Skip to main content
Erschienen in: Neural Computing and Applications 8/2019

30.11.2017 | Original Article

Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties

verfasst von: Shuxin Liu, Yongguang Yu, Shuo Zhang

Erschienen in: Neural Computing and Applications | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new dynamic system, the fractional-order Hopfield neural networks with parameter uncertainties based on memristor are investigated in this paper. Through constructing a suitable Lyapunov function and some sufficient conditions are established to realize the robust synchronization of such system with discontinuous right-hand based on fractional-order Lyapunov direct method. Skillfully, the closure arithmetic is employed to handle the error system and the robust synchronization is achieved by analyzing the Mittag-Leffler stability. At last, two numerical examples are given to show the effectiveness of the obtained theoretical results. The first mainly shows the chaos of the system, and the other one mainly shows the results of robust synchronization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, LondonMATH Podlubny I (1999) Fractional differential equations. Academic Press, LondonMATH
2.
Zurück zum Zitat Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science Limited, AmsterdamMATH Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science Limited, AmsterdamMATH
3.
Zurück zum Zitat Ahmeda E, Elgazzar AS (2007) On fractional order differential equations model for nonlocal epidemics. Phys. A 379:607–614CrossRef Ahmeda E, Elgazzar AS (2007) On fractional order differential equations model for nonlocal epidemics. Phys. A 379:607–614CrossRef
4.
Zurück zum Zitat Sabaticer J, Agrawal OP, Machado JA (2007) Advances in fractional calculus. Springer, DordrechtCrossRef Sabaticer J, Agrawal OP, Machado JA (2007) Advances in fractional calculus. Springer, DordrechtCrossRef
5.
Zurück zum Zitat Ji Y, Fan G, Qiu J (2016) Sufficient conditions of observer-based control for nonlinear fractional-order systems. In: IEEE conference on control and decision (CCDC), Chinese. pp. 1512–1517 Ji Y, Fan G, Qiu J (2016) Sufficient conditions of observer-based control for nonlinear fractional-order systems. In: IEEE conference on control and decision (CCDC), Chinese. pp. 1512–1517
6.
Zurück zum Zitat Muthukumar P, Balasubramaniam P, Ratnavelu K (2017) Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int J Dyn Control 5(1):115–123MathSciNetCrossRef Muthukumar P, Balasubramaniam P, Ratnavelu K (2017) Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int J Dyn Control 5(1):115–123MathSciNetCrossRef
7.
Zurück zum Zitat Bouzerdoum A, Pattison TR (1993) Neural network for quadratic optimization with bound constraints. IEEE Trans Neural Netw 4(2):293–304CrossRef Bouzerdoum A, Pattison TR (1993) Neural network for quadratic optimization with bound constraints. IEEE Trans Neural Netw 4(2):293–304CrossRef
9.
Zurück zum Zitat Guo D, Li C (2012) Population rate coding in recurrent neuronal networks with unreliable synapses. Cognit Neurodyn 6(1):75–87CrossRef Guo D, Li C (2012) Population rate coding in recurrent neuronal networks with unreliable synapses. Cognit Neurodyn 6(1):75–87CrossRef
10.
Zurück zum Zitat Jafarian A, Mokhtarpour M, Baleanu D (2017) Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput Appl 28(4):765–773CrossRef Jafarian A, Mokhtarpour M, Baleanu D (2017) Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput Appl 28(4):765–773CrossRef
11.
Zurück zum Zitat Jafarian A, Rostami F, Golmankhaneh AK et al (2017) Using ANNs approach for solving fractional order volterra integro-differential equations. Int J Comput Intell Syst 10(1):470–480CrossRef Jafarian A, Rostami F, Golmankhaneh AK et al (2017) Using ANNs approach for solving fractional order volterra integro-differential equations. Int J Comput Intell Syst 10(1):470–480CrossRef
12.
Zurück zum Zitat Cheng CJ, Liao TL, Hwang CC (2005) Exponential synchronization of a class of chaotic neural networks. Chaos Solitons Fractals 24:197–206MathSciNetCrossRefMATH Cheng CJ, Liao TL, Hwang CC (2005) Exponential synchronization of a class of chaotic neural networks. Chaos Solitons Fractals 24:197–206MathSciNetCrossRefMATH
13.
Zurück zum Zitat Chen L, Chai Y, Wu R (2011) Modified function projective synchronization of chaotic neural networks with delays based on observer. Int J Mod Phys C 22(02):169–180CrossRefMATH Chen L, Chai Y, Wu R (2011) Modified function projective synchronization of chaotic neural networks with delays based on observer. Int J Mod Phys C 22(02):169–180CrossRefMATH
14.
Zurück zum Zitat Fei Z, Guan C, Gao H (2017) Exponential synchronization of networked chaotic delayed neural network by a hybrid event trigger scheme. In: IEEE transactions on neural networks and learning systems Fei Z, Guan C, Gao H (2017) Exponential synchronization of networked chaotic delayed neural network by a hybrid event trigger scheme. In: IEEE transactions on neural networks and learning systems
15.
Zurück zum Zitat Hu C, Yu J, Chen Z et al (2017) Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks. Neural Netw 89:74–83CrossRef Hu C, Yu J, Chen Z et al (2017) Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks. Neural Netw 89:74–83CrossRef
16.
Zurück zum Zitat Boroomand A, Menhaj MB (2008) Fractional-order Hopfield neural networks. In: International Conference on Neural Information Processing, Springer, Berlin. pp. 883–890 Boroomand A, Menhaj MB (2008) Fractional-order Hopfield neural networks. In: International Conference on Neural Information Processing, Springer, Berlin. pp. 883–890
17.
Zurück zum Zitat Wu A, Liu L, Huang T et al (2017) Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments. Neural Netw 85:118–127CrossRef Wu A, Liu L, Huang T et al (2017) Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments. Neural Netw 85:118–127CrossRef
18.
Zurück zum Zitat Chen L, Liu C, Wu R et al (2016) Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Comput Appl 27(3):549–556CrossRef Chen L, Liu C, Wu R et al (2016) Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Comput Appl 27(3):549–556CrossRef
19.
Zurück zum Zitat Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRef Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRef
20.
Zurück zum Zitat Strukov DB, Snider GS, Stewart DR et al (2008) The missing memristor found. Nature 453(7191):80–83CrossRef Strukov DB, Snider GS, Stewart DR et al (2008) The missing memristor found. Nature 453(7191):80–83CrossRef
21.
Zurück zum Zitat Hu X, Feng G, Liu L et al (2015) Composite characteristics of memristor series and parallel circuits. Int J Bifurc Chaos 25(08):1530019CrossRefMATH Hu X, Feng G, Liu L et al (2015) Composite characteristics of memristor series and parallel circuits. Int J Bifurc Chaos 25(08):1530019CrossRefMATH
22.
Zurück zum Zitat Di Ventra M, Pershin YV, Chua LO (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97(10):1717–1724CrossRef Di Ventra M, Pershin YV, Chua LO (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97(10):1717–1724CrossRef
23.
Zurück zum Zitat Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurc Chaos 19(11):3605–3656CrossRefMATH Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurc Chaos 19(11):3605–3656CrossRefMATH
24.
Zurück zum Zitat Petras I (2010) Fractional-order memristor-based Chua’s circuit. IEEE Trans Circuits Syst II: Express Briefs 57(12):975–979CrossRef Petras I (2010) Fractional-order memristor-based Chua’s circuit. IEEE Trans Circuits Syst II: Express Briefs 57(12):975–979CrossRef
25.
Zurück zum Zitat Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23(7):881–886CrossRef Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23(7):881–886CrossRef
26.
Zurück zum Zitat Tour JM, He T (2008) Electronics: the fourth element. Nature 453(7191):42–43CrossRef Tour JM, He T (2008) Electronics: the fourth element. Nature 453(7191):42–43CrossRef
27.
Zurück zum Zitat Jiang Y, Li C (2016) Exponential stability of memristor-based synchronous switching neural networks with time delays. Int J Biomath 9(01):1650016MathSciNetCrossRefMATH Jiang Y, Li C (2016) Exponential stability of memristor-based synchronous switching neural networks with time delays. Int J Biomath 9(01):1650016MathSciNetCrossRefMATH
28.
Zurück zum Zitat Wen S, Huang T, Zeng Z et al (2015) Circuit design and exponential stabilization of memristive neural networks. Neural Netw 63:48–56CrossRefMATH Wen S, Huang T, Zeng Z et al (2015) Circuit design and exponential stabilization of memristive neural networks. Neural Netw 63:48–56CrossRefMATH
29.
Zurück zum Zitat Wang H, Duan S, Li C et al (2017) Exponential stability analysis of delayed memristor-based recurrent neural networks with impulse effects. Neural Comput Appl 28(4):669–678 Wang H, Duan S, Li C et al (2017) Exponential stability analysis of delayed memristor-based recurrent neural networks with impulse effects. Neural Comput Appl 28(4):669–678
30.
Zurück zum Zitat Meng Z, Xiang Z (2017) Stability analysis of stochastic memristor-based recurrent neural networks with mixed time-varying delays. Neural Comput Appl 28(7):1787–1799CrossRef Meng Z, Xiang Z (2017) Stability analysis of stochastic memristor-based recurrent neural networks with mixed time-varying delays. Neural Comput Appl 28(7):1787–1799CrossRef
31.
Zurück zum Zitat Wu A, Zeng Z, Zhu X et al (2011) Exponential synchronization of memristor-based recurrent neural networks with time delays. Neurocomputing 74(17):3043–3050CrossRef Wu A, Zeng Z, Zhu X et al (2011) Exponential synchronization of memristor-based recurrent neural networks with time delays. Neurocomputing 74(17):3043–3050CrossRef
32.
Zurück zum Zitat Wu H, Zhang L, Ding S, et al (2013) Complete periodic synchronization of memristor-based neural networks with time-varying delays. Discrete Dyn Nat Soc 2013(11):479–504 Wu H, Zhang L, Ding S, et al (2013) Complete periodic synchronization of memristor-based neural networks with time-varying delays. Discrete Dyn Nat Soc 2013(11):479–504
33.
Zurück zum Zitat Wang L, Shen Y (2015) Design of controller on synchronization of memristor-based neural networks with time-varying delays. Neurocomputing 147:372–379CrossRef Wang L, Shen Y (2015) Design of controller on synchronization of memristor-based neural networks with time-varying delays. Neurocomputing 147:372–379CrossRef
34.
Zurück zum Zitat Abdurahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw 69:20–28CrossRefMATH Abdurahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw 69:20–28CrossRefMATH
35.
Zurück zum Zitat Qi J, Li C, Huang T (2014) Stability of delayed memristive neural networks with time-varying impulses. Cognit Neurodyn 8(5):429–436CrossRef Qi J, Li C, Huang T (2014) Stability of delayed memristive neural networks with time-varying impulses. Cognit Neurodyn 8(5):429–436CrossRef
36.
Zurück zum Zitat Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8CrossRefMATH Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8CrossRefMATH
37.
Zurück zum Zitat Chen L, Wu R, Cao J et al (2015) Stability and synchronization of memristor-based fractional-order delayed neural networks. Neural Netw 71:37–44CrossRefMATH Chen L, Wu R, Cao J et al (2015) Stability and synchronization of memristor-based fractional-order delayed neural networks. Neural Netw 71:37–44CrossRefMATH
38.
Zurück zum Zitat Bao HB, Cao JD (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9CrossRefMATH Bao HB, Cao JD (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9CrossRefMATH
39.
Zurück zum Zitat Velmurugan G, Rakkiyappan R, Cao J (2016) Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw 73:36–46CrossRefMATH Velmurugan G, Rakkiyappan R, Cao J (2016) Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw 73:36–46CrossRefMATH
40.
Zurück zum Zitat Yang X, Li C, Huang T et al (2017) Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay. Neurocomputing 234:205–215CrossRef Yang X, Li C, Huang T et al (2017) Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay. Neurocomputing 234:205–215CrossRef
41.
Zurück zum Zitat Huang T, Li C, Duan S et al (2012) Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans Neural Netw Learn Syst 23(6):866–875CrossRef Huang T, Li C, Duan S et al (2012) Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans Neural Netw Learn Syst 23(6):866–875CrossRef
42.
Zurück zum Zitat Wong WK, Li H, Leung SYS (2012) Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Commun Nonlinear Sci Numer Simul 17(12):4877–4890MathSciNetCrossRefMATH Wong WK, Li H, Leung SYS (2012) Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Commun Nonlinear Sci Numer Simul 17(12):4877–4890MathSciNetCrossRefMATH
43.
Zurück zum Zitat Wang X, Li C, Huang T et al (2015) Dual-stage impulsive control for synchronization of memristive chaotic neural networks with discrete and continuously distributed delays. Neurocomputing 149:621–628CrossRef Wang X, Li C, Huang T et al (2015) Dual-stage impulsive control for synchronization of memristive chaotic neural networks with discrete and continuously distributed delays. Neurocomputing 149:621–628CrossRef
44.
Zurück zum Zitat Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized MittagCLeffler stability. Comput Math Appl 59(5):1810–1821MathSciNetCrossRefMATH Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized MittagCLeffler stability. Comput Math Appl 59(5):1810–1821MathSciNetCrossRefMATH
Metadaten
Titel
Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
verfasst von
Shuxin Liu
Yongguang Yu
Shuo Zhang
Publikationsdatum
30.11.2017
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3274-3

Weitere Artikel der Ausgabe 8/2019

Neural Computing and Applications 8/2019 Zur Ausgabe