Skip to main content

2012 | OriginalPaper | Buchkapitel

6. Role of Epigenetic Changes in Radiation-Induced Genome Instability

verfasst von : Slava Ilnytskyy, Jody Filkowski, Olga Kovalchuk

Erschienen in: Radiobiology and Environmental Security

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ionizing radiation (IR) is an important diagnostic and treatment modality, yet it is also a potent genotoxic agent that causes genome instability and carcinogenesis. While modern cancer radiation therapy has led to increased patient survival rates, the risk of radiation treatment-related complications is becoming a growing problem as radiation poses a threat to the exposed individuals and their progeny. Radiation-induced genome instability, which manifests as an elevated mutation rate (both delayed and non-targeted), chromosomal aberrations and changes in gene expression, has been well-documented in directly exposed cells and organisms. However, it has also been observed in distant, naïve, out-of-field, ‘bystander’ cells and their progeny. Enigmatically, this increased instability is even observed in the pre-conceptually exposed progeny of animals, including humans. The mechanisms by which these distal effects arise remain obscure and, recently, have been proposed to be epigenetic in nature.
Epigenetic alterations which comprise mitotically and meiotically heritable changes in gene expression that are not caused by changes in the primary DNA sequence, are increasingly being recognized for their roles in health and disease. Three major areas of epigenetics—DNA methylation, histone modifications and small RNA-mediated silencing, are known to have profound effects on controlling gene expression. Yet, the exact nature of the epigenetic changes and their precise roles in IR responses and IR-induced genome instability still need to be delineated. Here we will focus on the nature of epigenetic changes in directly exposed and bystander tissues. We will also discuss the emerging evidence that support the role of epigenetic deregulation in transgenerational effects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akleev AV, Dubrova Iu E et al (2007) The effects of chronic radiation exposure on the frequency of mutations at minisatellite DNA loci in residents of the Techa Riverside Villages. Radiats Biol Radioecol 47(5):558–566 Akleev AV, Dubrova Iu E et al (2007) The effects of chronic radiation exposure on the frequency of mutations at minisatellite DNA loci in residents of the Techa Riverside Villages. Radiats Biol Radioecol 47(5):558–566
2.
Zurück zum Zitat Amundson SA, Fornace AJ Jr (2003) Monitoring human radiation exposure by gene expression profiling: possibilities and pitfalls. Health Phys 85(1):36–42CrossRef Amundson SA, Fornace AJ Jr (2003) Monitoring human radiation exposure by gene expression profiling: possibilities and pitfalls. Health Phys 85(1):36–42CrossRef
3.
Zurück zum Zitat Amundson SA, Lee RA et al (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1(6):445–452 Amundson SA, Lee RA et al (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1(6):445–452
4.
Zurück zum Zitat Andreev SG, Eidelman YA et al (2006) Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis. Radiat Prot Dosimetry 122(1–4):335–339 Andreev SG, Eidelman YA et al (2006) Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis. Radiat Prot Dosimetry 122(1–4):335–339
5.
Zurück zum Zitat Aravin AA, Sachidanandam R et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747CrossRef Aravin AA, Sachidanandam R et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747CrossRef
6.
Zurück zum Zitat Aravin AA, Sachidanandam R et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799CrossRef Aravin AA, Sachidanandam R et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799CrossRef
7.
Zurück zum Zitat Barber R, Plumb MA et al (2002) Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice. Proc Natl Acad Sci USA 99(10):6877–6882CrossRef Barber R, Plumb MA et al (2002) Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice. Proc Natl Acad Sci USA 99(10):6877–6882CrossRef
8.
Zurück zum Zitat Baylin SB, Chen WY (2005) Aberrant gene silencing in tumor progression: implications for control of cancer. Cold Spring Harb Symp Quant Biol 70:427–433CrossRef Baylin SB, Chen WY (2005) Aberrant gene silencing in tumor progression: implications for control of cancer. Cold Spring Harb Symp Quant Biol 70:427–433CrossRef
9.
Zurück zum Zitat Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116CrossRef Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116CrossRef
10.
Zurück zum Zitat Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19(14):1635–1655CrossRef Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19(14):1635–1655CrossRef
11.
12.
Zurück zum Zitat Brykczynska U, Hisano M et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17(6):679–687CrossRef Brykczynska U, Hisano M et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17(6):679–687CrossRef
13.
Zurück zum Zitat Carls N, Schiestl RH (1999) Effect of ionizing radiation on transgenerational appearance of p(un) reversions in mice. Carcinogenesis 20(12):2351–2354CrossRef Carls N, Schiestl RH (1999) Effect of ionizing radiation on transgenerational appearance of p(un) reversions in mice. Carcinogenesis 20(12):2351–2354CrossRef
14.
Zurück zum Zitat Carmell MA, Girard A et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12(4):503–514CrossRef Carmell MA, Girard A et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12(4):503–514CrossRef
15.
Zurück zum Zitat Celeste A, Difilippantonio S et al (2003) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114(3):371–383CrossRef Celeste A, Difilippantonio S et al (2003) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114(3):371–383CrossRef
16.
Zurück zum Zitat Celeste A, Fernandez-Capetillo O et al (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5(7):675–679CrossRef Celeste A, Fernandez-Capetillo O et al (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5(7):675–679CrossRef
17.
Zurück zum Zitat Chauveinc L, Giraud P et al (1998) Radiotherapy-induced solid tumors: review of the literature and risk assessment. Cancer Radiother 2(1):12–18 Chauveinc L, Giraud P et al (1998) Radiotherapy-induced solid tumors: review of the literature and risk assessment. Cancer Radiother 2(1):12–18
18.
Zurück zum Zitat Cheung P, Lau P (2005) Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 19(3):563–573CrossRef Cheung P, Lau P (2005) Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 19(3):563–573CrossRef
19.
Zurück zum Zitat Criswell T, Leskov K et al (2003) Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22(37):5813–5827CrossRef Criswell T, Leskov K et al (2003) Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22(37):5813–5827CrossRef
20.
Zurück zum Zitat Daher A, Varin M et al (1998) Effect of pre-conceptional external or internal irradiation of N5 male mice and the risk of leukemia in their offspring. Carcinogenesis 19(9):1553–1558CrossRef Daher A, Varin M et al (1998) Effect of pre-conceptional external or internal irradiation of N5 male mice and the risk of leukemia in their offspring. Carcinogenesis 19(9):1553–1558CrossRef
21.
Zurück zum Zitat Das PP, Bagijn MP et al (2008) Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 31(1):79–90CrossRef Das PP, Bagijn MP et al (2008) Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 31(1):79–90CrossRef
22.
Zurück zum Zitat Draper GJ (1989) General overview of studies of multigeneration carcinogenesis in man, particularly in relation to exposure to chemicals. IARC Sci Publ 96:275–288 Draper GJ (1989) General overview of studies of multigeneration carcinogenesis in man, particularly in relation to exposure to chemicals. IARC Sci Publ 96:275–288
23.
Zurück zum Zitat Dubrova YE, Jeffreys AJ et al (1993) Mouse minisatellite mutations induced by ionizing radiation. Nat Genet 5(1):92–94CrossRef Dubrova YE, Jeffreys AJ et al (1993) Mouse minisatellite mutations induced by ionizing radiation. Nat Genet 5(1):92–94CrossRef
24.
Zurück zum Zitat Dubrova YE, Nesterov VN et al (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380(6576):683–686CrossRef Dubrova YE, Nesterov VN et al (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380(6576):683–686CrossRef
25.
Zurück zum Zitat Dubrova YE, Nesterov VN et al (1997) Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat Res 381(2):267–278CrossRef Dubrova YE, Nesterov VN et al (1997) Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat Res 381(2):267–278CrossRef
26.
Zurück zum Zitat Dubrova YE, Plumb M et al (1998) Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation. Proc Natl Acad Sci USA 95(11):6251–6255CrossRef Dubrova YE, Plumb M et al (1998) Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation. Proc Natl Acad Sci USA 95(11):6251–6255CrossRef
27.
Zurück zum Zitat Dubrova YE, Plumb M et al (2000) Transgenerational mutation by radiation. Nature 405(6782):37CrossRef Dubrova YE, Plumb M et al (2000) Transgenerational mutation by radiation. Nature 405(6782):37CrossRef
28.
Zurück zum Zitat Dubrova YE, Bersimbaev RI et al (2002) Nuclear weapons tests and human germline mutation rate. Science 295(5557):1037CrossRef Dubrova YE, Bersimbaev RI et al (2002) Nuclear weapons tests and human germline mutation rate. Science 295(5557):1037CrossRef
29.
Zurück zum Zitat Dubrova YE, Ploshchanskaya OG et al (2006) Minisatellite germline mutation rate in the Techa River population. Mutat Res 602(1–2):74–82 Dubrova YE, Ploshchanskaya OG et al (2006) Minisatellite germline mutation rate in the Techa River population. Mutat Res 602(1–2):74–82
30.
Zurück zum Zitat Fabbri M, Ivan M et al (2007) Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther 7(7):1009–1019CrossRef Fabbri M, Ivan M et al (2007) Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther 7(7):1009–1019CrossRef
31.
Zurück zum Zitat Fan YJ, Wang Z et al (1995) Dose-response of a radiation induction of a germline mutation at a hypervariable mouse minisatellite locus. Int J Radiat Biol 68(2):177–183CrossRef Fan YJ, Wang Z et al (1995) Dose-response of a radiation induction of a germline mutation at a hypervariable mouse minisatellite locus. Int J Radiat Biol 68(2):177–183CrossRef
32.
Zurück zum Zitat Farazi TA, Juranek SA et al (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135(7):1201–1214CrossRef Farazi TA, Juranek SA et al (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135(7):1201–1214CrossRef
33.
Zurück zum Zitat Fei P, El-Deiry WS (2003) P53 and radiation responses. Oncogene 22(37):5774–5783CrossRef Fei P, El-Deiry WS (2003) P53 and radiation responses. Oncogene 22(37):5774–5783CrossRef
34.
Zurück zum Zitat Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14(6):427–432CrossRef Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14(6):427–432CrossRef
35.
Zurück zum Zitat Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92CrossRef Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92CrossRef
36.
Zurück zum Zitat Filkowski JN, Ilnytskyy Y et al (2010) Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis 31(6):1110–1115CrossRef Filkowski JN, Ilnytskyy Y et al (2010) Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis 31(6):1110–1115CrossRef
37.
Zurück zum Zitat Fraga MF, Ballestar E et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400CrossRef Fraga MF, Ballestar E et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400CrossRef
38.
Zurück zum Zitat Goldman M (1982) Ionizing radiation and its risks. West J Med 137(6):540–547 Goldman M (1982) Ionizing radiation and its risks. West J Med 137(6):540–547
39.
Zurück zum Zitat Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514CrossRef Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514CrossRef
40.
Zurück zum Zitat Grandjean V, Gounon P et al (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136(21):3647–3655CrossRef Grandjean V, Gounon P et al (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136(21):3647–3655CrossRef
41.
Zurück zum Zitat Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301(5634):798–802CrossRef Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301(5634):798–802CrossRef
42.
Zurück zum Zitat Hajkova P, Erhardt S et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117(1–2):15–23CrossRef Hajkova P, Erhardt S et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117(1–2):15–23CrossRef
43.
Zurück zum Zitat He S, Dunn KL et al (2008) Chromatin organization and nuclear microenvironments in cancer cells. J Cell Biochem 104(6):2004–2015CrossRef He S, Dunn KL et al (2008) Chromatin organization and nuclear microenvironments in cancer cells. J Cell Biochem 104(6):2004–2015CrossRef
44.
Zurück zum Zitat Holliday R (1990) DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond B Biol Sci 326(1235):329–338CrossRef Holliday R (1990) DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond B Biol Sci 326(1235):329–338CrossRef
45.
Zurück zum Zitat Huang L, Snyder AR, Morgan WF (2003) Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 22:5848–5854CrossRef Huang L, Snyder AR, Morgan WF (2003) Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 22:5848–5854CrossRef
46.
Zurück zum Zitat Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060CrossRef Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060CrossRef
47.
Zurück zum Zitat Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6):776–780CrossRef Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6):776–780CrossRef
48.
Zurück zum Zitat Iliakis G, Wang Y et al (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22(37):5834–5847CrossRef Iliakis G, Wang Y et al (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22(37):5834–5847CrossRef
49.
Zurück zum Zitat Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254CrossRef Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254CrossRef
50.
Zurück zum Zitat Jeggo P, Lobrich M (2006) Radiation-induced DNA damage responses. Radiat Prot Dosimetry 122(1–4):124–127 Jeggo P, Lobrich M (2006) Radiation-induced DNA damage responses. Radiat Prot Dosimetry 122(1–4):124–127
51.
Zurück zum Zitat Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080CrossRef Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080CrossRef
52.
Zurück zum Zitat Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262CrossRef Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262CrossRef
53.
Zurück zum Zitat Kalinich JF, Catravas GN et al (1989) The effect of gamma radiation on DNA methylation. Radiat Res 117(2):185–197CrossRef Kalinich JF, Catravas GN et al (1989) The effect of gamma radiation on DNA methylation. Radiat Res 117(2):185–197CrossRef
54.
Zurück zum Zitat Kaup S, Grandjean V et al (2006) Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutat Res 597(1–2):87–97 Kaup S, Grandjean V et al (2006) Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutat Res 597(1–2):87–97
55.
Zurück zum Zitat Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97CrossRef Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97CrossRef
56.
Zurück zum Zitat Koturbash I, Pogribny I et al (2005) Stable loss of global DNA methylation in the radiation-target tissue–a possible mechanism contributing to radiation carcinogenesis? Biochem Biophys Res Commun 337(2):526–533CrossRef Koturbash I, Pogribny I et al (2005) Stable loss of global DNA methylation in the radiation-target tissue–a possible mechanism contributing to radiation carcinogenesis? Biochem Biophys Res Commun 337(2):526–533CrossRef
57.
Zurück zum Zitat Koturbash I, Rugo RE et al (2006) Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 25(31):4267–4275CrossRef Koturbash I, Rugo RE et al (2006) Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 25(31):4267–4275CrossRef
58.
Zurück zum Zitat Koturbash I, Boyko A et al (2007) Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis 28(8):1831–1838CrossRef Koturbash I, Boyko A et al (2007) Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis 28(8):1831–1838CrossRef
59.
Zurück zum Zitat Koturbash I, Zemp FJ et al (2008) Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle 7(11):1658–1667CrossRef Koturbash I, Zemp FJ et al (2008) Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle 7(11):1658–1667CrossRef
60.
Zurück zum Zitat Kovalchuk O, Burke P et al (2004) Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation. Mutat Res 548(1–2):75–84 Kovalchuk O, Burke P et al (2004) Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation. Mutat Res 548(1–2):75–84
61.
Zurück zum Zitat Kovalchuk O, Zemp FJ et al (2010) microRNAome changes in bystander three-dimensional human tissue models suggest priming of apoptotic pathways. Carcinogenesis 31(10):1882–1888CrossRef Kovalchuk O, Zemp FJ et al (2010) microRNAome changes in bystander three-dimensional human tissue models suggest priming of apoptotic pathways. Carcinogenesis 31(10):1882–1888CrossRef
62.
Zurück zum Zitat Lane N, Dean W et al (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35(2):88–93CrossRef Lane N, Dean W et al (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35(2):88–93CrossRef
63.
Zurück zum Zitat Liang G, Chan MF et al (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22(2):480–491CrossRef Liang G, Chan MF et al (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22(2):480–491CrossRef
64.
Zurück zum Zitat Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21(3):397–404CrossRef Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21(3):397–404CrossRef
65.
Zurück zum Zitat Little MP (2003) Risks associated with ionizing radiation. Br Med Bull 68:259–275CrossRef Little MP (2003) Risks associated with ionizing radiation. Br Med Bull 68:259–275CrossRef
66.
Zurück zum Zitat Lord BI (1999) Transgenerational susceptibility to leukaemia induction resulting from preconception, paternal irradiation. Int J Radiat Biol 75(7):801–810CrossRef Lord BI (1999) Transgenerational susceptibility to leukaemia induction resulting from preconception, paternal irradiation. Int J Radiat Biol 75(7):801–810CrossRef
67.
Zurück zum Zitat Lord BI, Woolford LB et al (1998) Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br J Cancer 78(3):301–311CrossRef Lord BI, Woolford LB et al (1998) Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br J Cancer 78(3):301–311CrossRef
68.
Zurück zum Zitat Loree J, Koturbash I et al (2006) Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis. Int J Radiat Biol 82(11):805–815CrossRef Loree J, Koturbash I et al (2006) Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis. Int J Radiat Biol 82(11):805–815CrossRef
69.
Zurück zum Zitat Luke GA, Riches AC et al (1997) Genomic instability in haematopoietic cells of F1 generation mice of irradiated male parents. Mutagenesis 12(3):147–152CrossRef Luke GA, Riches AC et al (1997) Genomic instability in haematopoietic cells of F1 generation mice of irradiated male parents. Mutagenesis 12(3):147–152CrossRef
70.
Zurück zum Zitat Luning KG, Frolen H et al (1976) Genetic effects of 239Pu salt injections in male mice. Mutat Res 34(3):539–542CrossRef Luning KG, Frolen H et al (1976) Genetic effects of 239Pu salt injections in male mice. Mutat Res 34(3):539–542CrossRef
71.
Zurück zum Zitat Minamoto T, Mai M et al (1999) Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis 20(4):519–527CrossRef Minamoto T, Mai M et al (1999) Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis 20(4):519–527CrossRef
72.
Zurück zum Zitat Mohr U, Dasenbrock C et al (1999) Possible carcinogenic effects of X-rays in a transgenerational study with CBA mice. Carcinogenesis 20(2):325–332CrossRef Mohr U, Dasenbrock C et al (1999) Possible carcinogenic effects of X-rays in a transgenerational study with CBA mice. Carcinogenesis 20(2):325–332CrossRef
73.
Zurück zum Zitat Mole RH (1979) Radiation effects on pre-natal development and their radiological significance. Br J Radiol 52(614):89–101CrossRef Mole RH (1979) Radiation effects on pre-natal development and their radiological significance. Br J Radiol 52(614):89–101CrossRef
74.
Zurück zum Zitat Muegge K (2005) Lsh, a guardian of heterochromatin at repeat elements. Biochem Cell Biol 83(4):548–554CrossRef Muegge K (2005) Lsh, a guardian of heterochromatin at repeat elements. Biochem Cell Biol 83(4):548–554CrossRef
75.
Zurück zum Zitat Niwa O, Fan YJ et al (1996) Induction of a germline mutation at a hypervariable mouse minisatellite locus by 252Cf radiation. J Radiat Res (Tokyo) 37(3):217–224CrossRef Niwa O, Fan YJ et al (1996) Induction of a germline mutation at a hypervariable mouse minisatellite locus by 252Cf radiation. J Radiat Res (Tokyo) 37(3):217–224CrossRef
76.
Zurück zum Zitat Nomura T (1982) Parental exposure to x rays and chemicals induces heritable tumours and anomalies in mice. Nature 296(5857):575–577CrossRef Nomura T (1982) Parental exposure to x rays and chemicals induces heritable tumours and anomalies in mice. Nature 296(5857):575–577CrossRef
77.
Zurück zum Zitat Nomura T (1983) X-ray-induced germ-line mutation leading to tumors. Its manifestation in mice given urethane post-natally. Mutat Res 121(1):59–65CrossRef Nomura T (1983) X-ray-induced germ-line mutation leading to tumors. Its manifestation in mice given urethane post-natally. Mutat Res 121(1):59–65CrossRef
78.
Zurück zum Zitat Nomura T (1989) Role of radiation-induced mutations in multigeneration carcinogenesis. IARC Sci Publ 96:375–387 Nomura T (1989) Role of radiation-induced mutations in multigeneration carcinogenesis. IARC Sci Publ 96:375–387
79.
Zurück zum Zitat Nomura T (2006) Transgenerational effects of radiation and chemicals in mice and humans. J Radiat Res (Tokyo) 47(Suppl B):B83–B97CrossRef Nomura T (2006) Transgenerational effects of radiation and chemicals in mice and humans. J Radiat Res (Tokyo) 47(Suppl B):B83–B97CrossRef
80.
Zurück zum Zitat Nomura T, Nakajima H et al (2004) Transgenerational transmission of radiation- and chemically induced tumors and congenital anomalies in mice: studies of their possible relationship to induced chromosomal and molecular changes. Cytogenet Genome Res 104(1–4):252–260CrossRef Nomura T, Nakajima H et al (2004) Transgenerational transmission of radiation- and chemically induced tumors and congenital anomalies in mice: studies of their possible relationship to induced chromosomal and molecular changes. Cytogenet Genome Res 104(1–4):252–260CrossRef
81.
Zurück zum Zitat Okano M, Bell DW et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257CrossRef Okano M, Bell DW et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257CrossRef
82.
Zurück zum Zitat Pilch DR, Sedelnikova OA et al (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81(3):123–129CrossRef Pilch DR, Sedelnikova OA et al (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81(3):123–129CrossRef
83.
Zurück zum Zitat Pogribny I, Raiche J et al (2004) Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 320(4):1253–1261CrossRef Pogribny I, Raiche J et al (2004) Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 320(4):1253–1261CrossRef
84.
Zurück zum Zitat Pogribny I, Koturbash I et al (2005) Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res 3(10):553–561CrossRef Pogribny I, Koturbash I et al (2005) Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res 3(10):553–561CrossRef
85.
Zurück zum Zitat Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791CrossRef Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791CrossRef
86.
Zurück zum Zitat Raiche J, Rodriguez-Juarez R et al (2004) Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice. Biochem Biophys Res Commun 325(1):39–47CrossRef Raiche J, Rodriguez-Juarez R et al (2004) Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice. Biochem Biophys Res Commun 325(1):39–47CrossRef
87.
Zurück zum Zitat Rassoulzadegan M, Grandjean V et al (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441(7092):469–474CrossRef Rassoulzadegan M, Grandjean V et al (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441(7092):469–474CrossRef
88.
Zurück zum Zitat Rassoulzadegan M, Grandjean V et al (2007) Inheritance of an epigenetic change in the mouse: a new role for RNA. Biochem Soc Trans 35(Pt 3):623–625 Rassoulzadegan M, Grandjean V et al (2007) Inheritance of an epigenetic change in the mouse: a new role for RNA. Biochem Soc Trans 35(Pt 3):623–625
89.
Zurück zum Zitat Robertson KD (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20(24):3139–3155CrossRef Robertson KD (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20(24):3139–3155CrossRef
90.
Zurück zum Zitat Robertson KD (2002) DNA methylation and chromatin–unraveling the tangled web. Oncogene 21(35):5361–5379CrossRef Robertson KD (2002) DNA methylation and chromatin–unraveling the tangled web. Oncogene 21(35):5361–5379CrossRef
91.
Zurück zum Zitat Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat Rev Genet 1(1):11–19CrossRef Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat Rev Genet 1(1):11–19CrossRef
92.
Zurück zum Zitat Rodemann HP, Blaese MA (2007) Responses of normal cells to ionizing radiation. Semin Radiat Oncol 17(2):81–88CrossRef Rodemann HP, Blaese MA (2007) Responses of normal cells to ionizing radiation. Semin Radiat Oncol 17(2):81–88CrossRef
93.
Zurück zum Zitat Rogakou EP, Pilch DR et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868CrossRef Rogakou EP, Pilch DR et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868CrossRef
94.
Zurück zum Zitat Rountree MR, Bachman KE et al (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20(24):3156–3165CrossRef Rountree MR, Bachman KE et al (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20(24):3156–3165CrossRef
95.
Zurück zum Zitat Saha A, Wittmeyer J et al (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7(6):437–447CrossRef Saha A, Wittmeyer J et al (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7(6):437–447CrossRef
96.
Zurück zum Zitat Sanders SL, Portoso M et al (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119(5):603–614CrossRef Sanders SL, Portoso M et al (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119(5):603–614CrossRef
97.
Zurück zum Zitat Sedelnikova OA, Pilch DR et al (2003) Histone H2AX in DNA damage and repair. Cancer Biol Ther 2(3):233–235 Sedelnikova OA, Pilch DR et al (2003) Histone H2AX in DNA damage and repair. Cancer Biol Ther 2(3):233–235
98.
Zurück zum Zitat Sedelnikova OA, Nakamura A et al (2007) DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res 67(9):4295–4302CrossRef Sedelnikova OA, Nakamura A et al (2007) DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res 67(9):4295–4302CrossRef
99.
Zurück zum Zitat Sevignani C, Calin GA et al (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17(3):189–202CrossRef Sevignani C, Calin GA et al (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17(3):189–202CrossRef
100.
Zurück zum Zitat Shiraishi K, Shimura T et al (2002) Persistent induction of somatic reversions of the pink-eyed unstable mutation in F1 mice born to fathers irradiated at the spermatozoa stage. Radiat Res 157(6):661–667CrossRef Shiraishi K, Shimura T et al (2002) Persistent induction of somatic reversions of the pink-eyed unstable mutation in F1 mice born to fathers irradiated at the spermatozoa stage. Radiat Res 157(6):661–667CrossRef
101.
Zurück zum Zitat Slovinska L, Elbertova A et al (2004) Transmission of genome damage from irradiated male rats to their progeny. Mutat Res 559(1–2):29–37 Slovinska L, Elbertova A et al (2004) Transmission of genome damage from irradiated male rats to their progeny. Mutat Res 559(1–2):29–37
102.
Zurück zum Zitat Streffer C (2006) Transgenerational transmission of radiation damage: genomic instability and congenital malformation. J Radiat Res (Tokyo) 47(Suppl B):B19–B24CrossRef Streffer C (2006) Transgenerational transmission of radiation damage: genomic instability and congenital malformation. J Radiat Res (Tokyo) 47(Suppl B):B19–B24CrossRef
103.
Zurück zum Zitat Tamminga J, Koturbash I et al (2008) Paternal cranial irradiation induces distant bystander DNA damage in the germline and leads to epigenetic alterations in the offspring. Cell Cycle 7(9):1238–1245CrossRef Tamminga J, Koturbash I et al (2008) Paternal cranial irradiation induces distant bystander DNA damage in the germline and leads to epigenetic alterations in the offspring. Cell Cycle 7(9):1238–1245CrossRef
104.
Zurück zum Zitat Tawa R, Kimura Y et al (1998) Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues. J Radiat Res (Tokyo) 39(4):271–278CrossRef Tawa R, Kimura Y et al (1998) Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues. J Radiat Res (Tokyo) 39(4):271–278CrossRef
105.
Zurück zum Zitat Tryndyak VP, Kovalchuk O et al (2006) Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20 h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 5(1):65–70CrossRef Tryndyak VP, Kovalchuk O et al (2006) Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20 h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 5(1):65–70CrossRef
106.
Zurück zum Zitat Valerie K, Yacoub A et al (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6(3):789–801CrossRef Valerie K, Yacoub A et al (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6(3):789–801CrossRef
107.
Zurück zum Zitat Van Speybroeck L (2002) From Epigenesis to Epigenetics. Ann N Y Acad Sci 981(1):61–81CrossRef Van Speybroeck L (2002) From Epigenesis to Epigenetics. Ann N Y Acad Sci 981(1):61–81CrossRef
108.
Zurück zum Zitat Volinia S, Calin GA et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261CrossRef Volinia S, Calin GA et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261CrossRef
109.
Zurück zum Zitat Vorobtsova IE, Kitaev EM (1988) Urethane-induced lung adenomas in the first-generation progeny of irradiated male mice. Carcinogenesis 9(11):1931–1934CrossRef Vorobtsova IE, Kitaev EM (1988) Urethane-induced lung adenomas in the first-generation progeny of irradiated male mice. Carcinogenesis 9(11):1931–1934CrossRef
110.
Zurück zum Zitat Vorobtsova IE, Aliyakparova LM et al (1993) Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat Res 287(2):207–216CrossRef Vorobtsova IE, Aliyakparova LM et al (1993) Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat Res 287(2):207–216CrossRef
111.
Zurück zum Zitat Wade PA, Archer TK (2006) Epigenetics: environmental instructions for the genome. Environ Health Perspect 114(3):A140–A141CrossRef Wade PA, Archer TK (2006) Epigenetics: environmental instructions for the genome. Environ Health Perspect 114(3):A140–A141CrossRef
112.
Zurück zum Zitat Weber M, Schubeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19(3):273–280CrossRef Weber M, Schubeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19(3):273–280CrossRef
113.
Zurück zum Zitat Weidman JR, Dolinoy DC et al (2007) Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J 13(1):9–16CrossRef Weidman JR, Dolinoy DC et al (2007) Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J 13(1):9–16CrossRef
114.
Zurück zum Zitat Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43(10):1529–1544CrossRef Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43(10):1529–1544CrossRef
Metadaten
Titel
Role of Epigenetic Changes in Radiation-Induced Genome Instability
verfasst von
Slava Ilnytskyy
Jody Filkowski
Olga Kovalchuk
Copyright-Jahr
2012
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-1939-2_6