Skip to main content

2013 | OriginalPaper | Buchkapitel

Role of Ion Channel Mechanosensitivity in the Gut: Mechano-Electrical Feedback Exemplified By Stretch-Dependence of Nav1.5

verfasst von : Arthur Beyder, Rachel Lees-Green, Gianrico Farrugia

Erschienen in: New Advances in Gastrointestinal Motility Research

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

NaV1.5 is a voltage-gated sodium channel found in the human gastrointestinal tract. In smooth muscle cells (SMC) and interstitial cells of Cajal (ICC), NaV1.5 regulates the resting potential as well as slow wave upstroke and frequency. Mutations in SCN5A, the gene coding for NaV1.5, are associated with gastrointestinal functional disorders. Some patients with irritable bowel syndrome (IBS) have SCN5A mutations that result in functionally abnormal channels. NaV1.5 is mechanosensitive, and some of the mutations associated with gastrointestinal (GI) motility disorders have impaired mechanosensitivity. NaV1.5 mechanosensitivity involves the actin cytoskeleton and associating proteins as well as the lipid bilayer. Mechanical stimulation of NaV1.5 results in an increase in peak current, acceleration of the voltage-dependent activation & inactivation and slowed recovery from inactivation. Biophysical modeling is increasingly used as a tool for investigating the effect of NaV1.5 and other mechanosensitive components in slow wave generation. We summarize the existing models of gastrointestinal cellular electrical activity, and specifically a model of NaV1.5 mechanosensitivity that has been incorporated into one of the cell models. In agreement with the experimental data, mechanical stimulation of NaV1.5 results in increased excitability of the cell model in silico. In this chapter we discuss the current knowledge of the molecular mechanism of NaV1.5 mechanosensitivity, mechano-electrical consequences of NaV1.5 stretch in cells and propose physiologic and pathophysiologic consequences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abriel H (2010) Cardiac sodium channel Na(v)1.5 and interacting proteins: Physiology and pathophysiology. J Mol Cell Cardiol 48(1):2–11PubMedCrossRef Abriel H (2010) Cardiac sodium channel Na(v)1.5 and interacting proteins: Physiology and pathophysiology. J Mol Cell Cardiol 48(1):2–11PubMedCrossRef
2.
Zurück zum Zitat Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306(5942):436–441PubMedCrossRef Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306(5942):436–441PubMedCrossRef
3.
Zurück zum Zitat Banderali U, Juranka PF, Clark RB, Giles WR, Morris CE (2010) Impaired stretch modulation in potentially lethal cardiac sodium channel mutants. Channels (Austin) 4(1):12–21CrossRef Banderali U, Juranka PF, Clark RB, Giles WR, Morris CE (2010) Impaired stretch modulation in potentially lethal cardiac sodium channel mutants. Channels (Austin) 4(1):12–21CrossRef
4.
Zurück zum Zitat Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376(6542):683–685PubMedCrossRef Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376(6542):683–685PubMedCrossRef
5.
Zurück zum Zitat Bennett V, Healy J (2008) Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol Med 14(1):28–36PubMedCrossRef Bennett V, Healy J (2008) Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol Med 14(1):28–36PubMedCrossRef
6.
Zurück zum Zitat Beyder A, Farrugia G (2012) Targeting ion channels for the treatment of gastrointestinal motility disorders. Therap Adv Gastroenterol 5(1):5–21PubMedCrossRef Beyder A, Farrugia G (2012) Targeting ion channels for the treatment of gastrointestinal motility disorders. Therap Adv Gastroenterol 5(1):5–21PubMedCrossRef
7.
Zurück zum Zitat Beyder A, Rae, JL, Bernard, C, Strege, PR, Sachs, F, Farrugia, G (2010) Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol 588(24):4969–4985 Beyder A, Rae, JL, Bernard, C, Strege, PR, Sachs, F, Farrugia, G (2010) Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol 588(24):4969–4985
8.
Zurück zum Zitat Beyder A, Sachs F (2009) Electromechanical coupling in the membranes of Shaker-transfected HEK cells. Proc Natl Acad Sci U S A 106(16):6626–6631PubMedCrossRef Beyder A, Sachs F (2009) Electromechanical coupling in the membranes of Shaker-transfected HEK cells. Proc Natl Acad Sci U S A 106(16):6626–6631PubMedCrossRef
9.
Zurück zum Zitat Beyder A, Strege P, Mazzone A, Bernard C, Tester DJ, Saito YA, Ackerman M, Farrugia G (2011) Mutations in SCN5A from patients with IBS result in abnormal Nav1.5 function. Digestive Diseases Week, Chicago, IL Beyder A, Strege P, Mazzone A, Bernard C, Tester DJ, Saito YA, Ackerman M, Farrugia G (2011) Mutations in SCN5A from patients with IBS result in abnormal Nav1.5 function. Digestive Diseases Week, Chicago, IL
10.
Zurück zum Zitat Bjelkmar P, Niemela PS, Vattulainen I, Lindahl E (2009) Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel. PLoS Comput Biol 5(2):e1000289PubMedCrossRef Bjelkmar P, Niemela PS, Vattulainen I, Lindahl E (2009) Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel. PLoS Comput Biol 5(2):e1000289PubMedCrossRef
11.
Zurück zum Zitat Buist ML, Corrias A, Poh YC (2010) A model of slow wave propagation and entrainment along the stomach. Ann Biomed Eng 38(9):3022–3030PubMedCrossRef Buist ML, Corrias A, Poh YC (2010) A model of slow wave propagation and entrainment along the stomach. Ann Biomed Eng 38(9):3022–3030PubMedCrossRef
12.
Zurück zum Zitat Calabrese B, Tabarean IV, Juranka P, Morris CE (2002) Mechanosensitivity of N-type calcium channel currents. Biophys J 83(5):2560–2574PubMedCrossRef Calabrese B, Tabarean IV, Juranka P, Morris CE (2002) Mechanosensitivity of N-type calcium channel currents. Biophys J 83(5):2560–2574PubMedCrossRef
13.
Zurück zum Zitat Conti F, Fioravanti R, Segal JR, Stuhmer W (1982) Pressure dependence of the sodium currents of squid giant axon. J Membr Biol 69(1):23–34PubMedCrossRef Conti F, Fioravanti R, Segal JR, Stuhmer W (1982) Pressure dependence of the sodium currents of squid giant axon. J Membr Biol 69(1):23–34PubMedCrossRef
14.
Zurück zum Zitat Conti F, Inoue I, Kukita F, Stuhmer W (1984) Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J 11(2):137–147PubMedCrossRef Conti F, Inoue I, Kukita F, Stuhmer W (1984) Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J 11(2):137–147PubMedCrossRef
15.
Zurück zum Zitat Corrias A, Buist ML (2007) A quantitative model of gastric smooth muscle cellular activation. Ann Biomed Eng 35(9):1595–1607PubMedCrossRef Corrias A, Buist ML (2007) A quantitative model of gastric smooth muscle cellular activation. Ann Biomed Eng 35(9):1595–1607PubMedCrossRef
16.
Zurück zum Zitat Corrias A, Buist ML (2008) Quantitative cellular description of gastric slow wave activity. Am J Physiol Gastrointest Liver Physiol 294(4):G989–G995PubMedCrossRef Corrias A, Buist ML (2008) Quantitative cellular description of gastric slow wave activity. Am J Physiol Gastrointest Liver Physiol 294(4):G989–G995PubMedCrossRef
17.
Zurück zum Zitat Destexhe A, Huguenard JR (2009) Modeling voltage-dependent channels. In: Schutter ED (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 107–137 Destexhe A, Huguenard JR (2009) Modeling voltage-dependent channels. In: Schutter ED (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 107–137
18.
Zurück zum Zitat Du P, Li S, O’Grady G, Cheng LK, Pullan AJ, Chen JD (2009) Effects of electrical stimulation on isolated rodent gastric smooth muscle cells evaluated via a joint computational simulation and experimental approach. Am J Physiol Gastrointest Liver Physiol 297(4):G672–G680PubMedCrossRef Du P, Li S, O’Grady G, Cheng LK, Pullan AJ, Chen JD (2009) Effects of electrical stimulation on isolated rodent gastric smooth muscle cells evaluated via a joint computational simulation and experimental approach. Am J Physiol Gastrointest Liver Physiol 297(4):G672–G680PubMedCrossRef
19.
Zurück zum Zitat Du P, O’Grady G, Cheng LK, Pullan AJ (2010) A multiscale model of the electrophysiological basis of the human electrogastrogram. Biophys J 99(9):2784–2792PubMedCrossRef Du P, O’Grady G, Cheng LK, Pullan AJ (2010) A multiscale model of the electrophysiological basis of the human electrogastrogram. Biophys J 99(9):2784–2792PubMedCrossRef
20.
Zurück zum Zitat Du P, O’Grady G, Davidson JB, Cheng LK, Pullan AJ (2010) Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Crit Rev Biomed Eng 38(3):225–254PubMedCrossRef Du P, O’Grady G, Davidson JB, Cheng LK, Pullan AJ (2010) Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Crit Rev Biomed Eng 38(3):225–254PubMedCrossRef
21.
Zurück zum Zitat Du P, O’Grady G, Gibbons SJ, Yassi R, Lees-Green R, Farrugia G, Cheng LK, Pullan AJ (2009) Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Biophys J 98(9):1772–1781CrossRef Du P, O’Grady G, Gibbons SJ, Yassi R, Lees-Green R, Farrugia G, Cheng LK, Pullan AJ (2009) Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Biophys J 98(9):1772–1781CrossRef
22.
Zurück zum Zitat Dubois JM, Ouanounou G, Rouzaire-Dubois B (2009) The Boltzmann equation in molecular biology. Prog Biophys Mol Biol 99(2–3):87–93PubMedCrossRef Dubois JM, Ouanounou G, Rouzaire-Dubois B (2009) The Boltzmann equation in molecular biology. Prog Biophys Mol Biol 99(2–3):87–93PubMedCrossRef
23.
Zurück zum Zitat Farrugia G, Holm AN, Rich A, Sarr MG, Szurszewski JH, Rae JL (1999) A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterology 117(4):900–905PubMedCrossRef Farrugia G, Holm AN, Rich A, Sarr MG, Szurszewski JH, Rae JL (1999) A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterology 117(4):900–905PubMedCrossRef
24.
Zurück zum Zitat Faville RA, Pullan AJ, Sanders KM, Koh SD, Lloyd CM, Smith NP (2009) Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis. Biophys J 96(12):4834–4852PubMedCrossRef Faville RA, Pullan AJ, Sanders KM, Koh SD, Lloyd CM, Smith NP (2009) Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis. Biophys J 96(12):4834–4852PubMedCrossRef
25.
Zurück zum Zitat Faville RA, Pullan AJ, Sanders KM, Smith NP (2008) A biophysically based mathematical model of unitary potential activity in interstitial cells of Cajal. Biophys J 95(1):88–104PubMedCrossRef Faville RA, Pullan AJ, Sanders KM, Smith NP (2008) A biophysically based mathematical model of unitary potential activity in interstitial cells of Cajal. Biophys J 95(1):88–104PubMedCrossRef
26.
Zurück zum Zitat Fernandez-Tenorio M, Gonzalez-Rodriguez P, Porras C, Castellano A, Moosmang S, Hofmann F, Urena J, Lopez-Barneo J (2010) Short communication: genetic ablation of L-type Ca2+ channels abolishes depolarization-induced Ca2+ release in arterial smooth muscle. Circ Res 106(7):1285–1289 Fernandez-Tenorio M, Gonzalez-Rodriguez P, Porras C, Castellano A, Moosmang S, Hofmann F, Urena J, Lopez-Barneo J (2010) Short communication: genetic ablation of L-type Ca2+ channels abolishes depolarization-induced Ca2+ release in arterial smooth muscle. Circ Res 106(7):1285–1289
27.
Zurück zum Zitat Freites JA, Tobias DJ, von Heijne G, White SH (2005) Interface connections of a transmembrane voltage sensor. Proc Natl Acad Sci U S A 102(42):15059–15064PubMedCrossRef Freites JA, Tobias DJ, von Heijne G, White SH (2005) Interface connections of a transmembrane voltage sensor. Proc Natl Acad Sci U S A 102(42):15059–15064PubMedCrossRef
28.
Zurück zum Zitat Gajendiran V, Buist ML (2011) A quantitative description of active force generation in gastrointestinal smooth muscle. Int J Numer Methods Biomed Eng 27(3):450–460CrossRef Gajendiran V, Buist ML (2011) A quantitative description of active force generation in gastrointestinal smooth muscle. Int J Numer Methods Biomed Eng 27(3):450–460CrossRef
29.
Zurück zum Zitat Geiger B, Bershadsky A (2002) Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110(2):139–142PubMedCrossRef Geiger B, Bershadsky A (2002) Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110(2):139–142PubMedCrossRef
30.
Zurück zum Zitat Gu CX, Juranka PF, Morris CE (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80(6):2678–2693PubMedCrossRef Gu CX, Juranka PF, Morris CE (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80(6):2678–2693PubMedCrossRef
31.
Zurück zum Zitat Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc., Sunderland Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc., Sunderland
32.
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMed Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMed
33.
Zurück zum Zitat Holm AN, Rich A, Miller SM, Strege P, Ou Y, Gibbons S, Sarr MG, Szurszewski JH, Rae JL, Farrugia G (2002) Sodium current in human jejunal circular smooth muscle cells. Gastroenterology 122(1):178–187PubMedCrossRef Holm AN, Rich A, Miller SM, Strege P, Ou Y, Gibbons S, Sarr MG, Szurszewski JH, Rae JL, Farrugia G (2002) Sodium current in human jejunal circular smooth muscle cells. Gastroenterology 122(1):178–187PubMedCrossRef
34.
Zurück zum Zitat Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A 106(50):21413–21418PubMedCrossRef Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A 106(50):21413–21418PubMedCrossRef
35.
Zurück zum Zitat Hwang SJ, Blair PJ, Britton FC, Odriscoll KE, Hennig G, Bayguinov JR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587(20):4887–4904 Hwang SJ, Blair PJ, Britton FC, Odriscoll KE, Hennig G, Bayguinov JR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587(20):4887–4904
36.
Zurück zum Zitat Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41PubMedCrossRef Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41PubMedCrossRef
37.
Zurück zum Zitat Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48PubMedCrossRef Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48PubMedCrossRef
38.
Zurück zum Zitat Keener JP, Sneyd J (2009) Mathematical physiology: cellular physiology. Springer, New York Keener JP, Sneyd J (2009) Mathematical physiology: cellular physiology. Springer, New York
39.
Zurück zum Zitat Krepkiy D, Mihailescu M, Freites JA, Schow EV, Worcester DL, Gawrisch K, Tobias DJ, White SH, Swartz KJ (2009) Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462(7272):473–479PubMedCrossRef Krepkiy D, Mihailescu M, Freites JA, Schow EV, Worcester DL, Gawrisch K, Tobias DJ, White SH, Swartz KJ (2009) Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462(7272):473–479PubMedCrossRef
40.
Zurück zum Zitat Kunze WA, Clerc N, Bertrand PP, Furness JB (1999) Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J Physiol 517(2):547–561PubMedCrossRef Kunze WA, Clerc N, Bertrand PP, Furness JB (1999) Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J Physiol 517(2):547–561PubMedCrossRef
41.
Zurück zum Zitat Laitko U, Juranka PF, Morris CE (2006) Membrane stretch slows the concerted step prior to opening in a Kv channel. J Gen Physiol 127(6):687–701PubMedCrossRef Laitko U, Juranka PF, Morris CE (2006) Membrane stretch slows the concerted step prior to opening in a Kv channel. J Gen Physiol 127(6):687–701PubMedCrossRef
42.
Zurück zum Zitat Laitko U, Morris CE (2004) Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J Gen Physiol 123:135–154PubMedCrossRef Laitko U, Morris CE (2004) Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J Gen Physiol 123:135–154PubMedCrossRef
43.
Zurück zum Zitat Lees-Green R, Beyder A, Farrugia G, O'Grady G, Poh YC, Buist ML, Pullan AJ (2011) Computational modeling of the sodium channel mechanical stretch effects on the electrical function of human interstitial cells of Cajal and smooth muscle cells. Digestive Diseases Week, Chicago, IL, May 2011 Lees-Green R, Beyder A, Farrugia G, O'Grady G, Poh YC, Buist ML, Pullan AJ (2011) Computational modeling of the sodium channel mechanical stretch effects on the electrical function of human interstitial cells of Cajal and smooth muscle cells. Digestive Diseases Week, Chicago, IL, May 2011
44.
Zurück zum Zitat Lees-Green R, Du P, O'Grady G, Beyder A, Farrugia G, Pullan AJ (2011) Biophysically-based modelling of the interstitial cells of Cajal: Current status and future perspectives. Frontiers Comput Physiol Med 2:29 Lees-Green R, Du P, O'Grady G, Beyder A, Farrugia G, Pullan AJ (2011) Biophysically-based modelling of the interstitial cells of Cajal: Current status and future perspectives. Frontiers Comput Physiol Med 2:29
45.
Zurück zum Zitat Locke GR 3rd, Ackerman MJ, Zinsmeister AR, Thapa P, Farrugia G (2006) Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy. Am J Gastroenterol 101(6):1299–1304PubMedCrossRef Locke GR 3rd, Ackerman MJ, Zinsmeister AR, Thapa P, Farrugia G (2006) Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy. Am J Gastroenterol 101(6):1299–1304PubMedCrossRef
46.
Zurück zum Zitat Long SB, Cambell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903PubMedCrossRef Long SB, Cambell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903PubMedCrossRef
47.
Zurück zum Zitat Long SB, Cambell EB, MacKinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309(5736):903–908 Long SB, Cambell EB, MacKinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309(5736):903–908
48.
Zurück zum Zitat Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450(7168):376–382PubMedCrossRef Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450(7168):376–382PubMedCrossRef
49.
Zurück zum Zitat Lundbaek JA, Birn P, Hansen AJ, Sogaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe RE 2nd, Andersen OS (2004) Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol. J Gen Physiol 123(5):599–621PubMedCrossRef Lundbaek JA, Birn P, Hansen AJ, Sogaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe RE 2nd, Andersen OS (2004) Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol. J Gen Physiol 123(5):599–621PubMedCrossRef
50.
Zurück zum Zitat Lyford GL, Strege PR, Shepard A, Ou Y, Ermilov L, Miller SM, Gibbons SJ, Rae JL, Szurszewski JH, Farrugia G (2002) Alpha(1C) (Ca(V)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol Cell Physiol 283(3):C1001–C1008PubMedCrossRef Lyford GL, Strege PR, Shepard A, Ou Y, Ermilov L, Miller SM, Gibbons SJ, Rae JL, Szurszewski JH, Farrugia G (2002) Alpha(1C) (Ca(V)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol Cell Physiol 283(3):C1001–C1008PubMedCrossRef
51.
52.
Zurück zum Zitat Matteson DR, Armstrong CM (1982) Evidence for a population of sleepy sodium channels in squid axon at low temperature. J Gen Physiol 79(5):739–758PubMedCrossRef Matteson DR, Armstrong CM (1982) Evidence for a population of sleepy sodium channels in squid axon at low temperature. J Gen Physiol 79(5):739–758PubMedCrossRef
53.
Zurück zum Zitat Mazzone A, Strege PR, Tester DJ, Bernard CE, Faulkner G, De Giorgio R, Makielski JC, Stanghellini V, Gibbons SJ, Ackerman MJ, Farrugia G (2008) A mutation in telethonin alters Nav1.5 function. J Biol Chem 283(24):16537–16544PubMedCrossRef Mazzone A, Strege PR, Tester DJ, Bernard CE, Faulkner G, De Giorgio R, Makielski JC, Stanghellini V, Gibbons SJ, Ackerman MJ, Farrugia G (2008) A mutation in telethonin alters Nav1.5 function. J Biol Chem 283(24):16537–16544PubMedCrossRef
54.
Zurück zum Zitat Milescu M, Bosmans F, Lee S, Alabi AA, Kim JI, Swartz KJ (2009) Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol 16(10):1080–1085PubMedCrossRef Milescu M, Bosmans F, Lee S, Alabi AA, Kim JI, Swartz KJ (2009) Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol 16(10):1080–1085PubMedCrossRef
55.
Zurück zum Zitat Morris CE, Juranka PF (2007) Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. Biophys J 93(3):822–833PubMedCrossRef Morris CE, Juranka PF (2007) Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. Biophys J 93(3):822–833PubMedCrossRef
56.
Zurück zum Zitat Muraki K, Imaizumi Y, Watanabe M (1991) Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. J Physiol 442:351–375PubMed Muraki K, Imaizumi Y, Watanabe M (1991) Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. J Physiol 442:351–375PubMed
57.
Zurück zum Zitat Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H (2009) TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A 106(9):3408–3413PubMedCrossRef Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H (2009) TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A 106(9):3408–3413PubMedCrossRef
58.
Zurück zum Zitat Ou Y, Gibbons SJ, Miller SM, Strege PR, Rich A, Distad MA, Ackerman MJ, Rae JL, Szurszewski JH, Farrugia G (2002) SCN5A is expressed in human jejunal circular smooth muscle cells. Neurogastroenterol Motil 14(5):477–486PubMedCrossRef Ou Y, Gibbons SJ, Miller SM, Strege PR, Rich A, Distad MA, Ackerman MJ, Rae JL, Szurszewski JH, Farrugia G (2002) SCN5A is expressed in human jejunal circular smooth muscle cells. Neurogastroenterol Motil 14(5):477–486PubMedCrossRef
59.
Zurück zum Zitat Ou Y, Strege P, Miller SM, Makielski J, Ackerman M, Gibbons SJ, Farrugia G (2003) Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. J Biol Chem 278(3):1915–1923PubMedCrossRef Ou Y, Strege P, Miller SM, Makielski J, Ackerman M, Gibbons SJ, Farrugia G (2003) Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. J Biol Chem 278(3):1915–1923PubMedCrossRef
60.
Zurück zum Zitat Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358 Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358
61.
Zurück zum Zitat Petitprez S, Zmoos AF, Ogrodnik J, Balse E, Raad N, El-Haou S, Albesa M, Bittihn P, Luther S, Lehnart SE, Hatem SN, Coulombe A, Abriel H (2011) SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res 108(3):294–304PubMedCrossRef Petitprez S, Zmoos AF, Ogrodnik J, Balse E, Raad N, El-Haou S, Albesa M, Bittihn P, Luther S, Lehnart SE, Hatem SN, Coulombe A, Abriel H (2011) SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res 108(3):294–304PubMedCrossRef
62.
Zurück zum Zitat Poh YC, Beyder A, Strege PR, Farrugia G, Buist ML (2011) Quantification of gastrointestinal sodium channelopathy. J Theor Biol 293C:41–48 Poh YC, Beyder A, Strege PR, Farrugia G, Buist ML (2011) Quantification of gastrointestinal sodium channelopathy. J Theor Biol 293C:41–48
63.
Zurück zum Zitat Sachs F (2010) Stretch-activated ion channels: what are they? Physiology (Bethesda) 25(1):50–56CrossRef Sachs F (2010) Stretch-activated ion channels: what are they? Physiology (Bethesda) 25(1):50–56CrossRef
64.
Zurück zum Zitat Saito YA, Strege PR, Tester DJ, Locke GR 3rd, Talley NJ, Bernard CE, Rae JL, Makielski JC, Ackerman MJ, Farrugia G (2009) Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy. Am J Physiol Gastrointest Liver Physiol 296(2):G211–G218PubMedCrossRef Saito YA, Strege PR, Tester DJ, Locke GR 3rd, Talley NJ, Bernard CE, Rae JL, Makielski JC, Ackerman MJ, Farrugia G (2009) Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy. Am J Physiol Gastrointest Liver Physiol 296(2):G211–G218PubMedCrossRef
65.
Zurück zum Zitat Saito YA, Tester DJ, Mazzone A, Beyder A, Locke GR, 3rd, Talley NJ, Ackerman M, Farrugia G (2009) Sodium channel mutations in irritable bowel syndrome. Neurogastroenterology & Motility, Chicago, IL, 2009 Saito YA, Tester DJ, Mazzone A, Beyder A, Locke GR, 3rd, Talley NJ, Ackerman M, Farrugia G (2009) Sodium channel mutations in irritable bowel syndrome. Neurogastroenterology & Motility, Chicago, IL, 2009
66.
Zurück zum Zitat Scriven DR, Dan P, Moore ED (2000) Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J 79(5):2682–2691PubMedCrossRef Scriven DR, Dan P, Moore ED (2000) Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J 79(5):2682–2691PubMedCrossRef
67.
Zurück zum Zitat Shi ZD, Abraham G, Tarbell JM (2010) Shear stress modulation of smooth muscle cell marker genes in 2-D and 3-D depends on mechanotransduction by heparan sulfate proteoglycans and ERK1/2. PLoS One 5(8):e12196PubMedCrossRef Shi ZD, Abraham G, Tarbell JM (2010) Shear stress modulation of smooth muscle cell marker genes in 2-D and 3-D depends on mechanotransduction by heparan sulfate proteoglycans and ERK1/2. PLoS One 5(8):e12196PubMedCrossRef
68.
Zurück zum Zitat Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3):402–413PubMedCrossRef Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3):402–413PubMedCrossRef
69.
Zurück zum Zitat Smirnov SV, Zholos AV, Shuba MF (1992) Potential-dependent inward currents in single isolated smooth muscle cells of the rat ileum. J Physiol 454:549–571PubMed Smirnov SV, Zholos AV, Shuba MF (1992) Potential-dependent inward currents in single isolated smooth muscle cells of the rat ileum. J Physiol 454:549–571PubMed
70.
Zurück zum Zitat Strege PR, Holm AN, Rich A, Miller SM, Ou Y, Sarr MG, Farrugia G (2003) Cytoskeletal modulation of sodium current in human jejunal circular smooth muscle cells. Am J Physiol Cell Physiol 284(1):C60–C66PubMedCrossRef Strege PR, Holm AN, Rich A, Miller SM, Ou Y, Sarr MG, Farrugia G (2003) Cytoskeletal modulation of sodium current in human jejunal circular smooth muscle cells. Am J Physiol Cell Physiol 284(1):C60–C66PubMedCrossRef
71.
Zurück zum Zitat Strege PR, Mazzone A, Kraichely RE, Sha L, Holm AN, Ou Y, Lim I, Gibbons SJ, Sarr MG, Farrugia G (2007) Species dependent expression of intestinal smooth muscle mechanosensitive sodium channels. Neurogastroenterol Motil 19(2):135–143PubMedCrossRef Strege PR, Mazzone A, Kraichely RE, Sha L, Holm AN, Ou Y, Lim I, Gibbons SJ, Sarr MG, Farrugia G (2007) Species dependent expression of intestinal smooth muscle mechanosensitive sodium channels. Neurogastroenterol Motil 19(2):135–143PubMedCrossRef
72.
Zurück zum Zitat Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ, Szurszewski JH, Sarr MG, Farrugia G (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 285(6):G1111–G1121PubMed Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ, Szurszewski JH, Sarr MG, Farrugia G (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 285(6):G1111–G1121PubMed
73.
Zurück zum Zitat Suchyna TM, Markin VS, Sachs F (2009) Biophysics and structure of the patch and the gigaseal. Biophys J 97(3):738–747PubMedCrossRef Suchyna TM, Markin VS, Sachs F (2009) Biophysics and structure of the patch and the gigaseal. Biophys J 97(3):738–747PubMedCrossRef
74.
Zurück zum Zitat Tabarean IV, Juranka P, Morris CE (1999) Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophys J 77(2):758–774PubMedCrossRef Tabarean IV, Juranka P, Morris CE (1999) Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophys J 77(2):758–774PubMedCrossRef
75.
Zurück zum Zitat Tabarean IV, Morris CE (2002) Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3–S4 linker deletions. Biophys J 82(6):2982–2994PubMedCrossRef Tabarean IV, Morris CE (2002) Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3–S4 linker deletions. Biophys J 82(6):2982–2994PubMedCrossRef
76.
Zurück zum Zitat Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T (2010) Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel. J Cardiovasc Electrophysiol 21(1):107–115 Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T (2010) Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel. J Cardiovasc Electrophysiol 21(1):107–115
77.
Zurück zum Zitat Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ (2007) Universal physical responses to stretch in the living cell. Nature 447(7144):592–595PubMedCrossRef Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ (2007) Universal physical responses to stretch in the living cell. Nature 447(7144):592–595PubMedCrossRef
78.
Zurück zum Zitat Undrovinas AI, Shander GS, Makielski JC (1995) Cytoskeleton modulates gating of voltage-dependent sodium channel in heart. Am J Physiol 269(1 Pt 2):H203–H214PubMed Undrovinas AI, Shander GS, Makielski JC (1995) Cytoskeleton modulates gating of voltage-dependent sodium channel in heart. Am J Physiol 269(1 Pt 2):H203–H214PubMed
79.
Zurück zum Zitat Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114(20):2104–2112PubMedCrossRef Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114(20):2104–2112PubMedCrossRef
80.
Zurück zum Zitat Ward SM, Baker SA, de Faoite A, Sanders KM (2003) Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+ uptake in canine colonic muscles. J Physiol 549(1):207–218PubMedCrossRef Ward SM, Baker SA, de Faoite A, Sanders KM (2003) Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+ uptake in canine colonic muscles. J Physiol 549(1):207–218PubMedCrossRef
81.
Zurück zum Zitat Won KJ, Sanders KM, Ward SM (2005) Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci U S A 102(41):14913–14918PubMedCrossRef Won KJ, Sanders KM, Ward SM (2005) Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci U S A 102(41):14913–14918PubMedCrossRef
82.
Zurück zum Zitat Xiong Z, Sperelakis N, Noffsinger A, Fenoglio-Preiser C (1993) Fast Na+ current in circular smooth muscle cells of the large intestine. Pflugers Arch 423(5–6):485–491PubMedCrossRef Xiong Z, Sperelakis N, Noffsinger A, Fenoglio-Preiser C (1993) Fast Na+ current in circular smooth muscle cells of the large intestine. Pflugers Arch 423(5–6):485–491PubMedCrossRef
83.
Zurück zum Zitat Yarbrough TL, Lu T, Lee HC, Shibata EF (2002) Localization of cardiac sodium channels in caveolin-rich membrane domains: regulation of sodium current amplitude. Circ Res 90(4):443–449PubMedCrossRef Yarbrough TL, Lu T, Lee HC, Shibata EF (2002) Localization of cardiac sodium channels in caveolin-rich membrane domains: regulation of sodium current amplitude. Circ Res 90(4):443–449PubMedCrossRef
84.
Zurück zum Zitat Youm JB, Kim N, Han J, Kim E, Joo H, Leem CH, Goto G, Noma A, Earm YE (2006) A mathematical model of pacemaker activity recorded from mouse small intestine. Philos Trans A Math Phys Eng Sci 364(1842):1135–1154PubMedCrossRef Youm JB, Kim N, Han J, Kim E, Joo H, Leem CH, Goto G, Noma A, Earm YE (2006) A mathematical model of pacemaker activity recorded from mouse small intestine. Philos Trans A Math Phys Eng Sci 364(1842):1135–1154PubMedCrossRef
85.
Zurück zum Zitat Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM (2009) A Ca2+-activated Cl- conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 587(20):4905–4918 Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM (2009) A Ca2+-activated Cl- conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 587(20):4905–4918
Metadaten
Titel
Role of Ion Channel Mechanosensitivity in the Gut: Mechano-Electrical Feedback Exemplified By Stretch-Dependence of Nav1.5
verfasst von
Arthur Beyder
Rachel Lees-Green
Gianrico Farrugia
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-6561-0_2

Neuer Inhalt