Skip to main content
Erschienen in: Computational Mechanics 3/2019

25.02.2019 | Original Paper

Rotation vector and its complement parameterization for singularity-free corotational shell element formulations

verfasst von: Jinsong Yang, Pinqi Xia

Erschienen in: Computational Mechanics | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Theoretical and computational aspects of rotation vector and its complement parameterization are examined in detail in this paper. The mutual relationships between the variations of rotation vector and its complement and the spin variable are presented. It shows that the switch of rotation parameter between rotation vector and its complement preserves not only the strains but also the angular velocity and acceleration, and the force vectors and tangent matrices of an element. Two singularity-free corotational shell element formulations are presented. The first formulation is a non-consistent one, in which a simple way only using rotation vector is proposed to modify the exact rotation update approach via the Baker–Campbell–Hausdorff formula, while the second formulation is a consistent one. The novelty is that, following the presented method, the existing singular spatial beam and shell element formulations based on rotation vector parameterization could be modified to be the singularity-free ones with only a few changes. Finally, three numerical examples involving large rotations are analyzed to demonstrate the capability of the presented formulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bathe KJ (1996) Finite element procedures, chap 6. Prentice-Hall, Upper Saddle River Bathe KJ (1996) Finite element procedures, chap 6. Prentice-Hall, Upper Saddle River
2.
Zurück zum Zitat Crisfield MA (1997) Non-linear finite element analysis of solids and structures. Advanced topics, chaps 17–18, vol 2. Wiley, Chischester Crisfield MA (1997) Non-linear finite element analysis of solids and structures. Advanced topics, chaps 17–18, vol 2. Wiley, Chischester
5.
Zurück zum Zitat Geradin M, Rixen D (1995) Parametrization of finite rotations in computational dynamics: a review. Revue europenne des lments finis 4(5–6):497–553MathSciNetMATHCrossRef Geradin M, Rixen D (1995) Parametrization of finite rotations in computational dynamics: a review. Revue europenne des lments finis 4(5–6):497–553MathSciNetMATHCrossRef
8.
Zurück zum Zitat Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438MATHCrossRef Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438MATHCrossRef
9.
Zurück zum Zitat Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66(2):125–161MathSciNetMATHCrossRef Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66(2):125–161MathSciNetMATHCrossRef
10.
11.
Zurück zum Zitat Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18(2):950–973MATHCrossRef Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18(2):950–973MATHCrossRef
12.
Zurück zum Zitat Ritto-Correa M, Camotim D (2002) On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization of Reissner–Simo beam theory. Int J Numer Methods Eng 55(9):1005–1032MathSciNetMATHCrossRef Ritto-Correa M, Camotim D (2002) On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization of Reissner–Simo beam theory. Int J Numer Methods Eng 55(9):1005–1032MathSciNetMATHCrossRef
13.
Zurück zum Zitat Smolenski WM (1999) Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput Methods Appl Mech Eng 178(1–2):89–113MathSciNetMATHCrossRef Smolenski WM (1999) Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput Methods Appl Mech Eng 178(1–2):89–113MathSciNetMATHCrossRef
14.
Zurück zum Zitat Battini JM, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech Eng 191(17–18):1755–1789MATHCrossRef Battini JM, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech Eng 191(17–18):1755–1789MATHCrossRef
15.
Zurück zum Zitat Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parameterization of three-dimensional finite rotations. Int J Numer Methods Eng 38(21):3653–3673MATHCrossRef Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parameterization of three-dimensional finite rotations. Int J Numer Methods Eng 38(21):3653–3673MATHCrossRef
16.
Zurück zum Zitat Makinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9):1009–1048 2007MathSciNetMATHCrossRef Makinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9):1009–1048 2007MathSciNetMATHCrossRef
17.
Zurück zum Zitat Ghosh S, Roy D (2009) A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput Mech 44:103–118MATHCrossRef Ghosh S, Roy D (2009) A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput Mech 44:103–118MATHCrossRef
19.
Zurück zum Zitat Nour-Omid B, Rankin CC (1991) Finite rotation analysis and consistent linearization using projectors. Comput Methods Appl Mech Eng 93(3):353–384MATHCrossRef Nour-Omid B, Rankin CC (1991) Finite rotation analysis and consistent linearization using projectors. Comput Methods Appl Mech Eng 93(3):353–384MATHCrossRef
20.
Zurück zum Zitat Hsiao KM, Hung HC (1989) Large-deflection analysis of shell structure by using corotational total lagrangian formulation. Comput Methods Appl Mech Eng 73(2):209–225MATHCrossRef Hsiao KM, Hung HC (1989) Large-deflection analysis of shell structure by using corotational total lagrangian formulation. Comput Methods Appl Mech Eng 73(2):209–225MATHCrossRef
21.
Zurück zum Zitat Felippa CA, Haugen B (2004) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194(21–24):2285–2335MATH Felippa CA, Haugen B (2004) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194(21–24):2285–2335MATH
22.
Zurück zum Zitat Pacoste C (1998) Co-rotational flat facet triangular elements for shell instability analysis. Comput Methods Appl Mech Eng 156(1–4):75–110MATHCrossRef Pacoste C (1998) Co-rotational flat facet triangular elements for shell instability analysis. Comput Methods Appl Mech Eng 156(1–4):75–110MATHCrossRef
23.
Zurück zum Zitat Caselli F, Bisegna P (2013) Polar decomposition based corotational framework for triangular shell elements with distributed loads. Int J Numer Methods Eng 95(6):499–528MathSciNetMATHCrossRef Caselli F, Bisegna P (2013) Polar decomposition based corotational framework for triangular shell elements with distributed loads. Int J Numer Methods Eng 95(6):499–528MathSciNetMATHCrossRef
24.
Zurück zum Zitat Peng X, Crisfield MA (1992) A consistent co-rotational formulation for shells using the constant stress-constant moment triangle. Int J Numer Methods Eng 35(9):1829–1847MATHCrossRef Peng X, Crisfield MA (1992) A consistent co-rotational formulation for shells using the constant stress-constant moment triangle. Int J Numer Methods Eng 35(9):1829–1847MATHCrossRef
25.
Zurück zum Zitat Li ZX, Vu-Quoc L (2007) An efficient co-rotational formulation for curved triangular shell element. Int J Numer Methods Eng 72(9):1029–1062MathSciNetMATHCrossRef Li ZX, Vu-Quoc L (2007) An efficient co-rotational formulation for curved triangular shell element. Int J Numer Methods Eng 72(9):1029–1062MathSciNetMATHCrossRef
26.
Zurück zum Zitat Zhong HG, Crisfield MA (1998) An energy-conserving co-rotational procedure for the dynamics of shell structures. Eng Comput 15(5):552–576MATHCrossRef Zhong HG, Crisfield MA (1998) An energy-conserving co-rotational procedure for the dynamics of shell structures. Eng Comput 15(5):552–576MATHCrossRef
27.
Zurück zum Zitat Yang JS, Xia PQ (2015) Corotational nonlinear dynamic analysis of thin-shell structures with finite rotations. AIAA J 53(3):663–677CrossRef Yang JS, Xia PQ (2015) Corotational nonlinear dynamic analysis of thin-shell structures with finite rotations. AIAA J 53(3):663–677CrossRef
28.
Zurück zum Zitat Espath LFR, Braun AL, Awruch AM, Dalcin LD (2015) A NURBS based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach. Int J Numer Methods Eng 102(13):1839–1868MathSciNetMATHCrossRef Espath LFR, Braun AL, Awruch AM, Dalcin LD (2015) A NURBS based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach. Int J Numer Methods Eng 102(13):1839–1868MathSciNetMATHCrossRef
29.
Zurück zum Zitat Chimakurthi SK, Cesnik SKC, Stanford BK (2011) Flapping-wing structural dynamics formulation based on a corotational shell finite element. AIAA J 49(1):128–142CrossRef Chimakurthi SK, Cesnik SKC, Stanford BK (2011) Flapping-wing structural dynamics formulation based on a corotational shell finite element. AIAA J 49(1):128–142CrossRef
30.
Zurück zum Zitat Cho H, Shin S, Yoh JJ (2017) Geometrically nonlinear quadratic solid/solid-shell element based on consistent corotational approach. Int J Numer Methods Eng 112(5):434–458CrossRef Cho H, Shin S, Yoh JJ (2017) Geometrically nonlinear quadratic solid/solid-shell element based on consistent corotational approach. Int J Numer Methods Eng 112(5):434–458CrossRef
31.
Zurück zum Zitat Shi J, Liu Z, Hong J (2018) Multibody dynamic analysis using a rotation-free shell element with corotational frame. Acta Mech Sin Shi J, Liu Z, Hong J (2018) Multibody dynamic analysis using a rotation-free shell element with corotational frame. Acta Mech Sin
32.
Zurück zum Zitat Battini JM, Pacoste C (2006) On the choice of the linear element for corotational triangular shells. Comput Methods Appl Mech Eng 195(44–47):6362–6377 Kindly provide volume and page range for the Reference [31]MATHCrossRef Battini JM, Pacoste C (2006) On the choice of the linear element for corotational triangular shells. Comput Methods Appl Mech Eng 195(44–47):6362–6377 Kindly provide volume and page range for the Reference [31]MATHCrossRef
33.
Zurück zum Zitat Mostafa M, Sivaselvan MV (2014) On best-fit corotated frames for 3D continuum finite elements. Int J Numer Methods Eng 98(2):105–130MathSciNetMATHCrossRef Mostafa M, Sivaselvan MV (2014) On best-fit corotated frames for 3D continuum finite elements. Int J Numer Methods Eng 98(2):105–130MathSciNetMATHCrossRef
34.
Zurück zum Zitat Izzuddin BA, Liang Y (2016) Bisector and zero-macrospin co-rotational systems for shell elements. Int J Numer Methods Eng 105(4):286–320MathSciNetCrossRef Izzuddin BA, Liang Y (2016) Bisector and zero-macrospin co-rotational systems for shell elements. Int J Numer Methods Eng 105(4):286–320MathSciNetCrossRef
35.
Zurück zum Zitat Crisfield MA, Moita GF (1996) A unified co-rotational framework for solids shells and beams. Int J Solids Struct 33(20–22):2969–2992MATHCrossRef Crisfield MA, Moita GF (1996) A unified co-rotational framework for solids shells and beams. Int J Solids Struct 33(20–22):2969–2992MATHCrossRef
36.
Zurück zum Zitat Battini JM (2015) The corotational method: an alternative to derive nonlinear finite elements. In: Fifteenth international conference on civil, structural and environmental engineering computing, Prague, Czech Republic, 1–4 Sept Battini JM (2015) The corotational method: an alternative to derive nonlinear finite elements. In: Fifteenth international conference on civil, structural and environmental engineering computing, Prague, Czech Republic, 1–4 Sept
37.
Zurück zum Zitat Ghosh S, Roy D (2010) On the relation between rotation increments in different tangent spaces. Mech Res Commun 37(6):525–530MATHCrossRef Ghosh S, Roy D (2010) On the relation between rotation increments in different tangent spaces. Mech Res Commun 37(6):525–530MATHCrossRef
38.
Zurück zum Zitat Rankin CC, Nour-Omid B (1988) The use of projectors to improve finite element performance. Comput Struct 30(1–2):257–267MATHCrossRef Rankin CC, Nour-Omid B (1988) The use of projectors to improve finite element performance. Comput Struct 30(1–2):257–267MATHCrossRef
39.
Zurück zum Zitat Spurrier RA (1978) Comment on singularity-free extraction of a quaternion from a direction-cosine matrix. J Spacecr Rockets 15(4):255CrossRef Spurrier RA (1978) Comment on singularity-free extraction of a quaternion from a direction-cosine matrix. J Spacecr Rockets 15(4):255CrossRef
40.
Zurück zum Zitat Pujol J (2014) On Hamiltons nearly-forgotten early work on the relation between rotations and quaternions and on the composition of rotations. Am Math Mon 121(6):515–522MathSciNetMATHCrossRef Pujol J (2014) On Hamiltons nearly-forgotten early work on the relation between rotations and quaternions and on the composition of rotations. Am Math Mon 121(6):515–522MathSciNetMATHCrossRef
41.
Zurück zum Zitat Pacoste C, Eriksson A (1997) Beam elements in instability problems. Comput Methods Appl Mech Eng 144(1–2):163–197MATHCrossRef Pacoste C, Eriksson A (1997) Beam elements in instability problems. Comput Methods Appl Mech Eng 144(1–2):163–197MATHCrossRef
42.
Zurück zum Zitat Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192(16–18):2125–2168MATHCrossRef Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192(16–18):2125–2168MATHCrossRef
43.
Zurück zum Zitat Batoz JL, Bathe KJ, Ho LW (1980) A study of three-node triangular plate bending elements. Int J Numer Methods Eng 15(2):1771–1812MATHCrossRef Batoz JL, Bathe KJ, Ho LW (1980) A study of three-node triangular plate bending elements. Int J Numer Methods Eng 15(2):1771–1812MATHCrossRef
44.
Zurück zum Zitat Sze KY, Liu XH, Lo SH (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40(11):1551–1569CrossRef Sze KY, Liu XH, Lo SH (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40(11):1551–1569CrossRef
45.
Zurück zum Zitat Yang YB, Shieh MS (1990) Solution method for nonlinear problems with multiple critical points. AIAA J 28(12):2110–2116CrossRef Yang YB, Shieh MS (1990) Solution method for nonlinear problems with multiple critical points. AIAA J 28(12):2110–2116CrossRef
46.
Zurück zum Zitat Basar Y, Ding Y (1990) Finite-rotation shell elements for the nonlinear analysis of thin shell structures. Int J Solids Struct 26(1):83–97MATHCrossRef Basar Y, Ding Y (1990) Finite-rotation shell elements for the nonlinear analysis of thin shell structures. Int J Solids Struct 26(1):83–97MATHCrossRef
47.
Zurück zum Zitat Stander N, Matzenmiller A, Ramm E (1984) An assessment of assumed strain methods in finite rotation shell analysis. Eng Comput 6(1):58–66CrossRef Stander N, Matzenmiller A, Ramm E (1984) An assessment of assumed strain methods in finite rotation shell analysis. Eng Comput 6(1):58–66CrossRef
48.
Zurück zum Zitat Wriggers P, Gruttmann F (1993) Thin shells with finite rotations formulated in biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36(12):2049–2071MATHCrossRef Wriggers P, Gruttmann F (1993) Thin shells with finite rotations formulated in biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36(12):2049–2071MATHCrossRef
49.
Zurück zum Zitat Goto Y, Watanable Y, Kasugai T, Obata M (1992) Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct 29(7):893–909CrossRef Goto Y, Watanable Y, Kasugai T, Obata M (1992) Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct 29(7):893–909CrossRef
50.
Zurück zum Zitat Rebel G (1998) Finite rotation shell theory including drill rotations and its finite element implementation. Ph.D. Dissertation, Aerospace Engineering, Delft University of Technology Rebel G (1998) Finite rotation shell theory including drill rotations and its finite element implementation. Ph.D. Dissertation, Aerospace Engineering, Delft University of Technology
Metadaten
Titel
Rotation vector and its complement parameterization for singularity-free corotational shell element formulations
verfasst von
Jinsong Yang
Pinqi Xia
Publikationsdatum
25.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01681-8

Weitere Artikel der Ausgabe 3/2019

Computational Mechanics 3/2019 Zur Ausgabe

Neuer Inhalt