Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Computing and Applications 3/2017

24.10.2015 | Original Article

Sampled-data synchronization of randomly coupled reaction–diffusion neural networks with Markovian jumping and mixed delays using multiple integral approach

verfasst von: R. Rakkiyappan, S. Dharani

Erschienen in: Neural Computing and Applications | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This paper is devoted to investigate the problem of global asymptotic synchronization of an array of N randomly coupled reaction–diffusion neural networks with Markovian jumping parameters and mixed delays using sampled-data control technique. The jump parameters are determined by a continuous-time, discrete-state Markovian chain, and the mixed time delays under consideration comprise both discrete and distributed delays. A multiple integral inequality is proposed firstly in Markovian jump reaction–diffusion neural networks with mixed delays. Through constructing appropriate Lyapunov–Krasovskii functional including multiple integral terms, some novel synchronization criteria in terms of linear matrix inequalities are derived. The obtained LMIs can be easily verified for feasibility through any of the available softwares. Finally, numerical examples with simulations are provided to illustrate the effectiveness of the proposed theoretical results.
Literatur
1.
Zurück zum Zitat Young S, Scott P, Nasrabadi N (1997) Object recognition using multilayer Hopfield neural network. IEEE Trans Image Process 6:357–372 CrossRef Young S, Scott P, Nasrabadi N (1997) Object recognition using multilayer Hopfield neural network. IEEE Trans Image Process 6:357–372 CrossRef
2.
Zurück zum Zitat Atencia M, Joya G, Sandoval F (2005) Dynamical analysis of continuous higher order Hopfield networks for combinatorial optimization. Neural Comput 17:1802–1819 MathSciNetCrossRefMATH Atencia M, Joya G, Sandoval F (2005) Dynamical analysis of continuous higher order Hopfield networks for combinatorial optimization. Neural Comput 17:1802–1819 MathSciNetCrossRefMATH
3.
Zurück zum Zitat Sheikhan M, Shahnazi R, Garoucy S (2013) Synchronization of general chaotic systems using neural controllers with application to secure communication. Neural Comput Appl 22:361–373 CrossRef Sheikhan M, Shahnazi R, Garoucy S (2013) Synchronization of general chaotic systems using neural controllers with application to secure communication. Neural Comput Appl 22:361–373 CrossRef
4.
Zurück zum Zitat Huang H, Feng G (2009) Synchronization of nonidentical chaotic neural networks with time delays. Neural Netw 22:1841–1845 CrossRefMATH Huang H, Feng G (2009) Synchronization of nonidentical chaotic neural networks with time delays. Neural Netw 22:1841–1845 CrossRefMATH
5.
Zurück zum Zitat Li X, Ding C, Zhu Q (2010) Synchronization of stochastic perturbed chaotic neural networks with mixed delays. J Franklin Inst 347:1266–1280 MathSciNetCrossRefMATH Li X, Ding C, Zhu Q (2010) Synchronization of stochastic perturbed chaotic neural networks with mixed delays. J Franklin Inst 347:1266–1280 MathSciNetCrossRefMATH
6.
Zurück zum Zitat Liang J, Wang Z, Li P (2009) Robust Synchronization of delayed neural networks with both linear and non-linear couplings. Int J Syst Sci 40:973–984 CrossRefMATH Liang J, Wang Z, Li P (2009) Robust Synchronization of delayed neural networks with both linear and non-linear couplings. Int J Syst Sci 40:973–984 CrossRefMATH
7.
Zurück zum Zitat Grassi G, Mascolo S (1999) Synchronizing high dimensional chaotic systems via eigenvalue placement in application to cellular neural networks. Int J Bifurc Chaos 9:705–711 CrossRefMATH Grassi G, Mascolo S (1999) Synchronizing high dimensional chaotic systems via eigenvalue placement in application to cellular neural networks. Int J Bifurc Chaos 9:705–711 CrossRefMATH
8.
Zurück zum Zitat Zhang L (2009) \(H_\infty\) estimation for discrete-time piecewise homogeneous Markov jump linear systems. Automatica 45:2570–2576 MathSciNetCrossRefMATH Zhang L (2009) \(H_\infty\) estimation for discrete-time piecewise homogeneous Markov jump linear systems. Automatica 45:2570–2576 MathSciNetCrossRefMATH
9.
Zurück zum Zitat Zhang W, Li C, Huang T, Qi J (2014) Global exponential synchronization for coupled switched delayed recurrent neural networks with stochastic perturbation and impulsive effects. Neural Comput Appl 25:1275–1283 CrossRef Zhang W, Li C, Huang T, Qi J (2014) Global exponential synchronization for coupled switched delayed recurrent neural networks with stochastic perturbation and impulsive effects. Neural Comput Appl 25:1275–1283 CrossRef
10.
Zurück zum Zitat Cao J, Wan Y (2014) Matrix measure strategies for stability and synchronization for inertial BAM neural network with time delay. Neural Netw 53:165–172 CrossRefMATH Cao J, Wan Y (2014) Matrix measure strategies for stability and synchronization for inertial BAM neural network with time delay. Neural Netw 53:165–172 CrossRefMATH
11.
12.
Zurück zum Zitat Gong D, Liu J, Zhou S (2015) Chaotic synchronization for coupled neural networks based on T-S fuzzy theory. Int J Syst Sci 46:681–689 CrossRefMATH Gong D, Liu J, Zhou S (2015) Chaotic synchronization for coupled neural networks based on T-S fuzzy theory. Int J Syst Sci 46:681–689 CrossRefMATH
13.
Zurück zum Zitat Liu X (2010) Synchronization of linearly coupled neural networks with reaction–diffusion terms and unbounded time delays. Neurocomputing 73:2681–2888 CrossRef Liu X (2010) Synchronization of linearly coupled neural networks with reaction–diffusion terms and unbounded time delays. Neurocomputing 73:2681–2888 CrossRef
14.
Zurück zum Zitat Wang K, Teng Z, Jiang H (2012) Adaptive synchronization in an array of linearly coupled neural networks with reaction–diffusion terms and time delays. Commun Nonlinear Sci Numer Simul 17:3866–3875 MathSciNetCrossRefMATH Wang K, Teng Z, Jiang H (2012) Adaptive synchronization in an array of linearly coupled neural networks with reaction–diffusion terms and time delays. Commun Nonlinear Sci Numer Simul 17:3866–3875 MathSciNetCrossRefMATH
15.
Zurück zum Zitat Yang X, Cao J, Yang Z (2013) Synchronization of coupled reaction–diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J Control Optim 51:3486–3510 MathSciNetCrossRefMATH Yang X, Cao J, Yang Z (2013) Synchronization of coupled reaction–diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J Control Optim 51:3486–3510 MathSciNetCrossRefMATH
16.
Zurück zum Zitat Hu C, Jiang H, Teng Z (2010) Impulsive control and synchronization for delayed neural networks with reaction–diffusion terms. IEEE Trans Neural Netw 21:67–81 CrossRef Hu C, Jiang H, Teng Z (2010) Impulsive control and synchronization for delayed neural networks with reaction–diffusion terms. IEEE Trans Neural Netw 21:67–81 CrossRef
17.
Zurück zum Zitat Liu Z, Peng J (2010) Delay-independent stability of stochastic reaction–diffusion neural networks with Dirichlet boundary conditions. Neural Comput Appl 19:151–158 CrossRef Liu Z, Peng J (2010) Delay-independent stability of stochastic reaction–diffusion neural networks with Dirichlet boundary conditions. Neural Comput Appl 19:151–158 CrossRef
18.
Zurück zum Zitat Wang Y, Cao J (2007) Synchronization of a class of delayed neural networks with reaction–diffusion terms. Phys Lett A 369:201–211 CrossRef Wang Y, Cao J (2007) Synchronization of a class of delayed neural networks with reaction–diffusion terms. Phys Lett A 369:201–211 CrossRef
19.
Zurück zum Zitat Krasovskii NN, Lidskii EA (1961) Analysis and design of controllers in systems with random attributes. Autom Remote Control 22:1021–1025 Krasovskii NN, Lidskii EA (1961) Analysis and design of controllers in systems with random attributes. Autom Remote Control 22:1021–1025
20.
Zurück zum Zitat Liu Y, Wang Z, Liu X (2008) Exponential synchronization of complex networks with Markovian jump and mixed delays. Phys Lett A 372:3986–3998 MathSciNetCrossRefMATH Liu Y, Wang Z, Liu X (2008) Exponential synchronization of complex networks with Markovian jump and mixed delays. Phys Lett A 372:3986–3998 MathSciNetCrossRefMATH
21.
Zurück zum Zitat Shen H, Xu S, Zhou J, Lu J (2011) Fuzzy \(H_\infty\) filtering for nonlinear Markovian jump neutral systems. Int J Syst Sci 42:767–780 MathSciNetCrossRefMATH Shen H, Xu S, Zhou J, Lu J (2011) Fuzzy \(H_\infty\) filtering for nonlinear Markovian jump neutral systems. Int J Syst Sci 42:767–780 MathSciNetCrossRefMATH
22.
Zurück zum Zitat Wang Z, Liu L, Liu X (2010) Exponential stability of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays. IEEE Trans Autom Control 55:1656–1662 CrossRef Wang Z, Liu L, Liu X (2010) Exponential stability of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays. IEEE Trans Autom Control 55:1656–1662 CrossRef
23.
Zurück zum Zitat Chen B, Huang J, Niu Y (2012) Sliding mode control for Markovian jumping systems with actuator nonlinearities. Int J Syst Sci 43:656–664 MathSciNetCrossRefMATH Chen B, Huang J, Niu Y (2012) Sliding mode control for Markovian jumping systems with actuator nonlinearities. Int J Syst Sci 43:656–664 MathSciNetCrossRefMATH
24.
Zurück zum Zitat Xu S, Chen T, Lam J (2003) Robust \(H_\infty\) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans Autom Control 48:900–908 CrossRef Xu S, Chen T, Lam J (2003) Robust \(H_\infty\) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans Autom Control 48:900–908 CrossRef
25.
Zurück zum Zitat Liu Y (2009) Stochastic asymptotic stability of Markovian jumping neural networks with Markov mode estimation and mode-dependent delays. Phys Lett A 373:3741–3742 MathSciNetCrossRefMATH Liu Y (2009) Stochastic asymptotic stability of Markovian jumping neural networks with Markov mode estimation and mode-dependent delays. Phys Lett A 373:3741–3742 MathSciNetCrossRefMATH
26.
Zurück zum Zitat Zhang L, Boukas E, Lam J (2008) Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities. IEEE Trans Autom Control 53:2458–2464 MathSciNetCrossRef Zhang L, Boukas E, Lam J (2008) Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities. IEEE Trans Autom Control 53:2458–2464 MathSciNetCrossRef
27.
Zurück zum Zitat Balasubramaniam P, Vembarasan V, Rakkiyappan R (1999) Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying. IEEE Trans Circuits Syst I Fundam Theory Appl 46:1144–1150 CrossRefMATH Balasubramaniam P, Vembarasan V, Rakkiyappan R (1999) Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying. IEEE Trans Circuits Syst I Fundam Theory Appl 46:1144–1150 CrossRefMATH
28.
Zurück zum Zitat Wang L, Zhang Z, Wang Y (2008) Stochastic exponential stability of the delayed reaction–diffusion recurrent neural networks with Markovian jumping parameters. Phys Lett A 372:3201–3209 MathSciNetCrossRefMATH Wang L, Zhang Z, Wang Y (2008) Stochastic exponential stability of the delayed reaction–diffusion recurrent neural networks with Markovian jumping parameters. Phys Lett A 372:3201–3209 MathSciNetCrossRefMATH
29.
30.
Zurück zum Zitat Zheng CD, Zhang H, Wang Z (2014) Exponential synchronization of stochastic chaotic neural networks with mixed time delays and Markovian switching. Neural Comput Appl 25:429–442 CrossRef Zheng CD, Zhang H, Wang Z (2014) Exponential synchronization of stochastic chaotic neural networks with mixed time delays and Markovian switching. Neural Comput Appl 25:429–442 CrossRef
31.
Zurück zum Zitat Yang X, Cao J, Lu J (2013) Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans Circuits Syst I Regul Pap 60:363–376 MathSciNetCrossRef Yang X, Cao J, Lu J (2013) Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans Circuits Syst I Regul Pap 60:363–376 MathSciNetCrossRef
32.
Zurück zum Zitat Kao YG, Guo JF, Wang CH, Sun XQ (2012) Delay-dependent robust exponential stability of Markovian jumping reaction–diffusion Cohen-Grossberg neural networks with mixed delays. J Franklin Inst 349:1972–1988 MathSciNetCrossRefMATH Kao YG, Guo JF, Wang CH, Sun XQ (2012) Delay-dependent robust exponential stability of Markovian jumping reaction–diffusion Cohen-Grossberg neural networks with mixed delays. J Franklin Inst 349:1972–1988 MathSciNetCrossRefMATH
33.
34.
Zurück zum Zitat Shi G, Ma Q (2011) Synchronization of stochastic Markovian jump neural networks with reaction–diffusion terms. Neurocomputing 77:275–280 CrossRef Shi G, Ma Q (2011) Synchronization of stochastic Markovian jump neural networks with reaction–diffusion terms. Neurocomputing 77:275–280 CrossRef
35.
Zurück zum Zitat Zhou J, Shen H, Wang Z (2012) Synchronization of delayed reaction–diffusion neural networks with markovian jumping parameters. In: The second international conference on computer application and system modeling Zhou J, Shen H, Wang Z (2012) Synchronization of delayed reaction–diffusion neural networks with markovian jumping parameters. In: The second international conference on computer application and system modeling
36.
Zurück zum Zitat Wang X, Li C, Huang T, Chen L (2014) Impulsive exponential synchronization of randomly coupled neural networks with Markovian jumping and mixed model-dependent time delays. Neural Netw 60:25–32 CrossRefMATH Wang X, Li C, Huang T, Chen L (2014) Impulsive exponential synchronization of randomly coupled neural networks with Markovian jumping and mixed model-dependent time delays. Neural Netw 60:25–32 CrossRefMATH
37.
Zurück zum Zitat Zhang CK, He Y, Wu M (2010) Exponential synchronization of neural networks with time-varying mixed delays and sampled-data. Neurocomputing 74:265–273 CrossRef Zhang CK, He Y, Wu M (2010) Exponential synchronization of neural networks with time-varying mixed delays and sampled-data. Neurocomputing 74:265–273 CrossRef
38.
Zurück zum Zitat Li N, Zhang Y, Hu J, Nie Z (2011) Synchronization for general complex dynamical networks with sampled-data. Neurocomputing 74:805–811 CrossRef Li N, Zhang Y, Hu J, Nie Z (2011) Synchronization for general complex dynamical networks with sampled-data. Neurocomputing 74:805–811 CrossRef
39.
Zurück zum Zitat Liu YY, Yang GH (2012) Sampled-data \(H_\infty\) control for networked control systems with digital control inputs. Int J Syst Sci 43:1728–1740 MathSciNetCrossRefMATH Liu YY, Yang GH (2012) Sampled-data \(H_\infty\) control for networked control systems with digital control inputs. Int J Syst Sci 43:1728–1740 MathSciNetCrossRefMATH
40.
41.
Zurück zum Zitat Kalpana M, Balasubramaniam P (2013) Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and the Wiener process based on sampled-data control. Chin Phys B 22:078401 CrossRef Kalpana M, Balasubramaniam P (2013) Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and the Wiener process based on sampled-data control. Chin Phys B 22:078401 CrossRef
42.
Zurück zum Zitat Zhang CK, He Y, Wu M (2009) Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans Circuits Syst II Express Briefs 56:320–324 CrossRef Zhang CK, He Y, Wu M (2009) Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans Circuits Syst II Express Briefs 56:320–324 CrossRef
43.
Zurück zum Zitat Wu Z, Shi P, Su H, Chu J (2013) Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data. IEEE Trans Cybern 43:1796–1806 CrossRef Wu Z, Shi P, Su H, Chu J (2013) Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data. IEEE Trans Cybern 43:1796–1806 CrossRef
44.
Zurück zum Zitat Astrom K, Wittenmark B (1989) Adaptive control. Addison-Wesley, Reading Astrom K, Wittenmark B (1989) Adaptive control. Addison-Wesley, Reading
45.
Zurück zum Zitat Mikheev Y, Sobolev V, Fridman E (1988) Asymptotic analysis of digital control systems. Autom Remote Control 49:1175–1180 MathSciNetMATH Mikheev Y, Sobolev V, Fridman E (1988) Asymptotic analysis of digital control systems. Autom Remote Control 49:1175–1180 MathSciNetMATH
46.
Zurück zum Zitat Fang M, Park JH (2013) A multiple integral approach to stability of neutral time-delay systems. Appl Math Comput 224:714–718 MathSciNetMATH Fang M, Park JH (2013) A multiple integral approach to stability of neutral time-delay systems. Appl Math Comput 224:714–718 MathSciNetMATH
47.
Zurück zum Zitat Wang J, Zhang H, Wang Z, Wang B (2013) Local exponential synchronization in complex dynamical networks with time-varying delay and hybrid coupling. Appl Math Comput 225:16–32 MathSciNetMATH Wang J, Zhang H, Wang Z, Wang B (2013) Local exponential synchronization in complex dynamical networks with time-varying delay and hybrid coupling. Appl Math Comput 225:16–32 MathSciNetMATH
48.
Zurück zum Zitat Park JH, Lee TH (2015) Synchronization of complex dynamical networks with discontinuous coupling signals. Nonlinear Dyn 79:1353–1362 MathSciNetCrossRefMATH Park JH, Lee TH (2015) Synchronization of complex dynamical networks with discontinuous coupling signals. Nonlinear Dyn 79:1353–1362 MathSciNetCrossRefMATH
49.
Zurück zum Zitat Fridman E, Seuret A, Richard JP (2004) Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40:1441–1446 MathSciNetCrossRefMATH Fridman E, Seuret A, Richard JP (2004) Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40:1441–1446 MathSciNetCrossRefMATH
50.
Zurück zum Zitat Lu JG (2008) Global exponential stability and periodicity of reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos Solitons Fractals 35:116–125 MathSciNetCrossRefMATH Lu JG (2008) Global exponential stability and periodicity of reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos Solitons Fractals 35:116–125 MathSciNetCrossRefMATH
51.
Zurück zum Zitat Zhang HG, Ma TD, Huang GB, Wang CX (2010) Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans Syst Man Cybern B Cybern 40:831–844 CrossRef Zhang HG, Ma TD, Huang GB, Wang CX (2010) Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans Syst Man Cybern B Cybern 40:831–844 CrossRef
52.
Zurück zum Zitat Yu W, Cao J, Chen G, Lu J, Han J, Wei W (2009) Local synchronization of a complex network model. IEEE Trans Syst Man Cybern B Cybern 39:230–241 CrossRef Yu W, Cao J, Chen G, Lu J, Han J, Wei W (2009) Local synchronization of a complex network model. IEEE Trans Syst Man Cybern B Cybern 39:230–241 CrossRef
53.
Zurück zum Zitat Chen J, Chen X (2001) Special matrices. Tsinghua University Press, Beijing Chen J, Chen X (2001) Special matrices. Tsinghua University Press, Beijing
54.
Zurück zum Zitat Tahara S, Fujii T, Yokoyama T (2007) Variable sampling quasi multirate deadbeat control method for single phase PWM inverter in low carrier frequency. In: Power conversion conference (PCC), pp 804–809 Tahara S, Fujii T, Yokoyama T (2007) Variable sampling quasi multirate deadbeat control method for single phase PWM inverter in low carrier frequency. In: Power conversion conference (PCC), pp 804–809
55.
Zurück zum Zitat Hu B, Michel AN (2000) Stability analysis of digital feedback control systems with time-varying sampling periods. Automatica 36:897–905 MathSciNetCrossRefMATH Hu B, Michel AN (2000) Stability analysis of digital feedback control systems with time-varying sampling periods. Automatica 36:897–905 MathSciNetCrossRefMATH
56.
57.
58.
Zurück zum Zitat Lee T, Park J, Lee S, Kwon O (2013) Robust synchronization of chaotic systems with randomly occurring uncertainties via stochastic sampled-data control. Int J Control 86:107–119 CrossRefMATH Lee T, Park J, Lee S, Kwon O (2013) Robust synchronization of chaotic systems with randomly occurring uncertainties via stochastic sampled-data control. Int J Control 86:107–119 CrossRefMATH
59.
Zurück zum Zitat Lee T, Park J, Kwon O, Lee S (2013) Stochastic sampled-data control for state estimation of time-varying delayed neural networks. Neural Netw 46:99–108 CrossRefMATH Lee T, Park J, Kwon O, Lee S (2013) Stochastic sampled-data control for state estimation of time-varying delayed neural networks. Neural Netw 46:99–108 CrossRefMATH
60.
Zurück zum Zitat Ding S, Wang Z (2015) Stochastic exponential synchronization control of Memristive neural networks with multiple time-varying delays. Neurocomputing 162:16–25 CrossRef Ding S, Wang Z (2015) Stochastic exponential synchronization control of Memristive neural networks with multiple time-varying delays. Neurocomputing 162:16–25 CrossRef
61.
Zurück zum Zitat Wang Z, Zhang H, Jiang B (2011) LMI-based approach for global asymptotic stability analysis of recurrent neural networks with various delays and structures. IEEE Trans Neural Netw 22:1032–1045 CrossRef Wang Z, Zhang H, Jiang B (2011) LMI-based approach for global asymptotic stability analysis of recurrent neural networks with various delays and structures. IEEE Trans Neural Netw 22:1032–1045 CrossRef
62.
Zurück zum Zitat Wang Z, Liu L, Shan Q-H, Zhang H Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE Trans Neural Netw Learn Syst. doi: 10.​1109/​TNNLS.​2014.​2387434 Wang Z, Liu L, Shan Q-H, Zhang H Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE Trans Neural Netw Learn Syst. doi: 10.​1109/​TNNLS.​2014.​2387434
Metadaten
Titel
Sampled-data synchronization of randomly coupled reaction–diffusion neural networks with Markovian jumping and mixed delays using multiple integral approach
verfasst von
R. Rakkiyappan
S. Dharani
Publikationsdatum
24.10.2015
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-2079-5

Weitere Artikel der Ausgabe 3/2017

Neural Computing and Applications 3/2017 Zur Ausgabe

Premium Partner