Skip to main content

2020 | OriginalPaper | Buchkapitel

7. Role of Biochar in Carbon Sequestration and Greenhouse Gas Mitigation

verfasst von : Dipak Kumar Gupta, Chandan Kumar Gupta, Rachana Dubey, Ram Kishor Fagodiya, Gulshan Sharma, Keerthika A., M. B. Noor Mohamed, Rahul Dev, A. K. Shukla

Erschienen in: Biochar Applications in Agriculture and Environment Management

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Global warming and associated climate change are becoming a threat to almost all the ecosystems on the earth. According to the intergovernmental panel on climate change (IPCC) special report 2019, the global mean surface (land and ocean) temperature has been increased by 0.87 °C while mean of land surface air temperature has increased by 1.53 °C since 1850–2015. Climate change is affecting food security and human life due to warming, changing precipitation patterns, and the greater frequency of some extreme events. The main cause of global warming is the continuous increase in the atmospheric concentration of greenhouse gases (GHGs) like CO2, CH4, N2O and fluorinated gases due to several anthropogenic activities. Therefore, reducing the increasing concentration of GHG is necessary to slow down global warming and climate change. Among several options of greenhouse mitigation, application of biochar into the soil is gaining popularity due to several advantages over other options. Biochar is a highly stable form of carbon derived from pyrolysis of biomass at relatively low temperatures. Application of biochar into the soil has been reported to provide multiple benefits like increase in crop yield, nutrient and water use efficiency and several environmental benefits. Recalcitrant nature, relatively higher carbon content and easily available feedstock make biochar a highly sustainable and quick option for carbon sequestration into the soil. Biochar application into the soil not only helps in carbon sequestration but also provides a better option for managing agricultural residues. The application of biochar has also reported for reducing a considerable amount of methane and nitrous oxide emission from the agricultural field due to its priming effect on the soil. Biochar yield, physical properties, and carbon content varies with the type of feedstock and pyrolysis condition. Therefore, the rate of carbon sequestration and mitigation of greenhouse gas is also highly variable, however, the biochar application ultimately leads to a positive contribution towards climate change mitigation. However, most of the reported benefits are confined to laboratory and field trial at institute level, widespread adoption of biochar on farmer’s field is still lacking. In the present chapter, all the aspects of biochar towards carbon sequestration and greenhouse mitigation have been well discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Billa F, Angwafo TE, Ngome AF (2019) Agro-environmental characterization of biochar issued from crop wastes in the humid forest zone of Cameroon Samuel. Int J Recycl Org Waste Agric 8:1–13CrossRef Billa F, Angwafo TE, Ngome AF (2019) Agro-environmental characterization of biochar issued from crop wastes in the humid forest zone of Cameroon Samuel. Int J Recycl Org Waste Agric 8:1–13CrossRef
Zurück zum Zitat Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrag-Mpnnig N, Estavillo JM, Novak J (2019) Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci Total Environ 65:2354–2364CrossRef Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrag-Mpnnig N, Estavillo JM, Novak J (2019) Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci Total Environ 65:2354–2364CrossRef
Zurück zum Zitat Bruun EW, Hauggaard-Nielsen H, Ibrahim N, Egsgaard H, Ambus P, Jensen PA, Dam-Johansen K (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35(3):1182–1189CrossRef Bruun EW, Hauggaard-Nielsen H, Ibrahim N, Egsgaard H, Ambus P, Jensen PA, Dam-Johansen K (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35(3):1182–1189CrossRef
Zurück zum Zitat Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16CrossRef Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16CrossRef
Zurück zum Zitat Chaturvedi OP, Handa AK, Uthappa AR, Sridhar KB, Kumar N, Chavan SB, Rizvi J (2017) Promising agroforestry tree species in India. Jointly published by the Central Agroforestry Research Institute (CAFRI), Jhansi, and the South Asia Regional Programme (based in Delhi, India) of the World Agroforestry Centre, pp 1–190 Chaturvedi OP, Handa AK, Uthappa AR, Sridhar KB, Kumar N, Chavan SB, Rizvi J (2017) Promising agroforestry tree species in India. Jointly published by the Central Agroforestry Research Institute (CAFRI), Jhansi, and the South Asia Regional Programme (based in Delhi, India) of the World Agroforestry Centre, pp 1–190
Zurück zum Zitat Cherubin MR, Oliveira DMS, Feigl B et al (2018) Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review. Sci Agric 75(3):255–272CrossRef Cherubin MR, Oliveira DMS, Feigl B et al (2018) Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review. Sci Agric 75(3):255–272CrossRef
Zurück zum Zitat Crombie K, Mašek O (2015) Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy 7:349–361CrossRef Crombie K, Mašek O (2015) Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy 7:349–361CrossRef
Zurück zum Zitat Denman KL, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York Denman KL, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York
Zurück zum Zitat Dhyani SK, Ram A, Dev I (2016) Potential of agroforestry systems in carbon sequestration in India. Indian J Agric Sci 86:1103–1112 Dhyani SK, Ram A, Dev I (2016) Potential of agroforestry systems in carbon sequestration in India. Indian J Agric Sci 86:1103–1112
Zurück zum Zitat Dickinson D, Balduccio L, Buysse J, Ronsse F, Van Huylenbroeck G, Prins W (2015) Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy 7:850–864CrossRef Dickinson D, Balduccio L, Buysse J, Ronsse F, Van Huylenbroeck G, Prins W (2015) Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy 7:850–864CrossRef
Zurück zum Zitat Dlugokencky EJ, Hall BD, Montzka SA, Dutton G, Mühle J, Elkins JW (2019) Atmospheric composition [in State of the Climate in 2018, Chapter 2: Global Climate]. Bull Am Meteorol Soc 100(9):S48–S50 Dlugokencky EJ, Hall BD, Montzka SA, Dutton G, Mühle J, Elkins JW (2019) Atmospheric composition [in State of the Climate in 2018, Chapter 2: Global Climate]. Bull Am Meteorol Soc 100(9):S48–S50
Zurück zum Zitat Edwards JD, Pittelkow CM, Kent AD, Yang WH (2018) Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biol Biochem 122:81–90CrossRef Edwards JD, Pittelkow CM, Kent AD, Yang WH (2018) Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biol Biochem 122:81–90CrossRef
Zurück zum Zitat Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653CrossRef Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653CrossRef
Zurück zum Zitat Fagodiya RK, Pathak H, Bhatia A, Jain N, Gupta DK, Kumar A, Malyan SK, Dubey R, Radhakrishanan S, Tomer R (2019) Nitrous oxide emission and mitigation from maize–wheat rotation in the upper Indo-Gangetic Plains. Carbon Manag 10(5):489–499CrossRef Fagodiya RK, Pathak H, Bhatia A, Jain N, Gupta DK, Kumar A, Malyan SK, Dubey R, Radhakrishanan S, Tomer R (2019) Nitrous oxide emission and mitigation from maize–wheat rotation in the upper Indo-Gangetic Plains. Carbon Manag 10(5):489–499CrossRef
Zurück zum Zitat Fan C, Chen H, Li B, Xiong Z (2017) Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences 14:2851–2863CrossRef Fan C, Chen H, Li B, Xiong Z (2017) Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences 14:2851–2863CrossRef
Zurück zum Zitat Fang Y, Singh B, Singh BP, Krull E (2014) Biochar carbon stability in four contrasting soils. Eur J Soil Sci 65:60–71CrossRef Fang Y, Singh B, Singh BP, Krull E (2014) Biochar carbon stability in four contrasting soils. Eur J Soil Sci 65:60–71CrossRef
Zurück zum Zitat Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88CrossRef Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88CrossRef
Zurück zum Zitat Graetz RD, Skjemstad JO (2003) The charcoal sink of biomass burning on the Australian continent. CSIRO atmospheric research technical paper no. 64. CSIRO Atmospheric Research, Aspendale Graetz RD, Skjemstad JO (2003) The charcoal sink of biomass burning on the Australian continent. CSIRO atmospheric research technical paper no. 64. CSIRO Atmospheric Research, Aspendale
Zurück zum Zitat Grutzmacher P, Puga AP, Bibar MPS, Coscione ARC, Packer AP, de Andrade CA (2018) Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Sci Total Environ 625:1459–1466CrossRef Grutzmacher P, Puga AP, Bibar MPS, Coscione ARC, Packer AP, de Andrade CA (2018) Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Sci Total Environ 625:1459–1466CrossRef
Zurück zum Zitat Gupta DK, Bhatia A, Kumar A, Chakrabarti B, Jain N, Pathak H (2015) Global warming potential of rice-wheat cropping system of the Indo-Gangetic Plains. Indian J Agric Sci 85(6):807–816 Gupta DK, Bhatia A, Kumar A, Chakrabarti B, Jain N, Pathak H (2015) Global warming potential of rice-wheat cropping system of the Indo-Gangetic Plains. Indian J Agric Sci 85(6):807–816
Zurück zum Zitat Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Chakrabarti B, Pathak H (2016a) Economic analysis of different greenhouse gas mitigation technologies in rice wheat cropping system of the Indo-Gangetic Plains. Curr Sci 110(5):867–874 Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Chakrabarti B, Pathak H (2016a) Economic analysis of different greenhouse gas mitigation technologies in rice wheat cropping system of the Indo-Gangetic Plains. Curr Sci 110(5):867–874
Zurück zum Zitat Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Tomer R, Malyan S, Fagodiya RK, Dubey R, Pathak H (2016b) Mitigation of greenhouse gas emission from rice-wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Ecosyst Environ 230:1–9CrossRef Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Tomer R, Malyan S, Fagodiya RK, Dubey R, Pathak H (2016b) Mitigation of greenhouse gas emission from rice-wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Ecosyst Environ 230:1–9CrossRef
Zurück zum Zitat Gupta DK, Bhatt RK, Keerthika A, Noor Mohamed MB, Shukla AK, Jangid BL (2019) Carbon sequestration potential of 30 years old Hardwickia binata Roxb based agroforestry system in hot semi-arid environment of India: an assessment of tree density impact. Curr Sci 116(10):112–116CrossRef Gupta DK, Bhatt RK, Keerthika A, Noor Mohamed MB, Shukla AK, Jangid BL (2019) Carbon sequestration potential of 30 years old Hardwickia binata Roxb based agroforestry system in hot semi-arid environment of India: an assessment of tree density impact. Curr Sci 116(10):112–116CrossRef
Zurück zum Zitat Han X, Sun X, Wang C, Wu M, Dong D, Zhong T, Thies JE, Wu W (2016) Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Sci Rep 6:24731CrossRef Han X, Sun X, Wang C, Wu M, Dong D, Zhong T, Thies JE, Wu W (2016) Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Sci Rep 6:24731CrossRef
Zurück zum Zitat Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S (2014) Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J 8:660–674CrossRef Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S (2014) Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J 8:660–674CrossRef
Zurück zum Zitat Hilber I, Bastos AC, Loureiro S, Soja G, Marsz A, Cornelissen G, Bucheli T (2017) The different faces of biochar: contamination risk versus remediation tool. J Environ Eng Landsc Manage 25(02):86–104CrossRef Hilber I, Bastos AC, Loureiro S, Soja G, Marsz A, Cornelissen G, Bucheli T (2017) The different faces of biochar: contamination risk versus remediation tool. J Environ Eng Landsc Manage 25(02):86–104CrossRef
Zurück zum Zitat IPCC (2013) Climate change 2013: The physical science basis. In: Stocker TF, Qin D. Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 1535 pp IPCC (2013) Climate change 2013: The physical science basis. In: Stocker TF, Qin D. Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 1535 pp
Zurück zum Zitat IPCC (2014a) Climate change 2014: impacts, adaptation, and vulnerability working group II contribution to the fifth assessment report. Cambridge University Press, Cambridge/New York IPCC (2014a) Climate change 2014: impacts, adaptation, and vulnerability working group II contribution to the fifth assessment report. Cambridge University Press, Cambridge/New York
Zurück zum Zitat IPCC (2014b) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 151 pp IPCC (2014b) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 151 pp
Zurück zum Zitat IPCC (2019) Summary for policymakers. In: Shukla PR, Skea J, Calvo Buendia E, et al (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (in press) IPCC (2019) Summary for policymakers. In: Shukla PR, Skea J, Calvo Buendia E, et al (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (in press)
Zurück zum Zitat Jacquot J (2008) Can a kind of ancient charcoal put the brakes on global warming. Pop Mech. December 30, 2008 Jacquot J (2008) Can a kind of ancient charcoal put the brakes on global warming. Pop Mech. December 30, 2008
Zurück zum Zitat Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14:422–430CrossRef Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14:422–430CrossRef
Zurück zum Zitat Jeffery S, Verheijen FG, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187CrossRef Jeffery S, Verheijen FG, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187CrossRef
Zurück zum Zitat Jeffery S, Verheijen FG, Kammann C, Abalos D (2016) Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol Biochem 101:251–258CrossRef Jeffery S, Verheijen FG, Kammann C, Abalos D (2016) Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol Biochem 101:251–258CrossRef
Zurück zum Zitat Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T et al (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621CrossRef Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T et al (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621CrossRef
Zurück zum Zitat Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari A et al (eds) Prospects of renewable bioprocessing in future energy systems, Biofuel and biorefinery technologies Vol 10. Springer, Cham, pp 1–50 Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari A et al (eds) Prospects of renewable bioprocessing in future energy systems, Biofuel and biorefinery technologies Vol 10. Springer, Cham, pp 1–50
Zurück zum Zitat Krull ES, Baldock JA, Skjemstad JO, Smernik RJ (2009) Characteristics of biochar: organo-chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, Sterling/London, pp 53–66 Krull ES, Baldock JA, Skjemstad JO, Smernik RJ (2009) Characteristics of biochar: organo-chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, Sterling/London, pp 53–66
Zurück zum Zitat Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biol Biochem 41(2):210–219CrossRef Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biol Biochem 41(2):210–219CrossRef
Zurück zum Zitat Kuzyakov Y, Bogomolova I, Glaser B (2014) Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem 70:229–236CrossRef Kuzyakov Y, Bogomolova I, Glaser B (2014) Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem 70:229–236CrossRef
Zurück zum Zitat Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22CrossRef Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22CrossRef
Zurück zum Zitat Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresour Technol 148:196–201CrossRef Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresour Technol 148:196–201CrossRef
Zurück zum Zitat Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London
Zurück zum Zitat Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems. Mitig Adapt Strat Glob Chang 11:395–419CrossRef Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems. Mitig Adapt Strat Glob Chang 11:395–419CrossRef
Zurück zum Zitat Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, FJ L˜a, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6096–6078 Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, FJ L˜a, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6096–6078
Zurück zum Zitat Liu Y, Yang M, Wu Y, Wang H, Chen Y, Wu W (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11(6):930–939CrossRef Liu Y, Yang M, Wu Y, Wang H, Chen Y, Wu W (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11(6):930–939CrossRef
Zurück zum Zitat Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379CrossRef Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379CrossRef
Zurück zum Zitat Majumdera S, Neogia S, Duttaa T, Powelb MA, Banika P (2019) The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. J Environ Manag 250:109466CrossRef Majumdera S, Neogia S, Duttaa T, Powelb MA, Banika P (2019) The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. J Environ Manag 250:109466CrossRef
Zurück zum Zitat Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N (2016) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ 572:874–896CrossRef Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N (2016) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ 572:874–896CrossRef
Zurück zum Zitat Mary GS, Sugumaran P, Niveditha S et al (2016) Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recy Org Waste Agric 5(1):43–53CrossRef Mary GS, Sugumaran P, Niveditha S et al (2016) Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recy Org Waste Agric 5(1):43–53CrossRef
Zurück zum Zitat Nguyen BT, Lehmann J, Hockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44:3324–3331CrossRef Nguyen BT, Lehmann J, Hockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44:3324–3331CrossRef
Zurück zum Zitat Nsamba HK, Hale SE, Cornelissen G, Bachmann RT (2015) Sustainable technologies for small-scale biochar production – a review. J Sustain Bioenergy Syst 5:10–31CrossRef Nsamba HK, Hale SE, Cornelissen G, Bachmann RT (2015) Sustainable technologies for small-scale biochar production – a review. J Sustain Bioenergy Syst 5:10–31CrossRef
Zurück zum Zitat Pratiwi EPA, Shinogi Y (2016) Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ 14(4):521–532CrossRef Pratiwi EPA, Shinogi Y (2016) Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ 14(4):521–532CrossRef
Zurück zum Zitat Purakayastha TJ, Kumari S, Pathak H (2015) Characterization, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239–240:293–303CrossRef Purakayastha TJ, Kumari S, Pathak H (2015) Characterization, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239–240:293–303CrossRef
Zurück zum Zitat Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123–125CrossRef Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123–125CrossRef
Zurück zum Zitat Rondon M, Ramirez JA, Lehmann J (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. In: Proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration, vol 208, Baltimore, USA Rondon M, Ramirez JA, Lehmann J (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. In: Proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration, vol 208, Baltimore, USA
Zurück zum Zitat Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG (2016) The growing role of methane in anthropogenic climate change. Environ Res Lett 11(12):12CrossRef Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG (2016) The growing role of methane in anthropogenic climate change. Environ Res Lett 11(12):12CrossRef
Zurück zum Zitat Shneour EA (1966) Oxidation of graphitic carbon in certain soils. Science 151:991–992CrossRef Shneour EA (1966) Oxidation of graphitic carbon in certain soils. Science 151:991–992CrossRef
Zurück zum Zitat Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: Vol-2: managing environmental pollution. Springer, Cham, pp 123–146CrossRef Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: Vol-2: managing environmental pollution. Springer, Cham, pp 123–146CrossRef
Zurück zum Zitat Singh C, Tiwari S, Singh JS (2017b) Impact of rice husk biochar on nitrogen mineralization and methanotrophs community dynamics in paddy soil. Int J Pure Appl Biosci 5(5):428–435CrossRef Singh C, Tiwari S, Singh JS (2017b) Impact of rice husk biochar on nitrogen mineralization and methanotrophs community dynamics in paddy soil. Int J Pure Appl Biosci 5(5):428–435CrossRef
Zurück zum Zitat Singh C, Tiwari S, Singh JS (2017c) Application of biochar in soil fertility and environmental management: a review. Bull Environ Pharmacol Life Sci 6(12):07–14 Singh C, Tiwari S, Singh JS (2017c) Application of biochar in soil fertility and environmental management: a review. Bull Environ Pharmacol Life Sci 6(12):07–14
Zurück zum Zitat Singh C, Tiwari S, Gupta VK, Singh JS (2018) The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils. Catena 171:485–493CrossRef Singh C, Tiwari S, Gupta VK, Singh JS (2018) The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils. Catena 171:485–493CrossRef
Zurück zum Zitat Singh C, Tiwari S, Singh JS (2019) Biochar: a sustainable tool in soil 2 pollutant bioremediation. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Cham, pp 475–494 Singh C, Tiwari S, Singh JS (2019) Biochar: a sustainable tool in soil 2 pollutant bioremediation. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Cham, pp 475–494
Zurück zum Zitat Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291:275CrossRef Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291:275CrossRef
Zurück zum Zitat Sun X, Shan R, Li X, Pan J, Liu X, Deng R, Song J (2017) Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 9:1423–1435CrossRef Sun X, Shan R, Li X, Pan J, Liu X, Deng R, Song J (2017) Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 9:1423–1435CrossRef
Zurück zum Zitat Tiwari S, Singh C, Singh JS (2018) Land use changes: a key ecological driver regulating methanotrophs abundance in upland soils. Energy Ecol Environ 3(6):355–371CrossRef Tiwari S, Singh C, Singh JS (2018) Land use changes: a key ecological driver regulating methanotrophs abundance in upland soils. Energy Ecol Environ 3(6):355–371CrossRef
Zurück zum Zitat Tiwari S, Singh C, Boudh S, Rai PK, Gupta VK, Singh JS (2019a) Land use change: a key ecological disturbance declines soil microbial biomass in dry tropical uplands. J Environ Manag 242:1–10CrossRef Tiwari S, Singh C, Boudh S, Rai PK, Gupta VK, Singh JS (2019a) Land use change: a key ecological disturbance declines soil microbial biomass in dry tropical uplands. J Environ Manag 242:1–10CrossRef
Zurück zum Zitat Tiwari S, Singh C, Singh JS (2019b) Wetlands: a Major natural source responsible for methane emission. In: Upadhyay AK et al (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Cham, pp 59–74 Tiwari S, Singh C, Singh JS (2019b) Wetlands: a Major natural source responsible for methane emission. In: Upadhyay AK et al (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Cham, pp 59–74
Zurück zum Zitat Venkatesh G, Gopinath KA, Sammi Reddy K, Sanjeeva Reddy B, Prasad JVNS, Rajeshwar Rao G, Pratibha G, Srinivasarao Ch, Ravindra Chary G, Prabhakar M, Visha Kumari V, Shankar AK Venkateswarlu B (2018) Biochar production and its use in rainfed agriculture: experiences from CRIDA. CRIDA-NICRA Research Bulletin 02/2018. ICAR – Central Research Institute for Dryland Agriculture, Hyderabad, pp 50 Venkatesh G, Gopinath KA, Sammi Reddy K, Sanjeeva Reddy B, Prasad JVNS, Rajeshwar Rao G, Pratibha G, Srinivasarao Ch, Ravindra Chary G, Prabhakar M, Visha Kumari V, Shankar AK Venkateswarlu B (2018) Biochar production and its use in rainfed agriculture: experiences from CRIDA. CRIDA-NICRA Research Bulletin 02/2018. ICAR – Central Research Institute for Dryland Agriculture, Hyderabad, pp 50
Zurück zum Zitat Waters D, Van Zwieten L, Singh BP, Downie A, Cowie AL, Lehmann J (2011) Biochar in soil for climate change mitigation and adaptation. In: Singh B, Cowie A, Chan K (eds) Soil health and climate change. Soil biology, vol 29. Springer, Berlin/Heidelberg Waters D, Van Zwieten L, Singh BP, Downie A, Cowie AL, Lehmann J (2011) Biochar in soil for climate change mitigation and adaptation. In: Singh B, Cowie A, Chan K (eds) Soil health and climate change. Soil biology, vol 29. Springer, Berlin/Heidelberg
Zurück zum Zitat Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197CrossRef Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197CrossRef
Zurück zum Zitat Xiao Y, Yang S, Xu J, Ding J, Sun X, Jiang Z (2018) Effect of biochar amendment on methane emissions from paddy field under water-saving irrigation. Sustainability 10(5):1371CrossRef Xiao Y, Yang S, Xu J, Ding J, Sun X, Jiang Z (2018) Effect of biochar amendment on methane emissions from paddy field under water-saving irrigation. Sustainability 10(5):1371CrossRef
Zurück zum Zitat Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139(4):469–475CrossRef Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139(4):469–475CrossRef
Zurück zum Zitat Zhang H, Chen C, Gray EM, Boyd SE (2017) Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy 105:136–146CrossRef Zhang H, Chen C, Gray EM, Boyd SE (2017) Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy 105:136–146CrossRef
Zurück zum Zitat Zhang X, Chen C, Chen X, Tao P, Jin Z, Han Z (2018) Persistent effects of biochar on soil organic carbon mineralization and resistant carbon pool in upland red soil, China. Environ Earth Sci 77:177CrossRef Zhang X, Chen C, Chen X, Tao P, Jin Z, Han Z (2018) Persistent effects of biochar on soil organic carbon mineralization and resistant carbon pool in upland red soil, China. Environ Earth Sci 77:177CrossRef
Zurück zum Zitat Zheng H, Wang Z, Deng X, Herbert S, Xing B (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39CrossRef Zheng H, Wang Z, Deng X, Herbert S, Xing B (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39CrossRef
Zurück zum Zitat Zimmerman A (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301CrossRef Zimmerman A (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301CrossRef
Metadaten
Titel
Role of Biochar in Carbon Sequestration and Greenhouse Gas Mitigation
verfasst von
Dipak Kumar Gupta
Chandan Kumar Gupta
Rachana Dubey
Ram Kishor Fagodiya
Gulshan Sharma
Keerthika A.
M. B. Noor Mohamed
Rahul Dev
A. K. Shukla
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40997-5_7