neural Computing and Applications 8/2019

Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties

Zeitschrift:
Neural Computing and Applications > Ausgabe 8/2019
Autoren:
Shuxin Liu, Yongguang Yu, Shuo Zhang

Abstract

A new dynamic system, the fractional-order Hopfield neural networks with parameter uncertainties based on memristor are investigated in this paper. Through constructing a suitable Lyapunov function and some sufficient conditions are established to realize the robust synchronization of such system with discontinuous right-hand based on fractional-order Lyapunov direct method. Skillfully, the closure arithmetic is employed to handle the error system and the robust synchronization is achieved by analyzing the Mittag-Leffler stability. At last, two numerical examples are given to show the effectiveness of the obtained theoretical results. The first mainly shows the chaos of the system, and the other one mainly shows the results of robust synchronization.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2019

Neural Computing and Applications 8/2019 Zur Ausgabe

Premium Partner

    Bildnachweise