Skip to main content
Erschienen in: Knowledge and Information Systems 11/2023

Open Access 04.06.2023 | Review

Scholarly recommendation systems: a literature survey

verfasst von: Zitong Zhang, Braja Gopal Patra, Ashraf Yaseen, Jie Zhu, Rachit Sabharwal, Kirk Roberts, Tru Cao, Hulin Wu

Erschienen in: Knowledge and Information Systems | Ausgabe 11/2023

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A scholarly recommendation system is an important tool for identifying prior and related resources such as literature, datasets, grants, and collaborators. A well-designed scholarly recommender significantly saves the time of researchers and can provide information that would not otherwise be considered. The usefulness of scholarly recommendations, especially literature recommendations, has been established by the widespread acceptance of web search engines such as CiteSeerX, Google Scholar, and Semantic Scholar. This article discusses different aspects and developments of scholarly recommendation systems. We searched the ACM Digital Library, DBLP, IEEE Explorer, and Scopus for publications in the domain of scholarly recommendations for literature, collaborators, reviewers, conferences and journals, datasets, and grant funding. In total, 225 publications were identified in these areas. We discuss methodologies used to develop scholarly recommender systems. Content-based filtering is the most commonly applied technique, whereas collaborative filtering is more popular among conference recommenders. The implementation of deep learning algorithms in scholarly recommendation systems is rare among the screened publications. We found fewer publications in the areas of the dataset and grant funding recommenders than in other areas. Furthermore, studies analyzing users’ feedback to improve scholarly recommendation systems are rare for recommenders. This survey provides background knowledge regarding existing research on scholarly recommenders and aids in developing future recommendation systems in this domain.
Hinweise
Z. Zhang, B.G. Patra These authors contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

A recommendation or recommender system is a type of information filtering system that employs data mining and analytics of user behaviors, including preferences and activities, to filter required information from a large information source. In the era of big data, recommendation systems have become important applications in our daily lives by recommending music, videos, movies, books, news, etc. In academia, there has been a substantial increase in the extent of information (literature, collaborators, conferences, datasets, and many more) available online and it has become increasingly taxing for researchers to stay up to date with relevant information. Several recommendation tools and search engines in academia (Google Scholar, ResearchGate, Semantic Scholar, and others) are available for researchers to recommend relevant publications, collaborators, funding opportunities, etc. Recommendation systems are evolving rapidly. The initial scholarly recommender system was intended for literature by recommending publications using content-based similarity methods [1]. Currently, there are several recommendation systems available for researchers and these are widely used in different scholarly areas.

1.1 Motivation and research questions

In this article, we focus on different scholarly recommenders used to improve the quality of research. To the best of our knowledge, no article currently focusing on all scholarly recommendation systems together is available right now. Previous surveys on recommendation systems were conducted separately for each recommendation system. Most of these studies were based on literature or collaborator recommendation systems [2]. Currently, there is no comprehensive review that contains a description of different types of scholarly recommendation systems, particularly for academic use.
Therefore, it is necessary to provide a survey as a guide and reference to researchers interested in this area; a systematic review of scholarly recommendation system would serve this purpose. It helps to explore research achievements in scholarly recommendation, provide researchers with an overall presentation of systems for allocating academic resources, and identify improvement opportunities.
This article describes the different scholarly recommendation systems that researchers use in their daily activities. We are taking a closer look at the methodologies used for developing such systems. The research questions of our study are as follows:
  • RQ1 What different problems are addressed by scholarly recommendation systems?
  • RQ2 What datasets or repositories were used for developing these recommendation systems?
  • RQ3 What types of methodologies were implemented in these recommendation systems?
  • RQ4 What further research can be performed to overcome the drawbacks of the current research and develop new recommenders to enhance the field of scholarly recommendation?
To answer our first research question, we collected over 500 publications on scholarly recommenders from the ACM Digital Library, DBLP, IEEE Explorer, and Scopus. Literature and collaborator recommendation systems are the most studied recommenders in the literature, with many publications in each. Websites for searching publications host literature recommendations as a key function, almost all of which are free for researchers. However, a few collaborator recommendation systems have been implemented online; and are not free for all users. One of the reasons can be attributed to the large amount of personal information and preferences required by these recommenders.
Furthermore, we studied journal and conference recommendation systems for publishing papers and articles. Although many publishing houses have implemented their own online journal recommender systems, conference recommender systems are not available online. Next, we studied reviewer recommendation problems, in which reviewers are recommended for conferences, journals, and grants. Finally, we identified datasets and grant recommendation systems, which are the least studied scholarly recommendation systems. Figure 1 shows all currently available scholarly recommendations.

1.2 Materials and methods

An initial literature survey was conducted to identify keywords related to individual recommendation systems that can be used to search for relevant publications. A total of 26 keywords were identified to search for relevant publications (see Supplementary 17).
At the end of the full-text review process, 225 publications were included in this study. The number of publications on individual recommendation systems is shown in Fig. 2. To be eligible for the review, we focused on the description, evaluation, and use of natural language processing algorithms. During the full-text review process, we excluded studies that were not peer-reviewed, such as abstracts and commentary, perspective, or opinion pieces. Finally, we performed data extraction and analysis on 225 articles and summarized their data, methodology, evaluation metrics, and detailed categorization in the following sections. The PRISMA flowchart for our publication collection is shown in Fig. 3; with example search keywords.
The remainder of this paper is organized as follows. Section 2 describes different literature recommendation systems based on their methodologies and corresponding datasets. Section 3 describes different approaches for developing collaborator recommendation systems. Section 4 reviews the journal and conference venue recommendation systems. Section 5 describes the reviewer’s recommendation system. In Sect. 6, we review all other scholarly recommendation systems available in the literature such as datasets and grant recommendation systems. Finally, Sect. 7 discusses future work and concludes the article.

2 Literature recommendation

Literature recommendation is one of the most well-studied scholarly recommendation problems with several research articles published in the past decade. Recommender systems for scholarly literature have been widely used by researchers to locate papers, keep up with their research fields, and find relevant citations for drafts. To summarize the literature recommendation systems, we collected 82 publications for scholarly papers and citations.
The first research paper recommendation system was introduced as a part of the CiteSeer project [1]. In total, 11 out of 82 publications (approximately 13%) used applications or methodologies based on a citation recommendation system. As one of the widest subsets of scholarly literature recommendation, citation recommendation aims to recommend citations to researchers while authoring a paper and finding work related to their ideas. It recommends citations based on the content of the researchers’ work. Among the 11 citation recommender papers, content-based filtering (CBF) methodologies have been widely used on the fragments of the citations for the recommendation, and some of them applied collaborative filtering (CF) to develop a potential citation recommendation system based on users’ research interests and citation networks [3].

2.1 Data

In this section, we describe the datasets used to develop literature recommendation systems. A total of 75 reviewed publications evaluated the methodologies using different datasets. The authors of 45 publications chose to construct their own datasets based on manually collected information or paid datasets that were rarely used. Several open-source published datasets are commonly used to develop literature recommendations.
Owing to the rapid development of modern websites for literature search, datasets for literature recommendation are readily available. There were 28 publications that used public databases for the testing and evaluation of the methods. The sources of these datasets are listed in Table 1. These websites collected publications from several scientific publishers and indexed them with their references and keywords. Using the information extracted from these public resources, researchers created datasets to perform recommendation methodologies and obtain the ground truth for offline evaluation.
Table 1
Sources of datasets used for literature recommendation approaches
 
CiteSeer
ACM
DBLP
CiteULike
Absolute
9
11
12
7
Relative
32%
40%
43%
25%
DBLP was used in 12 reviewed publications and ACM was used in 11 reviewed publications to construct datasets for evaluation. DBLP hosts more than 5.2 million publications,1 and obtains its database entries by using a limited number of volunteers who manually enter tables of contents of journals and conference proceedings. The CiteSeer dataset was used in 9 reviewed publications to conduct an offline evaluation. It currently contains over 6 million publications; and is continuously crawling the web to find new content using user submissions, conferences, and journals as data entries. Petricek et al. [4] proved that the application of autonomous acquisition through web crawling in CiteSeer introduces a significant bias against papers with a low number of authors. Among the reviewed papers, we can say that most of researchers constructed their own datasets for evaluation by combining the information from multiple databases. These self-constructed evaluation datasets based on different resources were used to avoid bias resulting from using information from only one source.
The CiteULike dataset was used in 7 reviewed publications. CiteULike is a web service that contains social tags added to research articles by users. The dataset was not originally intended for literature recommendation system research, but is still frequently used for this purpose.

2.2 Methods

Three main approaches were used to develop literature recommenders; CBF (N = 37 papers), CF (N = 16 papers), and hybrid (N = 29 papers). Next, we introduce the promising and popular approaches used in each recommendation class. We also provide an overview of the most important aspects and techniques used for literature recommendation.

2.2.1 Content-based filtering (CBF)

CBF is one of the most popular methods for recommending literature and is used in 37 of 82 publications. Based on the user-item model that treats textual contents as ‘items,’ CBF usually uses topic-based methods to measure the similarity of the publication’s topic that users are interested in and the topic of target publications. These methods performed well in terms of topic and content matching. A summary of CBF approaches used for literature recommendation can be found in Table 2.
Table 2
Overview of literature recommendation systems using CBF
Citation
Data
Method
Evaluation
[5]
[6]
TF-IDF, cosine similarity
[7]
CBF
[8]
SVM classifier
[9]
Self-conducted database
Cosine Similarity
Accuracy
[10]
Self-conducted database
CBF
Accuracy
[11]
ACM DL
TF-IDF, cosine similarity
Accuracy, P, Recall
[12]
DBLP MAS(Microsoft Academic Search)
Markov Chain model
Compare Inference & Similarity
[13]
PubMed
Bisociative Information Networks
DTM
[14]
NLP
MFA (atrix-forest-based algorithm)
HITS ranking, co-citation graph
[15]
SfN (Society for Neuroscience)
TF, TF-IDF, log-entropy
Human curated topic distances
[16]
CiteSeerX
DBSCAN (density-based clustering)
Manual Evaluation
[17]
Docear’s Digital Library
CBF
Manual Evaluation
[18]
NIIREO
TF-IDF, cosine similarity
Manual Evaluation
[19]
Self-conducted database
CBF, designed questionnaire
Manual Evaluation
[20]
Self-conducted database
CBF
Manual Evaluation, Accuracy
[21]
OpenEdition’s search engine
CBF, centrality indicator
Manual rating
[22]
Rexa
Co-citation coupling Katz graph distance measure
Manual, P
[23]
ACM DL
PRF (pseudo relevance feedback) algorithms
MAP, NDCG
[24]
Google Scholar
Knowledge-based graph representation
MRR, MAP, NDCG
[25]
DBLP, ACM DL
TF-IDF, DU
MRR, NDCG
[26]
National Science and Technology Library
Filter user profile based on content
NDCG
[27]
ArnetMiner
Paper citation graph, TF-IDF, LDA
NDCG, MAP
[28]
Self-conducted database
CBF, keyphrase extraction
NDCG, recall
[29]
Information and Communication Engineers
HITS (analyzing the bipartite graph)
Precision
[30]
CiteULike
CombMNZ (computes the rank score)
P, MRR, NDCG
[31]
CiteSeer, CiteULike
IBM translation model, TF-ICF
P, Recall, MRR, Bpref
[32]
CiteULike
RankSVM
P, MRR, NDCG
[33]
Docear’s PDF Spider crawled
CBF
offline evaluation
[34]
Computer Science Publication Dataset
VRRW (Vertex-Reinforced Random Walk)
Recall, MAP, CP
[35]
ACM DL, IEEE
Self-defined weighting schemes
Recall, NDCG
[36]
CiteSeerX
Contextual Similarity Dependency Feature Model
Recall, P, NDCG
[37]
ACM DL
CBF, self-designed criteria
Specificity, Coverage
[38]
Self-conducted database
BisoNets
[39]
Self-conducted database
CBF, NLP (natural language processing)
User tests
[40]
CiteSeerX
Context Graph (CG), TF-IDF
User tests, NDCG
[41]
CPA, COA
CBF recommenders use keywords or topics as key features because they are used to describe a publication. The creation of a content-based profile of users usually concentrates on the user’s preference model, and the user’s interaction log with the recommendation system converted by a weighted vector of item features. For example, Hong et al. [9] constructed a paper recommendation methodology based on a user profile built with extracted keywords, and calculated the similarity between a given topic and collected papers by using cosine similarity to recommend initial publications for each topic.
Most of the reviewed publications used the term frequency and inverse document frequency (TF-IDF) representation to evaluate the similarities between text objects. TF-IDF negates the effect of high-frequency words while determining the importance of an item. Magara et al. [38] constructed methodologies for recommending serendipitous research papers from two large normally mismatched information spaces or domains using Bisociative Information Networks (BisoNets) and TF-IDF measures as weighting and filtering terms. Lofty et al. [11] combined TF-IDF with a cosine similarity measure to construct a methodology for paper recommendation using ontology. To address higher relevancy and serendipity, Sugiyama and Kan [25] also constructed feature vectors using the TF-IDF measure and user profiles utilizing the Co-Author Network (CAN), computed cosine similarity and recommended papers with higher similarity.
In summary, researchers claim that content-based recommender systems are independent for each user to build their own profiles so that the most suitable recommendation can be made for different users. Also, based on automatically generated user models, recommendation systems using CBF would spend less time and calculation on up-front classification.
The limitations of CBF can also be concluded. The improvements made in the papers we collected were mostly to overcome these limitations. CBF requires more calculation and resources to analyze each item for its features and build each user model individually. For example, to mark passages for citation recommendations, users are typically required to provide a representative bibliography. By examining the relevance between segments in a query manuscript and the representative segments extracted from a document corpus, He et al. [36] formulated a dependency feature model based on language model, contextual similarity, and topic relevance to produce a citation recommendation approach without author supervision. Neethukrishnan et al. [8] proposed a paper recommender methodology using an SVM classifier to found their users’ personal ontology similarity to specify the conceptualization. Nasciment et al. [35] also proposed a novel source independent framework for research paper recommendation to reduce the resources required. They designed a framework that required only a single research paper as input, and generated several weighting candidate queries by using terms in that paper, and then applied a cosine similarity metric to rank the candidates to recommend the ones most related to the input paper.
In addition, the traditional CBF methods are not able to consider the popularity and rating of items, that is, it is difficult to differentiate between two research papers if they have similar terms in user model. To overcome this limitation, Ollagnier et.al [21] formulated a centrality indicator for their software, which was dedicated to the analysis of bibliographical references extracted from scientific collections of papers. This approach determines the impact and inner representativeness of each bibliographical reference according to their occurrences. Pera and Ng [30] adopted CombMNZ, a linear combination strategy that combines similarity degree and popularity score into a joint ranking, to build up their application, and a paper recommender system recommends papers considering both context similarity and popularity of the paper among users. Liu et.al [23] constructed a publication ranking approach with PRF (Pseudo Relevance Feedback) by leveraging a number of meta-paths on a heterogeneous bibliographic graph.

2.2.2 Collaborative filtering

We collected 16 studies that used the Collaborative Filtering (CF) method. CF methods find the users that are similar to the target user in their past ratings, and then recommend similar user options to the target user. These methods are suitable for extending the recommended range. A summary of literature recommendation papers using CF methods is presented in Table 3.
Table 3
Overview of literature recommendation system using collaborative filtering
Citation
Data
Method
Evaluation
[42]
DBLP
CF (machine learning)
MRR, NDCG, recall
[3]
DBLP, ACM DL
CF
MRR, NDCG
[43]
DBLP, ACL ARC
CF
NDCG, MRR
[5]
ACM DL
CF 
recall, precision, and F1
[44]
DBLP, ACL ARC
CF (co-author network)
NDCG, MRR, recall, NITN
[45]
Self-conducted study
CF (multidimensional)
User rating
[46]
DBLP
CF (SVD-based method)
Recall, precision
[47]
DBLP
CF, data-intensive computing
Recall, accuracy, error rate
[48]
Self-conducted DB
CF LDA (latent Dirichlet allocation)
Manual Evaluation
[49]
CiteULike
Collaborative filtering
Recall, precision, and F1
[50]
BibSonomy
Collaborative Tagging, FolkRank
MAP(Mean Average Precision)
[51]
DBLP
FP (frequent pattern) growth algorithm
MRR, NDCG
[52]
Socrec Dataset
Information Filtering 
Recall, precision
[53]
MovieLens dataset
Subspace clustering algorithm
Recall, precision, and F1
[54]
CiteULike, CiteSeer
Tag inference
Tag growth, tag reuse
[55]
Brazilian DL
CF, TF-IDF
Jaccard and Fuzzy Similarity Function
Common methodologies using a collaborative filtering algorithms can be categorized into two groups: model-based and memory-based. The main difference between the two approaches is that the model-based approach uses a matrix factorization-based algorithm, in which the preferences of users can be calculated by embedding factors. The memory-based approach calculates the preferences of users for items based on arithmetic operations (correlation coefficients or cosine similarity). Memory-based CF approaches are widely used in scholarly literature recommendation systems, which includes several different approaches, such as k-nearest neighbors (kNN), Latent Semantic Index (LSI), and Singular Value Decomposition (SVD). Pan and Li [48] used the LDA (Latent Dirichlet Allocation) model to construct a paper recommendation system using a thematic similarity measurement to transform a topic-based recommendation into a modified version of the item-based recommendation approach. Ha et al. [46] proposed a novel method using SVD for matrix factorization and rating prediction to recommende newly published papers that have not been cited by other papers by predicting the interests of the target researchers.
Compared to CBF methods and applications based on CF show the following advantages. First, given that CF approaches is independent of content, resource costs for error-prone item processing are reduced. In addition, popularity and quality assessments are often considered limitations of CBF, but CF can achieve them easily. Sugiyama and Kan [43] used the PageRank approach to rank the popularity factor and measure the importance of research papers, to enhance the user profile derived directly from the researchers’ past works with information coming from their referenced papers as well as papers that cite the work. CF approaches are also used for serendipitous recommendations; because they are usually based on user similarity and not item similarity. Tang and McCalla [44] constructed user profiles via a co-author network to build a serendipitous paper recommendation system based on a scholarly social network.
The limitations of CF are also shown in the reviewed papers. To make precise recommendations, a CF system requires a great volume of existing data to start the recommendation. This problem is called Cold Start. Loh et al. [55] used scientific papers written by users to compose user profiles, representing user interests or expertise in order to alleviate the cold start problem in the recommender system. Data sparsity is another problem, which represents active users only by observing a small subset of the dataset to rate the papers. Keshavarz and Honarvar [47] presented an approach for paper recommendation based on local sensitive hashing by converting the citations of papers to signatures and comparing these signatures to each other to detect similar papers according to their citations. Sugiyama and Kan [3] also applied CF to discover potential citation papers that help in representing target papers to recommend, in order to alleviate sparsity. The authors also attempted to improve the scalability of the approaches, to reduce the amount of calculation and resources required for recommendations.

2.2.3 Hybrid

Approaches to the previously introduced recommendation may be combined with hybrid approaches. We reviewed 29 studies that applied hybrid recommendation approaches. Table 4 summarizes the papers that we collected where literature recommendation was developed using hybrid approaches.
Table 4
Overview of literature recommendation system using hybrid method
Citation
Data
Method
Evaluation
[41]
ICFA, ICDA
[56]
RNN, MeSH-based similarities
[57]
cit-HepTh
GCE (Greedy Clique Expansion)
Accuracy
[58]
ACL Anthology Network
Unified Multilayer Graph Model LDA
MAP, recall
[59]
ACM DL, CiteSeerX
DNTC, TF-IDF
Accuracy, MAP
[60]
ACM DL, IEEE
CF, CBF
Manual rating
[61]
ACM Portal
Correlation Graph
Accuracy
[62]
ACM, DBLP, IEEE
multicriteria CF, CBF
Recall, NDCG
[63]
AMiner
Hierarchical clusting, CBF
Manual rating
[64]
arXIV record
Bipartite graph
MAP
[65]
CiteULike
concept graph
Manual rating
[66]
CiteULike
CF, CBF
Accuracy
[67]
CV-Lattes
TF-IDF, ontology-based user file
NDCG
[68]
DBLP, ACM IEEE, CiteSeer
IR, Ranking SVM
NDCG
[69]
Google Scholar
Chi-square test, ranking measure
Accuracy
[70]
HEP-PH, HEP-TH
CF, CBF
Precision, recall, F1
[71]
DBLP, CiteSeer
Hybrid recommender
Precision
[72]
Mendeley
CF, CBF
recall, precision, and F1
[73]
ML, HCI, DB
CBF, CF
Accuracy
[74]
Mr. DLib
[75]
Mr. DLib
RF, GBM, GLM
Precision, recall, F1
[76]
Papits
Graph Neural Networks
Precision
[77]
ResearchIndex (CiteSeer)
Hybrid (CF, CBF)
User acceptance
[78]
Self-conducted database
TF-IDF, LDA
Manual rating
[79]
Self-conducted database
Multiple-criteria Decision Aiding
Simply list the ranking score
[80]
Self-conducted database
CBF, CF
Accuracy
[81]
Self-conducted database
two-layer graph model
Precision, recall
[82]
SPC (Scientific Paper Collection)
CG (Context Graph), TF-IDF
RES Accuracy
[83]
World Wild Web
AdaBoost, multiclass classification
Feedback Website
As a combination of CBF and CF, hybrid recommendation approaches can be categorized into four main groups. The first group implements CBF and CF methods separately and then combine their recommendation results. Liu et al. [70] constructed a citation recommendation method that employed an association mining technique to obtain the representation of each citing paper from the citation context. Then, these paper representations were compared pairwise to compute similarities between the cited papers for CF. Zarrinkalam and Kahani [62] used multiple linked data sources to create a rich background data layer and combine multiple-criteria CF and CBF to develop a citation recommender. Zhang et al. [65] constructed a paper recommendation method based on the semantic concept similarity computed from collaborative tags.
The second and third groups incorporate CBF characteristics into a CF method or incorporate some CF characteristics into a CBF method. West et al. [63] formulated a citation-based method for making scholarly recommendations. The method uses a hierarchical structure of scientific knowledge, making possible multiple scales of relevance for different users. Nart et al. [82] built a method that simplifies CF paper recommendations by extracting concepts from papers to generate and explain the recommendations. Zhou et al. [57] used the concepts and methods of community partitioning and introduced a model to recommend authoritative papers based on the specific community. Magalhaes et al. [67] constructed a user paper-based recommendation approach by considering the user’s academic curriculum vitae.
The fourth group is to constructs a general unifying model that incorporates both content-based and collaborative characteristics. Meng et al. [58] built a unified graph model with multiple types of information (e.g., content, authorship, citation, and collaboration networks) for efficient recommendation. Pohl et al. [64] treated access data as a bipartite graph of users and documents analogous to item-to-item recommendation systems to build a paper recommender method using digital access records (e.g., http-server logs) as indicators. Gipp et al. [41] developed a paper recommender system that used keyword-based search by combining it with citation analysis, author analysis, source analysis, implicit ratings, explicit ratings, and, in addition, innovative and yet unused methods like the ‘Distance Similarity Index’ (DSI) and the ‘In-text Impact Factor’ (ItIF).

2.3 Evaluation

The evaluation metrics for different recommendation methods vary, making it difficult to compare them. To objectively compare the performance of these approaches, 75 publications used two main evaluation metrics.
First, accuracy is the most widely used parameter for evaluating a recommendation system, and it is the capability to recommend the most relevant items based on the given information. Among the reviewed papers, many offline evaluation metrics were applied to measure the accuracy. The second factor is the recommendation system’s ability to satisfy users. For example, considering serendipitous factors and user requirements instead of only considering the accuracy of the recommendation system. Some of the reviewed papers designed questionnaires for users to collect their feedback, or applied their methods to real-world systems to evaluate user satisfaction. To quantify and compare the accuracy and user satisfaction of recommendation systems, evaluation methods can be divided into two groups: online and offline.

2.3.1 Online evaluation

A total of 17 publications evaluated their methods with a user study or a real-world system using an online evaluation. They created a rating scheme for users to rate the recommendation results. These manual rating results were then used to analyze and judge an method. In addition, 6 publications out of the 17 applied online evaluations, the methodology of recommendation methods in real-world systems and collected feedback from users for evaluation. Despite analyzing a method based on manually rated the results, online evaluation is typically based on users’ acceptance results. Acceptance is commonly measured by the Click-Through Rate (CTR), that is, the ratio of recommendations clicked by users.

2.3.2 Offline evaluation

A total of 59 publications applied offline evaluations to analyze the recommendation algorithms based on the prepared offline datasets. Offline evaluations typically measure the accuracy of recommendation methods based on the ground truth, normally obtained from the information provided by the database, or obtained by manual tests.
To measure the accuracy, precision at position n (P@n) is often used to express how many items of the ground truth are recommended within the top n recommendations. Other decision support metrics including Recall and F-measure were also commonly used, often together with Precision as a reference. To evaluate the quality of recommendation, rank-aware evaluation metrics including mean reciprocal rank (MRR) and normalized discounted cumulative gain (nDCG) were also widely used to test highly relevant items that were ranked at the top of a recommendation list. The different evaluation metrics used are illustrated in Fig. 4.

3 Collaborator recommendation

Currently, research in any area has expanded exponentially beyond its own fields to other research fields in the form of collaborative research. Collaboration is essential in academia to obtain good publications and grants. Identifying and determining a potential collaborator is challenging. Hence, a recommendation system for collaboration would be very helpful. Fortunately, many publications on recommending collaborators are available.

3.1 Data

A total of 59 publications were identified using databases to develop, test and evaluate recommender systems. In 20 publications, the authors constructed their own datasets based on manually collected information, unique social platforms, or paid databases that are rarely used. In 39 out of the 59 publications, the authors used open-source databases. Of these 39 publications, 17 used data from the DBLP library to evaluate the developed collaborator recommendation systems.
The datasets needed for developing collaborator recommendations usually include 2 major subjects: (1) contexts and keywords based on researchers’ information; and (2) information networks based on academic relationships. Owing to the rapid development of online libraries and academic social networks, the extraction of information networks has become available. These datasets extracted relative information from different online sources and collected information to (i) construct profiles for researchers, (ii) retrieve keywords for constructing a structure, for specific domains and concepts, and (iii) extract weighted co-author graphs. In addition, data mining and social network analysis tools may also be used for clustering analysis and for identifying representatives of expert communities. The sources of datasets used in the 59 publications are listed in Table 5.
Table 5
Sources of datasets used for collaborator recommendation approaches
 
DBLP
ScholarMate (%)
ACMDL (%)
CiteSeerX (%)
Self-conducted (%)
Others (%)
Absolute
17
4
2
2
20
14
Relative
29
7
3
3
34
24
Among the reviewed studies, most researchers extracted information from these databases to construct training and evaluation datasets for their recommendations.
The DBLP dataset was used in 17 publications to evaluate the performance of the collaborator recommendation approaches. The DBLP computer science bibliography provides an open bibliographic list of information on major computer science fields and is widely used to construct co-authorship networks. In the co-authorship network graphs of DBLP bibliography, the nodes represent computer scientists and the edges represent a co-authorship incident.
ScholarMate, a social research management tool launched in 2007 was used in 4 publications. It has more than 70,000 research groups created by researchers for their own projects, collaboration, and communication. As a platform for presenting publication research outputs, ScholarMate automatically collects scholarly related information about researchers’ output from multiple online resources. These resources include multiple online databases such as Scopus, one of the largest abstract and citation databases for peer-reviewed literature, including scientific journals, books, and conference proceedings. ScholarMate uses aggregated data to provide researchers with recommendations on relevant opportunities based on their profiles.

3.2 Methods

Similar to other scholarly recommendation areas, research on methodologies to develop collaborator recommendations can be classified into the following categories: CBF, CF, and hybrid approaches. In this section, we introduce the approaches that are widely used in each recommendation class. In addition, we provide an overview of the most important aspects and techniques used in these fields.

3.2.1 Content-based filtering (CBF)

23 publications presented CBF methods for collaborator recommendation. CBF focuses on the semantic similarity between researchers’ personal features, such as their personal profiles, professional fields, and research interests. Natural language processing techniques (NLP) were used to extract keywords from the associated documents to define researchers’ professional fields and interests. A summary of publications on collaborator recommendation using CBF approaches is presented in Table 6.
Table 6
Overview of collaborator recommendation system using CBF
Citation
Data
Method
Evaluation
[89]
Self-conducted database
Knowledge Discovery in Databases Wu-Palmer’s algorithm
 
[90]
Self-conducted database
FLM (Fuzzy Linguistic Modeling)
Precision, Recall, F1
[91]
ScholarMate
Social-network analysis business intelligence bibliometric analysis
 
[87]
ScholarMate
SKL(symmetric Kullback–Leibler) divergence
AR, NDCG
[84]
Self-conducted database
Concept-based Relevance Discerning Methods
 
[92]
DBLP-AI, DBLP-DM
LDA, RWR (random work and recommendation)
Precision, Recall
[93]
Recruitment site
MAHS (Main Activity Hierarchical System) TF-IDF, SVM (Machine Learning)
Precision, Recall, F measure, Accuracy
[94]
Resource Allocation and Tracking System
Science graph relationship network structure
 
[95]
CiteSeerX, Wikipedia
Random forest
Consensus score
[96]
Wikipedia
DBPedia URLs, SPARQL queries (filter data)
 
[85]
FacetedDBLP Journal of Universal Computer Science
Template-based Information Extraction using Rule-based Learning
 
[97]
Self-conducted database
CKB (Context Knowledge Base)
Questionnaire
[98]
MEDLINE bibliographic database
SemRep (extract semantic) Neo4j Graph Database LBD (literature-based discovery)
 
[99]
Self-conducted database
BoW(Bag-of-Words) representation Jaccord Similarity TF-IDF, LDA model
Precision, Recall
[100]
Database from MAG
PPG (Priority to Popular Groups) MCS (Minimum Cost in Step) Word2vec and Doc2vec
Precision
[101]
Self-conducted database
Modurality measure Newman algorithm
Precision
[102]
AI dataset (Artificial Intelligence journal) NN (Neural Networks journal) FGCS (Future Generation Computer Systems)
SLN (Semantic Link Network)
Precision, Recall, F1
[103]
DBLP co-authorship data
Leverage attributes of collaborations combined score function
TOPSCORE, Recall, MRR
[104]
MEDLINE bibliographic database
SemRep, LBD process
 
[88]
APS1(American Physical Society)
LDA, CTPF, Network Embedding
Precision, Recall, F1, NDCG
[105]
CARS (Context-Aware Recommender System)
 
[106]
ACM dataset
Keyword aggregation, TPC
Accuracy
The Vector Space Model (VSM) is widely used in content-based recommendation methodologies. By expressing queries and documents as vectors in a multidimensional space, these vectors can be used to calculate the relevance or similarity. Yukawa et al. [84] proposed an expert recommendation system employing an extended vector space model that calculates document vectors for every target document for authors or organizations. It provides a list in the order of relevance between academic topics and researchers.
Topic clustering models using VSM have been widely used to profile fields of researchers using a list of keywords with a weighting schema. Using a keyword weighting model, Afzal and Maurer [85] implemented an automated approach for measuring expertise profiles in academia that incorporates multiple metrics for measuring the overall expertise level. Gollapalli et al. [86] proposed a scholarly content-based recommendation system by computing the similarity between researchers based on their personal profiles extracted from their publications and academic homepages.
Topic-based models have also been widely applied for document processing. The topic-based model introduces a topic layer between the researchers and extracted documents. For example, in a popular topic modeling approach, based on the latent Dirichlet allocation (LDA) method, each document is considered as a mixture of topics and each word in a document is considered randomly drawn from the document’s topics. Yang et al. [87] proposed a complementary collaborator recommendation approach to retrieve experts for research collaboration using an enhanced heuristic greedy algorithm with symmetric Kullback–Leibler divergence based on a probabilistic topic model. Kong et al. [88] applied a collaborator recommendation system by generating a recommendation list based on scholar vectors learned from researchers’ research interests extracted from documents based on topic modeling.
As mentioned previously in the literature recommendation section, content-based methods usually suffer from a high calculation cost because of the large number of analyzed documents and vector space. To minimize this cost and maximize the preference, Kong et al. [100] presented a scholarly collaborator recommendation method based on matching theory, which adopts multiple indicators extracted from associated documents to integrate the preference matrix among researchers. Some researchers have also modified weighted features and hybrid topic extraction methods with other factors to obtain higher accuracy. For example, Sun et al. [92] designed a career age-aware academic collaborator recommendation model consisting of authorship extraction from digital libraries, topic extraction based on published abstractions, and career age-aware random walk for measuring scholar similarity.

3.2.2 Collaborative filtering

Six publications presented a methodology based merely on collaborative filtering. Traditional CF-based recommendations aim to find the nearest neighbor in a social context similar to that of the targeted user. It selects the nearest neighbors based on the users’ rating similarities. When the users rate a set of items in a manner similar to that of a target user, the recommendation systems would define these nearest neighbors as groups with similar interests and recommend items that are favored by these groups but not discovered by the target user. To apply this method to collaborator recommendation, the system would recommend persons who have worked with a target author’s colleagues but not with the target author himself. Analogously, the system considers each author as an item to be rated and the scholarly activities such as writing a paper together as a rating activity, following the methodology of traditional CF-based recommendations. Researchers’ publication activities are transformed into rating actions, and the frequency of co-authored papers is considered a rating value. Using this criterion, a graph based on a scholarly social network was built. A summary of the collaborator recommendation paper using CF approaches is presented in Table 7.
Table 7
Overview of collaborator recommendation system using collaborative filtering
Citation
Data
Method
Evaluation
[107]
ACM DL, Scopus
HCI trust
 
[108]
DBLP
SVM link prediction
Precision, Recall, F1
[109]
DBLP
RWR(derive 3 matrices)
Precision, Recall Coverage Rate
[110]
DBLP Frequent Itemset Mining Implementations
Weighted Association Rule based on Sociability
Lift Measure
[111]
Self-conducted database
Social Network
Precision, Recall, F1, Hit rate
[112]
RWR, PageRank
 
Based on this co-authorship network transformed from researchers’ publication activities, several methods for link prediction and edge weighting have been utilized. Benchettara et al. [108] solved the problem of link prediction in co-authoring networks by using a topological dyadic supervised machine learning approach. Koh and Dobbie [110] proposed an academic collaborator recommendation approach that uses a co-authorship network with a weighted association rule approach using a weighting mechanism called sociability. Recommendation approaches based on this co-authorship network transformed from publication activities, where all nodes have the same functions, are called homogeneous network-based recommendation approaches.
The random walk model, which can define and measure the confidence of a recommendation, is popular in co-authorship network-based collaborator recommendations. Tong et al. [113] published Random Walk with Restart (RWR), a famous random walk model, which provides a good way to measure how closely related two nodes are in a graph. Applications and improvements based on RWR model are widely used for link prediction in co-authorship networks. Li et al. [109] proposed a collaboration recommendation approach based on a random walk model using three academic metrics as the basics through co-authorship relationship in a scholarly social network. Yang et al. [112] combined the RWR model with the PageRank method to propose a nearest-neighbor-based random walk algorithm for recommending collaborators.
Compared with content-based recommendation approaches, which involve only the published profiles of researchers without considering scholarly social networks, homogeneous network-based approaches apply CF methods based on social network technology to recommend collaborators. Lee et al. [111] compared ASN-based collaborator recommendations with metadata-based and hybrid recommendation methodologies, and suggested it as the best method. However, homogeneous network-based collaboration recommendations do not consider the contextual features of researchers. As a combination of these two methods, a hybrid collaboration recommendation system based on a heterogeneous network is popular in current collaboration recommendation approaches and applications.

3.2.3 Hybrid

Approaches to previously introduced recommendation classes may be combined with hybrid approaches. 37 of the reviewed papers applied approaches with hybrid characteristics. As an improvement, heterogeneous network-based recommendations overcome these limitations. Table 8 summarizes all collaborator recommendation papers that we collected using hybrid approaches.
Heterogeneous networks are networks in which two or more node classes are categorized by their functions. Based on the co-authorship network used in most homogeneous network-based approaches, heterogeneous network-based approaches incorporate more information into the network, such as the profiles of researchers, the results of topic modeling or clustering, and the citation relationship between researchers and their published papers. Xia et al. [52] presented MVCWalker, an innovative method based on RWR for recommending collaborators to academic researchers. Based on academic social networks, other factors such as co-author order, latest collaboration time, and times of collaboration were used to define link importance. Kong et al. [114] proposed a collaboration recommendation model that combines the features extracted from researchers’ publications using a topic clustering model and a scholar collaboration network using the RWR model to improve the recommendation quality. Kong et al. [115] proposed a collaboration recommendation model that considers scholars’ dynamic research interests and collaborators’ academic levels. By using the LDA model for topic clustering and fitting the dynamic transformation of interest, they combined the similarity and weighting factors in a co-authorship network to recommend collaborators with high prevalence. Xu et al. [116] designed a recommendation system to provide serendipitous scholarly collaborators that could learn the serendipity-biased vector representation of each node in the co-authorship network.
Table 8
Overview of collaborator recommendation system using hybrid methods
Citation
Data
Method
Evaluation
[117]
ScholarMate
HSN (heterogeneous social network) RAF (research analytical framework)
Precision, Recall, F
[116]
DBLP
RWR, serendipity-biased DeepWalk
Precision, Recall, Unexpectedness
[118]
16th ACM SIGKDD, DBLP
TF-IDF, k-means clustering algorithm
Questionnaire, Precision
[119]
Self-conducted database
Weight measure, Affin (Affiliation index)
Precision, Recall
[120]
DBLP
Weight measure, VSM (Vector Space Model)
Case study
[121]
 
Scent Score, Linkage generation
 
[122]
Self-conducted database
TF-IDF, SVM (collaboration quality)
Precision, Recall, Average Precision
[123]
DBLP, hep-th database
heterogeneous bibliographic network RWR, edge weighting
RBP (Rank-Baised Precision), RR (Reciprocal Rank)
[124]
CiteSeerX
Vertex Similarity Analysis Lexical Similarity Algorithm
User study, Kendall tau rank correlation coefficient
[125]
Self-conducted database
Community Detection Technique PSO (particle swarm optimization)
Louvain approach
[126]
SCHOLATE
Louvain method, friendship scores
 
[127]
NIH dataset, NSF dataset
Prototypical Collaborations, taxonomies
Accuracy
[128]
Self-conducted database
Gradient Value Iteration algorithm competition function
Precision, MRR, NDCG
[129]
DBLP
CORALS (Collaboration Recommendation on Academic Social Networks) Affin (weight represents researchers relation)]
Recall, Diversity, Coverage
[130]
Self-conducted database
MTML (Multitheoretical Multilevel analytic)
Precision, ARC
[114]
DBLP
Word2vec, RWR
Precision, Recall
[131]
Self-conducted database
SimRank, Random Walk, PANTHER
Precision, Accuracy
[132]
ScholarMate
mutual reinforcement principle semantic keyword matching query-sensitive quality analysis edge weighting
AR (Average Rating score), NDCG
[133]
Self-conducted database
SVM, tensor-based group recommendation
 
[134]
Self-conducted database
community detection algorithm PSO (Particle Swarm Optimization)
Modularity, Redundancy
[135]
Self-conducted database
Jaccard and Cosine Vertex Similarity
Accuracy
[52]
DBLP
MVCWalker (Innovative RWR)
Precision, Recall, Coverage Rate
[136]
USPTO
SVM-Rank
Precision, Recall, MAP (Mean Average Precision)
[115]
Self-conducted database
LDA (topic clustering), cosine similarity, RWR
Precision, Recall, F1
[137]
DBLP, ResearchGate
LDA, Euclidean distance cross-disciplinary recommendation
Precision
[138]
DBLP
TF-IDF, OTSU filter
Case study, interview
[139]
ISI database
TF-IDF, Adamic-Adar Similarity, SVM-Rank
Precision, Recall, F measure, MRR
[140]
Self-conducted database
Cross-Collaboration-Domain Data Preprocessing LDA, Hadoop Map-Reduce framework
Precision, Recall, F1
[141]
PubMed
LDA model
Manual evaluation
[142]
DBLP
RWR, link weight information
Precision, Recall, F1
[143]
Self-conducted database
Lucene data indexing system, T-Res
Precision, Recall (Manual evaluation)
[144]
DBLP
TBRSS (trend-based relation strength similarity)
Accuracy
[145]
Self-conducted database
ERGM (exponential random graph model), weighting
Precision, Recall, F1
[69]
Google Scholar
Chi-square test (estimate relevacy), scholar ranking
Chi-square test

4 Venue recommendation

In this section, we describe recommendation systems that can help researchers identify scientific research publishing opportunities. Recently, there has been an exponential increase in the number of journals and conferences researchers can select to submit their research. Recommendation systems can alleviate some of the cognitive burden that arises when choosing the right conference or journal for publishing a work. In the following sections, we describe academic venue recommendation systems for conferences and journals.

4.1 Conference recommendation

The dramatic rise in the number of conferences/journals has made it nearly impossible for researchers to keep track of academic conferences. While there is an argument to be made that researchers are familiar with the top conferences in their field, publishing to those conferences is also becoming increasingly difficult due to the increasing number of submissions. A conference recommendation system will be helpful in reducing the time and complexity requirement to find a conference that meets the needs of a given researcher. Thus, conference recommendation is a well-studied problem in the domain of data analysis, with many studies being conducted using a variety of methods such as citation analysis, social networks, and contextual information.
Table 9
Sources of data used for Conference Recommendation Systems
 
ACM
CORE
DBLP
WikiCFP
Custom
Other
Absolute
4
3
12
5
2
10
Relative
11.1%
8.3%
33.3%
13.9%
5.6%
27.8%

4.1.1 Data

All reviewed publications used databases to test their methodology. Two publications chose to construct a custom dataset based on the manual collection of information and one publication used a rare paid dataset. The remaining 20 studies used published open-source databases to create the datasets used in their testing and evaluation environments. Table 9 provides a summary of the frequencies with which published open-source databases were used.
DBLP was the most used database with 12 occurrences, followed by ACM Digital Library and WikiCFP, both with 5 occurrences. The unique databases utilized in conference recommendation systems are Microsoft Academic Search, CORE Conference Portal, Epinion, IEEE Digital Library, and Scigraph.
Microsoft Academic Search hosts over 27 million publications from over 16 million authors and is primarily used to extract metadata on authors, their publications, and their co-authors. The CORE Conference portal provides rankings for conferences primarily in Computer Science and related disciplines. The CORE Conference provides metadata on conference publishers and rankings. The Epinion is a general review website founded in 1999 and utilized to create networks of ‘trusted’ users. The IEEE Digital Library is a database used to access journal articles, conference proceedings, and other publications in computer science, electrical engineering, and electronics. A scigraph is a knowledge graph aggregating metadata from publications in Springer Nature and other sources. WikiCFP is a website that collates and publishes calls for papers.

4.1.2 Methods

There are three main subtypes of conference recommendation systems: content-based, collaborative, and hybrid systems. The following section provides an overview of the most popular methods used by each sub types.
Content-based filtering (CBF)
Only 1 of the 23 publications in conference recommendations utilized pure CBF. Using data from Microsoft Academic Search, Medvet et al. [146] created three disparate CBF systems seeking to reduce the input data required for accurate recommendations: (a) utilizing Cavnar-Trenkle text classification, (b) utilizing two-step latent Dirichlet allocation (LDA), and (c) utilizing LDA alongside topic clustering.
Cavnar-Trenkle classification is an n-gram-based text classification method. Given a set of conferences \(C = \{c_1, c_2, c_3, \ldots \}\), it is necessary to define for each conference \(c \in C\) a set of papers \(P = \{p_1, p_2, p_3, \ldots \}\) that were published in conference \(c\). It creates an n-gram profile for each conference \(c \in C\), using n-grams generated from each paper in the conference \(p \in P\). Finally, it computes the distance between the n-gram profiles of each conference \(c \in C\) and a publication of interest \(p_i\) and recommends an \(n\) number of conferences that optimize the minimum distance between \(c\) and \(p_i\).
Collaborative filtering
Among 18 publications employed collaborative filtering strategies out of the 23 collected publications, the most popular filtering approach was based on around generating and analyzing a variety of networks on different types of metadata including citations, co-authorship, references, social proximity, etc.
Asabere and Acakpovi [147, 148] generated a user-based social context aware filter with breadth-first search (BFS) and depth-first search (DFS) on a knowledge graph created by computing the Social Ties between users, and added geographical, computing, social, and time contexts. Social Ties were generated by computing the network centrality based on the number of links between users and presenters at a given conference.
Other types of network-based collaborative filters include a co-author-based network that assigns weights with regard to venues where one’s collaborators have published previously [149, 150], a broader metadata-based network that utilizes one or more distinct characteristics to assign weights to conferences (i.e., citations, co-authors, co-activity, co-interests, colleagues, interests, location, references, etc.) [146, 151154], and RWR-based methods [155, 156].
Kucuktunc et al. [155] iterated the traditional RWR model by adding a directionality parameter \((\kappa )\), which is used to chronologically calibrate the recommendations as either recent or traditional. The list of publications that used CF for conference recommendations is presented in Table 10.
Table 10
Overview of conference recommendation systems using collaborative filtering
Citation
Data
Method
Evaluation
[147]
Custom dataset from students at Accra Technical University (Ghana)
Breadth First Search (BFS), Social Context
Precision, Recall
[148]
Custom dataset from students at Accra Technical University (Ghana)
Breadth First Search (BFS), Depth First Search (DFS), Social Context
Coverage, Recall, Precision, F1
[149]
dblp: computer science bibliography
Co-Authorship Network Community Similarity Index, kNN
Rand Index, F1
[150]
ACM Digital Library, Microsoft Academic Search
Author Network Analysis
Accuracy, Precision
[152]
ACM Digital Library
Social Network, kNN
Serendipity, Accuracy, Precision, Recall
[152]
dblp: computer science bibliography, wikicfp, CORE Conference Portal
Network-based ranking
Precision, Recall, F1
[152]
CiteULike
Stochastic Gradient Descent (SGD), Singular Value Decomposition (SVD++)
Precision, Recall, DCG, nDCG, MAE, RMSE
[157]
dblp: computer science bibliography, CiteSeerX
Direction Aware Random Walk with Restart (RWR)
N/A
[153]
IEEE digital library
Citation Network
Precision, Recall, F1
[158]
dblp: computer science bibliography, CORE Conference Portal
Current Personal Academic Venure Rating (CPAVR)
Precision, Recall, nDCG
[159]
dblp: computer science bibliography
Network-based clustering, Modularity
Precision, Recall
[154]
ACM Digital Library, Microsoft Academic Search
Social Network
Precision
[160]
dblp: computer science bibliography
Random Walk with Restart (RWR)
Precision, Recall, F1, Average Venue Quality
[156]
dblp: computer science bibliography
Random Walk with Restart (RWR)
Precision, Recall, F1
[161]
International Conference on Web-Based Learning 2012
Social Context
Precision, Recall, F1
[162]
dblp: computer science bibliography, Epinion
Social Network
Precision, Recall, MAE
Hybrid
A total of 6 publications used hybrid filtering strategies out of the total 23 publications. The most common hybrid strategy i to amalgamate standard topic-based content filtering with network-based collaborative filters. Table 11 summarizes publications that used hybrid filtering methods for conference recommendations.
Table 11
Overview of conference recommendation systems using hybrid filtering
Citation
Data
Method
Evaluation
[163]
dblp: computer science bibliography
kNN, Paper-Paper Peer Network (PPPN) Venue-Venue Peer Network (VVPN)
Accuracy, MRR, F1, Precision, nDCG, Average venue quality, Diversity, Stability
[164]
dblp: computer science bibliography, wikicfp, CORE Conference Portal
Citation Network
Precision
[165]
ACM Digital Library, CiteSeer Digital Library
Memory-based CF, Stylometric Feature LDA
Accuracy, MRR
[166]
Scigraph, wikicfp
TF-IDF, Singular Value Decomposition (SVD), Nonnegative Matrix Factorization (NMF), Doc2Vec Convolutional Neural Network (CNN)
Recall, MAP
[167]
dblp: computer science bibliography, wikicfp
Co-author Network, Word2Vec, Doc2Vec
Precision, Recall, F1
[168]
dblp: computer science bibliography, wikicfp
Interaction Strength, Word2Vec, Doc2Vec
Precision, Recall, F2

4.2 Journal recommendation

As of April 14, 2020, the Master Journal List of the Web of Science Group contains 24,748 peer-reviewed journals for publishing articles from different publishing houses. The authors may face difficulties in finding suitable journals for their manuscripts. In many cases, a manuscript submitted to a journal is rejected because it is not within the scope of that journal. Finding suitable journals for a manuscript is the most important step in publishing articles. A journal recommendation system may reduce the burden of authors by selecting appropriate journals to publish as well as reducing the burden of editors from rejecting manuscripts that do not align with the scopes of the journals. Many publishing companies have their own journal finders that can help authors find suitable journals for their manuscripts.
In this section, we review all available journal recommendation systems by analyzing the methods used and their journal coverage. There are a total of ten journal recommendation systems, but we found only four papers describing details corresponding to their recommendation procedures. A detailed list of journal recommenders with their methods and datasets is provided in Table 12. Most journal recommenders were developed for different publishing houses. Most journal recommenders contain journals from multiple domains except eTBLAST, Jane, and SJFinder, where the journals are from the biomedical and life science domains.
Table 12
Detailed overview of journal recommendation systems
Citation
Data sources
Method
[169]
MEDLINE Journals
Similarity score
[170]
MEDLINE Journals
TF-IDF K-nearest Neighbors (kNN)
[171]
MEDLINE Journals
NA
[172]
Elsevier Journals
Okapi BM25
[173]
IEEE Publications
NA
[174]
Springer Journals
NA
[39]
Journals from Clarivate Analytics Web of Science Journal Citation Reports
kNN, SVM
[175]
Wiley Journals
NA
[176]
Edanz Researcher Services
NA
[177]
Research Square
NA
TF-IDF, kNN, and BM25 were used to find similar journals using the keywords provided keywords. Kang et al. [172] used a classification model (using kNN and SVM) to identify the suitable journals. Errami et al. [169] used the similarity between provided keywords and journal keywords.
Rollins et al. [39] evaluated a journal recommender by using feedback from real users. Kang et al. [172] evaluated a system based on previously published articles. If the top three or top ten recommended journals contained the journal in which the input paper was published, then this would be counted as a correct recommendation; otherwise, it would be counted as a false recommendation. Similarly, eTBLAST [169] and Jane [170] were evaluated using previously published articles.
Deep learning-based recommenders perform better than traditional matching-based NLP or machine learning algorithms. However, none of the existing systems available for journal recommendations uses deep learning algorithms. One of the future goals may be the implementation of different deep learning algorithms. In addition to these publication houses, developing journal recommenders for different publication repositories (DBLP, arxiv, etc.) may be another future task.

5 Reviewer recommendation

In this section, we describe paper, journal, and grant reviewer recommendation systems that rae available in literature. With the rapid increase in publishable research materials, pressure to find reviewers is overwhelming for conference organizers/journal editors. Similarly, it overwhelms program directors in finding appropriate reviewers for grants.
In the case of conferences, authors normally choose some research fields during the submission. The organizing committee of a conference typically has a set of researchers as reviewers who have been assigned from the same set of fields. Based on the matching of the fields, the reviewers were assigned papers. However, the research fields are broad and may not exactly match those of the reviewer. In the case of journals, authors need to suggest that reviewers or editors need to find reviewers for manuscript reviewing. Whereas, for reviewing grant proposals, program directors are responsible for finding suitable reviewers for reviewing proposals.
The problem of finding reviewers can be solved by a reviewer recommendation system, which the system can recommend reviewers based on the similarity of contents or past experiences. The reviewer recommendation problem is known as the reviewer assignment problem. We searched for publications related to both reviewer recommendations and assignments.

5.1 Data

A total of 67 reviewed publications were retrieved using Google searches, and 36 publications were included in the final analysis after title, abstract, and full-text screening. Among these 36 publications, 23 conducted experiments to supplement the theoretical contents, and the sources of the datasets used are listed in Table 13.
Table 13
Sources of datasets used for reviewer recommendation
 
NIPS
DBLP
IEEE
Others
Absolute
4
3
4
12
Relative
17%
14 %
17%
52%

5.2 Methods

Broadly, there are three major categories in terms of techniques used, one is based on information retrieval (IR), another one on optimization where the recommendation is viewed as an enhanced version of the generalized assignment problem (GAP), and the third includes techniques that fall between the first two categories.

5.2.1 Informational retrieval (IR)-based

IR-based studies generally focus on calculating matching degrees between reviewers and submissions.
Hettich and Pazzani [178] discussed a prototype application in the U.S. National Science Foundation (NSF) to assist program directors in identifying reviewers for proposals, named Revaid, which uses TF-IDF vectors for calculating proposal topics and reviewer expertise, and defined a measure called the Sum of Residual Term Weight (SRTW) for the assignment of reviewers. Yang et al. [179] constructed a knowledge base of expert domains extracted from the web and used a probability model for domain classification to compute the relatedness between experts and proposals for ranking expertise. Ferilli et al. [180] used Latent Semantic Indexing (LSI) to extract the paper topic and expertise of reviewers from publications available online, followed by Global Review Assignment Processing Engine (GRAPE), a rule-based expert system for the actual assignment of reviewers.
Serdyukov et al. [181] formulated a search for an expert to absorb a random walk in a document-candidate graph. A recommendation was made on reviewer candidate nodes with high probabilities after an infinite number of transitions in the graph, with the assumption that expertise is proportional to probability. Yunhong et al. [182] used LDA for proposal and expertise topic extraction, and defined a weighted sum of varied index scores for ranking reviewers for each proposal. Peng et al. [183] built a time-aware reviewer’s personal profile using LDA to represent the expertise of reviewers, then a weighted average of matching degree by topic vectors and TF-IDF of the reviewer and submitted papers were used for recommendation. Medakene et al. [184] used pedagogical expertise in addition to the research expertise of the reviewers with LDA in building reviewers’ profiles and used a weighted sum of the topic similarity and the reference similarity for assigning reviewers to papers. Rosen-Zvi et al. [185] proposed an Author-Topic Model (ATM) that extends the LDA to include authorship information. Later, Jin et al. [186] proposed an Author-Subject-Topic (AST) model, with the addition of a ‘subject’ layer that supervises the generation of hierarchical topics and sharing of subjects among authors for reviewer recommendations. Alkazemi [187] developed PRATO (Proposals Reviewers Automated Taxonomy-based Organization) that first sorted proposals and reviewers into categorized tracks as defined by a tree of hierarchical research domains, and then assigned the reviewers based on the matching of tracks using Jaccard similarity scores. Cagliero et al. [188] proposed an association rule-based methodology (Weighted Association Rules, WAR) to recommend additional external reviewers.
Ishag et al. [189] modeled citation data of published papers as a heterogeneous academic network, integrating authors’ h-index and papers’ citation counts, proposed a quantification to account for author diversity, and formulated two types of target patterns, namely, researcher-general topic patterns (RSP) and researcher-specific topic patterns (RSP) for searching reviewers.
Recently deep learning techniques have been incorporated into feature representations. Zhao et al. [190] used word embeddings to represent the contents of both the papers and reviewers. Then, the Word Mover’s distance (WMD) method was used to measure the minimum distances between paper and reviewer vectors. Finally, the Constructive Covering Algorithm (CCA) was used to classify reviewer labels for recommending reviewers. Anjum et al. [191] proposed a common topic model (PaRe) that jointly models topics to a submission and a reviewer profile based on word embedding. Zhang et al. [192] proposed a two-level bidirectional gated recurrent unit with an attention mechanism (Hiepar-MLC) to represent the semantic information of reviewers and papers and used a simple multilabel-based reviewer assignment strategy (MLBRA) to match the most similar multilabeled reviewer to a particular multilabeled paper.
Co-authorship and reviewer preferences were incorporated into collaborative filtering application. Li and Watanabe [193] designed a scale-free network combining preferences and a topic-based approach that considers both reviewer preferences and the relevance of reviewers and submitted papers to measure the final matching degrees between reviewers and submitted papers. Xu and Du [194] designed a three-layer network that combines a social network, semantic concept analysis and citation analysis, and proposed a particle swarm algorithm to recommend reviewers for submissions. Maleszka et al. [195] used a modular approach to determine a grouping of reviewers that consisted of a keyword-based module, a social graph module and a linguistic module. A summary of all IR-based reviewer recommendations can be found in Table 14.
Table 14
Overview of reviewer recommendation systems, IR-based
Citation
Data
Method
Evaluation
[178]
U.S.NSF
TF-IDF
SRTW
[179]
National Science Council, Taiwan
Knowledge database, probability model
P@50, F-measure
[180]
IEA/AIE 2005
LSI, GRAPE
Accuracy
[181]
W3C2006, CSIRO2007
Absorbing random walk
MAP, MRR, P@5
[182]
NA
LDA, index score
NA
[183]
FCS journal
LDA, TF-IDF
Manual
[184]
ICA2IT19
LDA
MSE, RMSE, MAE, MAPE
[186]
WANFANG
AST
Perplexity, KL divergence, topic convergence
[187]
Umm Al-Qura University funding
Taxonomy
Manual
[188]
DBLP
WAR
Confidence
[189]
Clarivate Analytics’ Web-of Science
Pattern mining
Coverage
[190]
Twitter, OHSUMED, 3-class MOV, 4-class MOV, Synthetic data
WMD-CC
Accuracy, P, R
[191]
NIPS
Word-embeddings, topic model
Relevance, P@5, P@10, manual
[192]
ACM Digital
Hiepar-MLC
R@k, NDCG@k, accuracy
[193]
CiteSeerX, DBLP
Scale-free network
Manual
[194]
NA
network analysis, particle swarm
NA
[195]
DBLP
hybrid
NA

5.2.2 Optimization-based

Optimization-based reviewer recommendations focus more on theory, modeling an algorithm of assignments under multiple constraints such as reviewer workload, authority, diversity, and conflict of interest (COI).
Sun et al. [196] proposed a hybrid of knowledge and decision models to solve the proposal-reviewer assignment problem under constraints. Kolasa and Krol [197] compared artificial intelligence methods for reviewer-paper assignment problems, namely, genetic algorithms (GA), ant colony optimization (ACO), tabu search (TS), hybrid ACO-GA and GA-TS, in terms of time efficiency and accuracy. Chen et al. [198] employed a two-stage genetic algorithm to solve the project-reviewer assignment problem. In the first stage, reviewer were assigned by taking into consideration their respective preferences, and then, in the second stage, review venues were arranged in a way that allows the minimum times of change for reviewers.
Das and Gocken [199] used fuzzy linear programming to solve the reviewer assignment problem by maximizing the matching degree between expert sets and grouped proposals, under crisp constraints. Tayal et al. [200] used type-2 fuzzy sets to represent reviewers’ expertise in different domains, and proposed using the fuzzy equality operator to calculate equality between the set representing the expertise levels of a reviewer and the set representing the keywords of a submitted proposal, and optimized the assignment under various constraints.
Wang et al. [201] formulated the problem into a multiobjective mixed integer programming model that considers Direct Matching Score (DMS) between manuscripts and reviewer, Manuscript Diversity (MD), and Reviewer Diversity (RD), and proposed a two-phased stochastic-biased greedy algorithm (TPGA) to solve the problem. Long et al. [202] studied the paper-reviewer assignment problem from the perspective of goodness and fairness, where they proposed maximizing topic coverage and avoiding the conflict of interest (COI) for the optimization objectives. They also designed an approximation method that provides 1/3 approximation.
Kou et al. [203] modeled reviewers’ published papers as a set of topics and performed weighted-coverage group-based assignments of reviewers to papers. They also proposed a greedy algorithm that achieves a 1/2 approximation ratio compared with the exact solution. Kou et al. [204] developed a system that automatically extracts the profiles of reviewers and submissions in the form of topic vectors using the author-topic model (ATM) and assigns reviewers to papers based on the weighted coverage of paper topics.
Stelmakh et al. [205] designed an algorithm, PeerReview4All, which is based on an incremental max-flow procedure to maximize the review quality of the most disadvantaged papers (fairness objective) and to ensure the correct recovery of the papers that should be accepted (accuracy objective). Yesilcimen and Yildirim [206] proposed an alternative mixed integer programming formulation for the reviewer assignment problem whose size grows polynomially as a function of the input size. A summary of all the optimization-based reviewer recommendation papers is presented in Table 15.
Table 15
Overview of reviewer recommendation systems, optimization-based
Citation
Method
[196]
Knowledge and decision model
[197]
GA, ACO, TS, ACO-GA and GA-TS
[198]
Two-stage genetic algorithm
[199]
Fuzzy linear programming
[200]
Type-2 fuzzy sets
[201]
Mixed integer programming, TPGA
[202]
MaxTCPRA, greedy algorithm
[203]
WGRAP, greedy algorithm
[204]
WGRAP, greedy algorithm
[205]
Incremental max-flow procedure
[206]
Mixed integer programming

5.2.3 Hybrid

Finally, we see hybrid of both methods in other studies. Conry et al. [207] modeled reviewer-paper preferences using CF of ratings, latent factors, paper-to-paper content similarity, and reviewer-to-reviewer content similarity and optimized the paper assignment under global conference constraints; therefore, the assignment was transformedinto a linear programming problem. Tang et al. [208] formulated the problem of expertise matching to a convex cost flow problem which turned the recommendation into an optimization problem under constraints, and also used online matching algorithms to support user feedback to the system.
As one of the most popular systems for conference reviewer assignment, Charlin and Zemel [209] addressed the assignment by first using a language model and LDA for learning reviewer expertise and submission topics, followed by a linear regression for initial predictions of reviewers’ preferences, combined with reviewers’ elicitation scores (reviewers’ disinterest or interests) in specific papers for the final recommendation, and optimized the objective functions under constraints. Liu et al. [210] constructed a graph network for reviewers and query papers using LDA to establish edge weights, and used the Random Walk with Restart (RWR) model on a graph network with sparsity constraints to recommend reviewers with the highest probabilities incorporating aspects of expertise, authority and diversity. Liu et al. [211] combined the heuristic knowledge of expert assignment and techniques of operations research, in which different aspects are involved, such as reviewer expertise, title and project experience. A multiobjective optimization problem was formulated to maximize the total expertise level of the recommended experts and avoid conflicts between reviewers and authors. Ogunleye et al. [212] used a mixture of TF-IDF, LSI, LDA and word2vec to represent the semantic similarity between submissions and reviewers’ publications and then used integer linear programming to match submissions with the most appropriate reviewers. Jin et al. [213] extracted topic distributions of reviewers’ publications and submissions using the Author-Topic Model (ATM) and Expectation Maximization (EM), then formulated the problem of reviewer assignment into an integer linear programming problem that takes into consideration the topic relevance, interest trend of a reviewer candidate, and authority of candidates. A summary of the reviewer recommendation papers is presented in Table 16.
Table 16
Detailed overview of reviewer recommendation systems, other
Citation
Data
Method
Evaluation
[207]
ICDM2007
Collaborative filtering, latent factor, linear programming
Manual
[208]
KDD08, KDD09, ICDM09, graduate CS courses@CMU, UIUC, Stanford and MIT
Topic model, online matching, convex cost flow
Matching score, expertise variance, coverage, confidence, P
[209]
NIPS10, ICML12
Language model, LDA, collaborative filtering, bipartite matching
NDCG@5, NDCG@10
[210]
UIUC, NIPS
LDA, graph network, RWR
P@1-10, matching score, authority, KL divergence
[211]
Simulation
Heuristic, decision model
Balance, rationality
[212]
NIPS
TF-IDF, LSI, LDA, word2vec, integer linear programming
NA
[213]
WANFANG, ArnetMiner
ATM, EM, integer linear programming
Distance@k, Interest@k, Authority@k

6 Other scholarly recommendation

6.1 Dataset recommendation

In the Big Data era, extensive data have been generated for scientific discoveries. However, storing, accessing, analyzing, and sharing a vast amount of data is becoming a major challenge and bottleneck for scientific research. Furthermore, making a large amount of public scientific data findable, accessible, interoperable, and reusable (FAIR) is challenging. Many repositories and knowledge bases have been established to facilitate data-sharing. Most of these repositories are domain-specific, and none of them recommend datasets to researchers or users. Furthermore, over the past two decades, there has been an exponential increase in the number of datasets added to these dataset repositories. Researchers must visit each repository to find suitable datasets for their research. In this case, a dataset recommender would be helpful to researchers. This can save time and the visibility of the dataset.
A dataset recommender is not commonly used. However, dataset retrieval is a popular information retrieval task. Many dataset retrieval systems exist for general datasets as well as biomedical datasets. Google’s Dataset Search2 is a popular search engine for datasets from different domains. DataMed3 is another dataset search engine specific to biomedical domain datasets that combines biomedical repositories and enhances query searching using advanced natural language processing (NLP) techniques [214, 215]. DataMed indexes and provides the functionality to search diverse categories of biomedical datasets [215]. The research focus of DataMed is to retrieve datasets using a focused query. Search engines such as DataMed or Google Dataset Search are helpful when the user knows the type of dataset to search for, but determining the user intent of web searches is a difficult problem because of the sparse data available concerning the searcher [216].
A few experiments have been performed on data linking where similar datasets can be clustered together using different semantic features. Data linking or identifying/clustering similar datasets has received relatively less attention in research on recommendation systems. Specifically, only a few papers [217219] have been published on this topic. Ellefi et al. [218] defined dataset recommendation as the problem of computing a rank score for each set of target datasets (\(D_T\)) such that the rank score indicates the relatedness of \(D_T\) to a given source dataset (\(D_S\)). The rank scores provide information on the likelihood of a \(D_T\) containing linking candidates for \(D_S\). Similarly, Srivastava [219] proposed a dataset recommendation system by first creating similarity-based dataset networks, and then recommending connected datasets to users for each searched dataset. This recommendation approach is difficult to implement because of the cold start problem. Here, the cold start problem refers to the user’s initial dataset selection, where the user has no idea what dataset to select/search for. If the user lands on an incorrect dataset, the system will always recommend the wrong dataset to the user.
Patra et al. [220, 221] and Zhu et al. [222] proposed a dataset recommendation system for the Gene Expression Omnibus (GEO) based on the publications of researchers. This system recommends GEO datasets using classification and similarity-based approaches. Initially, they identified the research areas from the publications of researchers using the Dirichlet Process Mixture Model (DPMM) and recommended datasets for each cluster. The classification-based approach uses several machine and deep learning algorithms, whereas the similarity-based approach uses cosine similarity between publications and datasets. This is the first study on dataset recommendations.

6.2 Grants/funding recommendation

Obtaining grants or funding for research is essential in academic settings. Grants help researchers in many ways during their careers. Finding appropriate funding opportunities is an important step in this process, and there are multiple grant opportunities available that a researcher may not be aware of. No universal repositories available for funding announcements worldwide. However, few repositories are available for funding announcements in the United States of America, such as, grants.gov, NIH, and SPIN. These websites host many funding opportunities in various areas. Furthermore, multiple new opportunities are available daily. Thus, it is difficult to find suitable opportunities for researchers. A recommendation system for funding announcements will help researchers find appropriate research funding opportunities. Recently, Zhu et al. [223] developed a grant recommendation system for NIH grants based on researchers’ publications. They developed the recommendation as a classification using Bidirectional Encoder Representations from Transformers (BERT) to capture intrinsic, nonlinear relationships between researchers’ publications and grant announcements. Internal and external evaluations were performed to assess the usefulness of the system. Two publications are available on developing a search engine to find Japanese research announcements [224, 225]. The titles of these papers suggest recommendation systems; however, the full text reveals that these publications describe the search for funding announcements in Japan. These publications describe a keyword-based search engine using TF-IDF and association rules.

7 Conclusion and future directions

Numerous recommendation systems have been developed since the beginning of the twenty-first century. In this comprehensive survey, we discussed all common types of scholarly recommendation systems outlining the data resources, applied methodologies and evaluation metrics.
Recommendation systems for the literature are still the most focused areas for scholarly recommendations. With the increasing need to collaborate with other researchers and publish research results, recommenders for collaborators and reviewers are becoming popular. Compared with these popular research targets, published recommendation systems for conferences/journals, datasets and grants are relatively less common.
To develop recommendation systems and evaluate their results, researchers commonly construct datasets using information extracted from multiple resources. Published open-source databases, such as DBLP, ACM and IEEE Digital Libraries, are the most commonly used sources for multiple types of recommendation systems. Some web services containing scholarly related information about its users, or social tags added by researchers, such as, ScholarMate and CiteULike, were also used to develop recommendation systems.
Content-based filtering (CBF) is the most commonly used approach for recommendation systems. Owing to the requirement of processing context information, measuring keywords and searching topics of academic resources, most recommendation systems were built based on CBF. It is difficult to consider the popularity and rating of objects in traditional CBF. To overcome these limitations, CF has been used to solve the problem, especially when recommending items based on researchers’ interests and profiles. With the rapid development of recommendation systems and the need to overcome the high calculation costs, hybrid methods combining CBF and CF have been used by several recommenders to achieve better performance.
Based on the information gathered for the survey, we provide the following suggestions for better recommendation developments:
1.
To Improve System Performance And Avoid The Limitations Of Existing Methodologies, A Combination Of Different Methods, Or Incorporating The Characteristics Of One Method Into Another May Be Helpful.
 
2.
Evaluating The Efficiency Of The Recommendation System, Including Both Decision Support Metrics Such As Precision And Recall, And Rank-Aware Evaluation Metrics, Including Mrr And Ndcg, Will Make The Offline Evaluation More Applicable.
 
3.
For Future Directions Of Scholarly Recommendation Research, We Suggest That Researchers Apply Recommendation Methodologies In Areas Less Studied, Such As Datasets And Grant Recommendations. We Believe That Researchers Would Benefit Significantly From These Areas From A Practical Perspective.
 
Based on extensive research, our literature review provides a comprehensive summary of scholarly recommendation systems from various perspectives. For researchers interested in developing future recommendation systems, this would be an efficient overview and guide.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Appendix A: Supplementary material

Table 17
List of keywords used to search publications for different recommendation systems
Types
Keywords
Literature recommendation
Scholarly recommendation, scholarly paper recommendation research paper recommendation, recommending academic paper recommender system, research paper recommender publications recommendation, scientific publications recommendation system scientific literature recommender
Collaborator recommendation
Collaborator recommendation, collaboration recommendation collaboration discovery, scholarly collaborator recommendation expert recommendation system, scientific collaborator recommender academic social networks recommendations
Reviewer recommendation
Reviewer recommendation, reviewer assignment reviewer matching, expert matching expert finding, expert recommendation
Conference recommendation
Conference venue recommendation journal venue recommendation
Others
Dataset recommendation grant recommendation
Table 18
Table of acronyms for scholarly recommendation researches
Acronyms
Definition
ACM
Association for Computing Machinery Digital Library
DBLP
The DBLP Computer Science Bibliography
CBF
Content-based filtering
TF-IDF
Term frequency and inverse document frequency
SVM
Support Vector Machine
P@n
Precision at position n
MAP
Mean Average Precision
MRR
Mean Reciprocal Rank
NDCG
Normalized Discounted Cumulative Gain
CF
Collaborative Filtering
kNN
k Nearest Neighbors
LDA
Latent Dirichlet Allocation
LSI
Latent Semantic Index
SVD
Singular Value Decomposition
RWR
Random Walk with Restart
Literatur
1.
Zurück zum Zitat Bollacker KD, Lawrence S, Giles CL (1998) Citeseer: an autonomous web agent for automatic retrieval and identification of interesting publications. Springer, Berlin, pp 116–123 Bollacker KD, Lawrence S, Giles CL (1998) Citeseer: an autonomous web agent for automatic retrieval and identification of interesting publications. Springer, Berlin, pp 116–123
2.
Zurück zum Zitat Das D, Sahoo L, Datta S (2017) A survey on recommendation system. Int J Comput Appl 7:160 Das D, Sahoo L, Datta S (2017) A survey on recommendation system. Int J Comput Appl 7:160
3.
Zurück zum Zitat Sugiyama K, Kan M-Y (2013) Exploiting potential citation papers in scholarly paper recommendation. In: Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries, pp 153–162 Sugiyama K, Kan M-Y (2013) Exploiting potential citation papers in scholarly paper recommendation. In: Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries, pp 153–162
4.
Zurück zum Zitat Petricek V, Cox IJ, Han H, Councill IG, Giles CL (2005) Modeling the author bias between two on-line computer science citation databases. In: Special interest tracks and posters of the 14th international conference on World Wide Web, pp 1062–1063 Petricek V, Cox IJ, Han H, Councill IG, Giles CL (2005) Modeling the author bias between two on-line computer science citation databases. In: Special interest tracks and posters of the 14th international conference on World Wide Web, pp 1062–1063
5.
Zurück zum Zitat Haruna K, Akmar Ismail M, Damiasih D, Sutopo J, Herawan T (2017) A collaborative approach for research paper recommender system. PLoS ONE 12(10):0184516 Haruna K, Akmar Ismail M, Damiasih D, Sutopo J, Herawan T (2017) A collaborative approach for research paper recommender system. PLoS ONE 12(10):0184516
6.
Zurück zum Zitat Philip S, Shola P, Ovye A (2014) Application of content-based approach in research paper recommendation system for a digital library. Int J Adv Comput Sci Appl 10:5 Philip S, Shola P, Ovye A (2014) Application of content-based approach in research paper recommendation system for a digital library. Int J Adv Comput Sci Appl 10:5
7.
Zurück zum Zitat Peis E, del Castillo JM, Delgado-López JA (2008) Semantic recommender systems. Analysis of the state of the topic. Hipertext Net 6(2008):1–5 Peis E, del Castillo JM, Delgado-López JA (2008) Semantic recommender systems. Analysis of the state of the topic. Hipertext Net 6(2008):1–5
8.
Zurück zum Zitat Neethukrishnan K, Swaraj K (2017) Ontology based research paper recommendation using personal ontology similarity method. In: 2017 second international conference on electrical, computer and communication technologies (ICECCT), pp 1–4. IEEE Neethukrishnan K, Swaraj K (2017) Ontology based research paper recommendation using personal ontology similarity method. In: 2017 second international conference on electrical, computer and communication technologies (ICECCT), pp 1–4. IEEE
9.
Zurück zum Zitat Hong K, Jeon H, Jeon C (2012) Userprofile-based personalized research paper recommendation system. In: 2012 8th international conference on computing and networking technology (INC, ICCIS and ICMIC), pp 134–138 . IEEE Hong K, Jeon H, Jeon C (2012) Userprofile-based personalized research paper recommendation system. In: 2012 8th international conference on computing and networking technology (INC, ICCIS and ICMIC), pp 134–138 . IEEE
10.
Zurück zum Zitat Ghosal T, Chakraborty A, Sonam R, Ekbal A, Saha S, Bhattacharyya P (2019) Incorporating full text and bibliographic features to improve scholarly journal recommendation. In: 2019 ACM/IEEE joint conference on digital libraries (JCDL), pp 374–375 . IEEE Ghosal T, Chakraborty A, Sonam R, Ekbal A, Saha S, Bhattacharyya P (2019) Incorporating full text and bibliographic features to improve scholarly journal recommendation. In: 2019 ACM/IEEE joint conference on digital libraries (JCDL), pp 374–375 . IEEE
11.
Zurück zum Zitat Lofty M, Salama A, El-Ghareeb H, El-dosuky M (2014) Subject recommendation using ontology for computer science ACM curricula. Int J Inf Sci Intell Syst 1:3 Lofty M, Salama A, El-Ghareeb H, El-dosuky M (2014) Subject recommendation using ontology for computer science ACM curricula. Int J Inf Sci Intell Syst 1:3
12.
Zurück zum Zitat Le Anh V, Hai VH, Tran HN, Jung JJ (2014) Scirecsys: a recommendation system for scientific publication by discovering keyword relationships. In: International conference on computational collective intelligence, pp 72–82 . Springer Le Anh V, Hai VH, Tran HN, Jung JJ (2014) Scirecsys: a recommendation system for scientific publication by discovering keyword relationships. In: International conference on computational collective intelligence, pp 72–82 . Springer
13.
Zurück zum Zitat Maake BM, Ojo SO, Zuva T (2019) Information processing in research paper recommender system classes. In: Research data access and management in modern libraries, pp 90–118 . IGI Global Maake BM, Ojo SO, Zuva T (2019) Information processing in research paper recommender system classes. In: Research data access and management in modern libraries, pp 90–118 . IGI Global
14.
Zurück zum Zitat Shimbo M, Ito T, Matsumoto Y (2007) Evaluation of kernel-based link analysis measures on research paper recommendation. In: Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries, pp 354–355 Shimbo M, Ito T, Matsumoto Y (2007) Evaluation of kernel-based link analysis measures on research paper recommendation. In: Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries, pp 354–355
15.
Zurück zum Zitat Achakulvisut T, Acuna DE, Ruangrong T, Kording K (2016) Science concierge: a fast content-based recommendation system for scientific publications. PLoS ONE 11(7):0158423 Achakulvisut T, Acuna DE, Ruangrong T, Kording K (2016) Science concierge: a fast content-based recommendation system for scientific publications. PLoS ONE 11(7):0158423
16.
Zurück zum Zitat Habib R, Afzal MT (2017) Paper recommendation using citation proximity in bibliographic coupling. Turkish J Electr Eng Comput Sci 25(4):2708–2718 Habib R, Afzal MT (2017) Paper recommendation using citation proximity in bibliographic coupling. Turkish J Electr Eng Comput Sci 25(4):2708–2718
17.
Zurück zum Zitat Beel J, Langer S, Genzmehr M, Nürnberger A (2013) Introducing docear’s research paper recommender system. In: Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries, pp 459–460 Beel J, Langer S, Genzmehr M, Nürnberger A (2013) Introducing docear’s research paper recommender system. In: Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries, pp 459–460
18.
Zurück zum Zitat Uchiyama K, Nanba H, Aizawa A, Sagara T (2011) Osusume: cross-lingual recommender system for research papers. In: Proceedings of the 2011 workshop on context-awareness in retrieval and recommendation, pp 39–42 Uchiyama K, Nanba H, Aizawa A, Sagara T (2011) Osusume: cross-lingual recommender system for research papers. In: Proceedings of the 2011 workshop on context-awareness in retrieval and recommendation, pp 39–42
19.
Zurück zum Zitat Tang T (2006) Active, context-dependent, data-centered techniques for e-learning: a case study of a research paper recommender system. Data Min E-Learn 4:97–111 Tang T (2006) Active, context-dependent, data-centered techniques for e-learning: a case study of a research paper recommender system. Data Min E-Learn 4:97–111
20.
Zurück zum Zitat Hong K, Jeon H, Jeon C (2013) Personalized research paper recommendation system using keyword extraction based on userprofile. J Converg Inf Technol 8(16):106 Hong K, Jeon H, Jeon C (2013) Personalized research paper recommendation system using keyword extraction based on userprofile. J Converg Inf Technol 8(16):106
21.
Zurück zum Zitat Ollagnier A, Fournier S, Bellot P (2018) Biblme recsys: harnessing bibliometric measures for a scholarly paper recommender system. In: BIR 2018 Workshop on Bibliometric-enhanced Information Retrieval, pp 34–45 Ollagnier A, Fournier S, Bellot P (2018) Biblme recsys: harnessing bibliometric measures for a scholarly paper recommender system. In: BIR 2018 Workshop on Bibliometric-enhanced Information Retrieval, pp 34–45
22.
Zurück zum Zitat Strohman T, Croft WB, Jensen D (2007) Recommending citations for academic papers. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, pp 705–706 Strohman T, Croft WB, Jensen D (2007) Recommending citations for academic papers. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, pp 705–706
23.
Zurück zum Zitat Liu X, Yu Y, Guo C, Sun Y, Gao L (2014) Full-text based context-rich heterogeneous network mining approach for citation recommendation. In: IEEE/ACM joint conference on digital libraries, pp 361–370 . IEEE Liu X, Yu Y, Guo C, Sun Y, Gao L (2014) Full-text based context-rich heterogeneous network mining approach for citation recommendation. In: IEEE/ACM joint conference on digital libraries, pp 361–370 . IEEE
24.
Zurück zum Zitat Manrique R, Marino O (2018) Knowledge graph-based weighting strategies for a scholarly paper recommendation scenario. In: KaRS@ RecSys, pp 5–8 Manrique R, Marino O (2018) Knowledge graph-based weighting strategies for a scholarly paper recommendation scenario. In: KaRS@ RecSys, pp 5–8
25.
Zurück zum Zitat Sugiyama K, Kan M-Y (2015) A comprehensive evaluation of scholarly paper recommendation using potential citation papers. Int J Digit Libr 16(2):91–109 Sugiyama K, Kan M-Y (2015) A comprehensive evaluation of scholarly paper recommendation using potential citation papers. Int J Digit Libr 16(2):91–109
26.
Zurück zum Zitat Zhang Z, Li L (2010) A research paper recommender system based on spreading activation model. In: The 2nd international conference on information science and engineering, pp 928–931 . IEEE Zhang Z, Li L (2010) A research paper recommender system based on spreading activation model. In: The 2nd international conference on information science and engineering, pp 928–931 . IEEE
27.
Zurück zum Zitat Jiang Y, Jia A, Feng Y, Zhao D (2012) Recommending academic papers via users’ reading purposes. In: Proceedings of the sixth ACM conference on recommender systems, pp 241–244 Jiang Y, Jia A, Feng Y, Zhao D (2012) Recommending academic papers via users’ reading purposes. In: Proceedings of the sixth ACM conference on recommender systems, pp 241–244
28.
Zurück zum Zitat Hagen M, Beyer A, Gollub T, Komlossy K, Stein B (2016) Supporting scholarly search with keyqueries. In: European conference on information retrieval, pp 507–520. Springer Hagen M, Beyer A, Gollub T, Komlossy K, Stein B (2016) Supporting scholarly search with keyqueries. In: European conference on information retrieval, pp 507–520. Springer
29.
Zurück zum Zitat Ohta M, Hachiki T, Takasu A (2011) Related paper recommendation to support online-browsing of research papers. In: Fourth international conference on the applications of digital information and web technologies (ICADIWT 2011), pp 130–136. IEEE Ohta M, Hachiki T, Takasu A (2011) Related paper recommendation to support online-browsing of research papers. In: Fourth international conference on the applications of digital information and web technologies (ICADIWT 2011), pp 130–136. IEEE
30.
Zurück zum Zitat Pera MS, Ng Y-K (2011) A personalized recommendation system on scholarly publications. In: Proceedings of the 20th ACM international conference on information and knowledge management, pp 2133–2136 Pera MS, Ng Y-K (2011) A personalized recommendation system on scholarly publications. In: Proceedings of the 20th ACM international conference on information and knowledge management, pp 2133–2136
31.
Zurück zum Zitat Huang W, Kataria S, Caragea C, Mitra P, Giles CL, Rokach L (2012) Recommending citations: translating papers into references. In: Proceedings of the 21st ACM international conference on information and knowledge management, pp 1910–1914 Huang W, Kataria S, Caragea C, Mitra P, Giles CL, Rokach L (2012) Recommending citations: translating papers into references. In: Proceedings of the 21st ACM international conference on information and knowledge management, pp 1910–1914
32.
Zurück zum Zitat Pera MS, Ng Y-K (2014) Exploiting the wisdom of social connections to make personalized recommendations on scholarly articles. J Intell Inf Syst 42(3):371–391 Pera MS, Ng Y-K (2014) Exploiting the wisdom of social connections to make personalized recommendations on scholarly articles. J Intell Inf Syst 42(3):371–391
33.
Zurück zum Zitat Beel J, Langer S, Gipp B, Nürnberger A (2014) The architecture and datasets of docear’s research paper recommender system. D-Lib Mag 20(11/12) Beel J, Langer S, Gipp B, Nürnberger A (2014) The architecture and datasets of docear’s research paper recommender system. D-Lib Mag 20(11/12)
34.
Zurück zum Zitat Chakraborty T, Modani N, Narayanam R, Nagar S (2015) Discern: a diversified citation recommendation system for scientific queries. In: 2015 IEEE 31st international conference on data engineering, pp 555–566. IEEE Chakraborty T, Modani N, Narayanam R, Nagar S (2015) Discern: a diversified citation recommendation system for scientific queries. In: 2015 IEEE 31st international conference on data engineering, pp 555–566. IEEE
35.
Zurück zum Zitat Nascimento C, Laender AH, da Silva AS, Gonçalves MA (2011) A source independent framework for research paper recommendation. In: Proceedings of the 11th annual international ACM/IEEE joint conference on digital libraries, pp 297–306 Nascimento C, Laender AH, da Silva AS, Gonçalves MA (2011) A source independent framework for research paper recommendation. In: Proceedings of the 11th annual international ACM/IEEE joint conference on digital libraries, pp 297–306
36.
Zurück zum Zitat He Q, Kifer D, Pei J, Mitra P, Giles CL (2011) Citation recommendation without author supervision. In: Proceedings of the fourth ACM international conference on web search and data mining, pp 755–764 He Q, Kifer D, Pei J, Mitra P, Giles CL (2011) Citation recommendation without author supervision. In: Proceedings of the fourth ACM international conference on web search and data mining, pp 755–764
37.
Zurück zum Zitat Sesagiri Raamkumar A, Foo S, Pang N (2015) Rec4lrw–scientific paper recommender system for literature review and writing. In: Proceedings of the 6th international conference on applications of digital information and web technologies, pp 106–120 Sesagiri Raamkumar A, Foo S, Pang N (2015) Rec4lrw–scientific paper recommender system for literature review and writing. In: Proceedings of the 6th international conference on applications of digital information and web technologies, pp 106–120
38.
Zurück zum Zitat Magara MB, Ojo SO, Zuva T (2018) Towards a serendipitous research paper recommender system using bisociative information networks (bisonets). In: 2018 international conference on advances in big data, computing and data communication systems (icABCD), pp 1–6. IEEE Magara MB, Ojo SO, Zuva T (2018) Towards a serendipitous research paper recommender system using bisociative information networks (bisonets). In: 2018 international conference on advances in big data, computing and data communication systems (icABCD), pp 1–6. IEEE
39.
Zurück zum Zitat Rollins J, McCusker M, Carlson J, Stroll J (2017) Manuscript matcher: a content and bibliometrics-based scholarly journal recommendation system. In: BIR@ ECIR, pp 18–29 Rollins J, McCusker M, Carlson J, Stroll J (2017) Manuscript matcher: a content and bibliometrics-based scholarly journal recommendation system. In: BIR@ ECIR, pp 18–29
40.
Zurück zum Zitat De Nart D, Tasso C (2014) A personalized concept-driven recommender system for scientific libraries. Procedia Comput Sci 38:84–91 De Nart D, Tasso C (2014) A personalized concept-driven recommender system for scientific libraries. Procedia Comput Sci 38:84–91
41.
Zurück zum Zitat Gipp B, Beel J, Hentschel, C (2009) Scienstein: a research paper recommender system. In: Proceedings of the international conference on emerging trends in computing (ICETiC’09), pp 309–315 Gipp B, Beel J, Hentschel, C (2009) Scienstein: a research paper recommender system. In: Proceedings of the international conference on emerging trends in computing (ICETiC’09), pp 309–315
42.
Zurück zum Zitat Alzoghbi A, Ayala VAA, Fischer PM, Lausen G (2016) Learning-to-rank in research paper cbf recommendation: leveraging irrelevant papers. In: CBRecSys@ RecSys, pp 43–46 Alzoghbi A, Ayala VAA, Fischer PM, Lausen G (2016) Learning-to-rank in research paper cbf recommendation: leveraging irrelevant papers. In: CBRecSys@ RecSys, pp 43–46
43.
Zurück zum Zitat Sugiyama K, Kan M-Y (2010) Scholarly paper recommendation via user’s recent research interests. In: Proceedings of the 10th annual joint conference on digital libraries, pp 29–38 Sugiyama K, Kan M-Y (2010) Scholarly paper recommendation via user’s recent research interests. In: Proceedings of the 10th annual joint conference on digital libraries, pp 29–38
44.
Zurück zum Zitat Sugiyama K, Kan M-Y (2011) Serendipitous recommendation for scholarly papers considering relations among researchers. In: Proceedings of the 11th annual international ACM/IEEE joint conference on digital libraries, pp 307–310 Sugiyama K, Kan M-Y (2011) Serendipitous recommendation for scholarly papers considering relations among researchers. In: Proceedings of the 11th annual international ACM/IEEE joint conference on digital libraries, pp 307–310
45.
Zurück zum Zitat Tang TY, McCalla G (2009) The pedagogical value of papers: a collaborative-filtering based paper recommender. J Dig Inf 10(2):458 Tang TY, McCalla G (2009) The pedagogical value of papers: a collaborative-filtering based paper recommender. J Dig Inf 10(2):458
46.
Zurück zum Zitat Ha J, Kim S-W, Faloutsos C, Park S (2015) An analysis on information diffusion through blogcast in a blogosphere. Inf Sci 290:45–62 Ha J, Kim S-W, Faloutsos C, Park S (2015) An analysis on information diffusion through blogcast in a blogosphere. Inf Sci 290:45–62
47.
Zurück zum Zitat Keshavarz S, Honarvar AR (2015) A parallel paper recommender system in big data scholarly. In: International conference on electrical engineering and computer, pp 80–85 Keshavarz S, Honarvar AR (2015) A parallel paper recommender system in big data scholarly. In: International conference on electrical engineering and computer, pp 80–85
48.
Zurück zum Zitat Pan C, Li W (2010) Research paper recommendation with topic analysis. In: 2010 International conference on computer design and applications, vo. 4, pp 4–264. IEEE Pan C, Li W (2010) Research paper recommendation with topic analysis. In: 2010 International conference on computer design and applications, vo. 4, pp 4–264. IEEE
49.
Zurück zum Zitat Choochaiwattana W (2010) Usage of tagging for research paper recommendation. In: 2010 3rd international conference on advanced computer theory and engineering (ICACTE), vol 2, pp 2–439. IEEE Choochaiwattana W (2010) Usage of tagging for research paper recommendation. In: 2010 3rd international conference on advanced computer theory and engineering (ICACTE), vol 2, pp 2–439. IEEE
50.
Zurück zum Zitat Doerfel S, Jäschke R, Hotho A, Stumme G (2012) Leveraging publication metadata and social data into folkrank for scientific publication recommendation. In: Proceedings of the 4th ACM RecSys workshop on recommender systems and the social Web, pp 9–16 Doerfel S, Jäschke R, Hotho A, Stumme G (2012) Leveraging publication metadata and social data into folkrank for scientific publication recommendation. In: Proceedings of the 4th ACM RecSys workshop on recommender systems and the social Web, pp 9–16
51.
Zurück zum Zitat Igbe T, Ojokoh B et al (2016) Incorporating user’s preferences into scholarly publications recommendation. Intell Inf Manag 8(02):27 Igbe T, Ojokoh B et al (2016) Incorporating user’s preferences into scholarly publications recommendation. Intell Inf Manag 8(02):27
52.
Zurück zum Zitat Xia F, Chen Z, Wang W, Li J, Yang LT (2014) Mvcwalker: random walk-based most valuable collaborators recommendation exploiting academic factors. IEEE Trans Emerg Top Comput 2(3):364–375 Xia F, Chen Z, Wang W, Li J, Yang LT (2014) Mvcwalker: random walk-based most valuable collaborators recommendation exploiting academic factors. IEEE Trans Emerg Top Comput 2(3):364–375
53.
Zurück zum Zitat Agarwal N, Haque E, Liu H, Parsons L (2005) Research paper recommender systems: a subspace clustering approach. In: International conference on web-age information management, pp 475–491. Springer Agarwal N, Haque E, Liu H, Parsons L (2005) Research paper recommender systems: a subspace clustering approach. In: International conference on web-age information management, pp 475–491. Springer
54.
Zurück zum Zitat Farooq U, Song Y, Carroll JM, Giles CL (2007) Social bookmarking for scholarly digital libraries. IEEE Int Comput 11(6):29–35 Farooq U, Song Y, Carroll JM, Giles CL (2007) Social bookmarking for scholarly digital libraries. IEEE Int Comput 11(6):29–35
55.
Zurück zum Zitat Loh S, Lorenzi F, Granada R, Lichtnow D, Wives LK, de Oliveira JPM (2009) Identifying similar users by their scientific publications to reduce cold start in recommender systems. In: Proceedings of the fifth international conference on web information systems and technologies (WEBIST 2009), vol 9, pp 593–600 Loh S, Lorenzi F, Granada R, Lichtnow D, Wives LK, de Oliveira JPM (2009) Identifying similar users by their scientific publications to reduce cold start in recommender systems. In: Proceedings of the fifth international conference on web information systems and technologies (WEBIST 2009), vol 9, pp 593–600
56.
Zurück zum Zitat Hassan HAM (2017) Personalized research paper recommendation using deep learning. In: Proceedings of the 25th conference on user modeling, adaptation and personalization, pp 327–330 Hassan HAM (2017) Personalized research paper recommendation using deep learning. In: Proceedings of the 25th conference on user modeling, adaptation and personalization, pp 327–330
57.
Zurück zum Zitat Zhou Q, Chen X, Chen C (2014) Authoritative scholarly paper recommendation based on paper communities. In: 2014 IEEE 17th international conference on computational science and engineering, pp 1536–1540. IEEE Zhou Q, Chen X, Chen C (2014) Authoritative scholarly paper recommendation based on paper communities. In: 2014 IEEE 17th international conference on computational science and engineering, pp 1536–1540. IEEE
58.
Zurück zum Zitat Meng F, Gao, D, Li, W, Sun X, Hou Y (2013) A unified graph model for personalized query-oriented reference paper recommendation. In: Proceedings of the 22nd ACM international conference on information and knowledge management, pp 1509–1512 Meng F, Gao, D, Li, W, Sun X, Hou Y (2013) A unified graph model for personalized query-oriented reference paper recommendation. In: Proceedings of the 22nd ACM international conference on information and knowledge management, pp 1509–1512
59.
Zurück zum Zitat Al Alshaikh M, Uchyigit G, Evans R (2017) A research paper recommender system using a dynamic normalized tree of concepts model for user modelling. In: 2017 11th international conference on research challenges in information science (RCIS), pp 200–210. IEEE Al Alshaikh M, Uchyigit G, Evans R (2017) A research paper recommender system using a dynamic normalized tree of concepts model for user modelling. In: 2017 11th international conference on research challenges in information science (RCIS), pp 200–210. IEEE
60.
Zurück zum Zitat Tang TY, McCalla G (2009) A multidimensional paper recommender: experiments and evaluations. IEEE Int Comput 13(4):34–41 Tang TY, McCalla G (2009) A multidimensional paper recommender: experiments and evaluations. IEEE Int Comput 13(4):34–41
61.
Zurück zum Zitat Gori M, Pucci A (2006) Research paper recommender systems: a random-walk based approach. In: 2006 IEEE/WIC/ACM international conference on web intelligence (WI 2006 Main Conference Proceedings) (WI’06), pp 778–781. IEEE Gori M, Pucci A (2006) Research paper recommender systems: a random-walk based approach. In: 2006 IEEE/WIC/ACM international conference on web intelligence (WI 2006 Main Conference Proceedings) (WI’06), pp 778–781. IEEE
62.
Zurück zum Zitat Zarrinkalam F, Kahani M (2012) A multi-criteria hybrid citation recommendation system based on linked data. In: 2012 2nd international econference on computer and knowledge engineering (ICCKE), pp 283–288. IEEE Zarrinkalam F, Kahani M (2012) A multi-criteria hybrid citation recommendation system based on linked data. In: 2012 2nd international econference on computer and knowledge engineering (ICCKE), pp 283–288. IEEE
63.
Zurück zum Zitat West JD, Wesley-Smith I, Bergstrom CT (2016) A recommendation system based on hierarchical clustering of an article-level citation network. IEEE Trans Big Data 2(2):113–123 West JD, Wesley-Smith I, Bergstrom CT (2016) A recommendation system based on hierarchical clustering of an article-level citation network. IEEE Trans Big Data 2(2):113–123
64.
Zurück zum Zitat Pohl S, Radlinski F, Joachims T (2007) Recommending related papers based on digital library access records. In: Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries, pp 417–418 Pohl S, Radlinski F, Joachims T (2007) Recommending related papers based on digital library access records. In: Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries, pp 417–418
65.
Zurück zum Zitat Zhang M, Wang W, Li X (2008) A paper recommender for scientific literatures based on semantic concept similarity. In: International conference on asian digital libraries, pp 359–362. Springer Zhang M, Wang W, Li X (2008) A paper recommender for scientific literatures based on semantic concept similarity. In: International conference on asian digital libraries, pp 359–362. Springer
66.
Zurück zum Zitat Jomsri P, Sanguansintukul S, Choochaiwattana W (2010) A framework for tag-based research paper recommender system: an ir approach. In: 2010 IEEE 24th international conference on advanced information networking and applications workshops, pp 103–108. IEEE Jomsri P, Sanguansintukul S, Choochaiwattana W (2010) A framework for tag-based research paper recommender system: an ir approach. In: 2010 IEEE 24th international conference on advanced information networking and applications workshops, pp 103–108. IEEE
67.
Zurück zum Zitat Magalhaes J, Souza C, Costa E, Fechine J (2015) Recommending scientific papers: Investigating the user curriculum. In: The twenty-eighth international flairs conference, pp 489–494 Magalhaes J, Souza C, Costa E, Fechine J (2015) Recommending scientific papers: Investigating the user curriculum. In: The twenty-eighth international flairs conference, pp 489–494
68.
Zurück zum Zitat Xue H, Guo J, Lan Y, Cao L (2014) Personalized paper recommendation in online social scholar system. In: 2014 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2014), pp 612–619. IEEE Xue H, Guo J, Lan Y, Cao L (2014) Personalized paper recommendation in online social scholar system. In: 2014 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2014), pp 612–619. IEEE
69.
Zurück zum Zitat Wu C-J, Chung J-M, Lu C-Y, Lee H-M, Ho J-M (2011) Using web-mining for academic measurement and scholar recommendation in expert finding system. In: 2011 IEEE/WIC/ACM international conferences on web intelligence and intelligent agent technology, vol 1, pp 288–291. IEEE Wu C-J, Chung J-M, Lu C-Y, Lee H-M, Ho J-M (2011) Using web-mining for academic measurement and scholar recommendation in expert finding system. In: 2011 IEEE/WIC/ACM international conferences on web intelligence and intelligent agent technology, vol 1, pp 288–291. IEEE
70.
Zurück zum Zitat Liu H, Kong X, Bai X, Wang W, Bekele TM, Xia F (2015) Context-based collaborative filtering for citation recommendation. IEEE Access 3:1695–1703 Liu H, Kong X, Bai X, Wang W, Bekele TM, Xia F (2015) Context-based collaborative filtering for citation recommendation. IEEE Access 3:1695–1703
71.
Zurück zum Zitat Liu X-Y, Chien B-C (2017) Applying citation network analysis on recommendation of research paper collection. In: Proceedings of the 4th multidisciplinary international social networks conference, pp 1–6 Liu X-Y, Chien B-C (2017) Applying citation network analysis on recommendation of research paper collection. In: Proceedings of the 4th multidisciplinary international social networks conference, pp 1–6
72.
Zurück zum Zitat Hristakeva M, Kershaw D, Rossetti M, Knoth P, Pettit B, Vargas S, Jack K (2017) Building recommender systems for scholarly information. In: Proceedings of the 1st workshop on scholarly web mining, pp 25–32 Hristakeva M, Kershaw D, Rossetti M, Knoth P, Pettit B, Vargas S, Jack K (2017) Building recommender systems for scholarly information. In: Proceedings of the 1st workshop on scholarly web mining, pp 25–32
73.
74.
Zurück zum Zitat Feyer S, Siebert S, Gipp B, Aizawa A, Beel J (2017) Integration of the scientific recommender system mr. dlib into the reference manager jabref. In: European conference on information retrieval, pp 770–774. Springer Feyer S, Siebert S, Gipp B, Aizawa A, Beel J (2017) Integration of the scientific recommender system mr. dlib into the reference manager jabref. In: European conference on information retrieval, pp 770–774. Springer
75.
Zurück zum Zitat Collins A, Beel J (2019) Meta-learned per-instance algorithm selection in scholarly recommender systems. arXiv preprint arXiv:1912.08694 Collins A, Beel J (2019) Meta-learned per-instance algorithm selection in scholarly recommender systems. arXiv preprint arXiv:​1912.​08694
76.
Zurück zum Zitat Watanabe S, Ito T, Ozono T, Shintani T (2005) A paper recommendation mechanism for the research support system papits. In: International workshop on data engineering issues in E-commerce, pp 71–80. IEEE Watanabe S, Ito T, Ozono T, Shintani T (2005) A paper recommendation mechanism for the research support system papits. In: International workshop on data engineering issues in E-commerce, pp 71–80. IEEE
77.
Zurück zum Zitat Cosley D, Lawrence S, Pennock DM (2002) Referee: an open framework for practical testing of recommender systems using researchindex. In: VLDB’02: Proceedings of the 28th international conference on very large databases, pp 35–46. Elsevier Cosley D, Lawrence S, Pennock DM (2002) Referee: an open framework for practical testing of recommender systems using researchindex. In: VLDB’02: Proceedings of the 28th international conference on very large databases, pp 35–46. Elsevier
78.
Zurück zum Zitat Zhao W, Wu R, Dai W, Dai Y (2015) Research paper recommendation based on the knowledge gap. In: 2015 IEEE international conference on data mining workshop (ICDMW), pp 373–380. IEEE Zhao W, Wu R, Dai W, Dai Y (2015) Research paper recommendation based on the knowledge gap. In: 2015 IEEE international conference on data mining workshop (ICDMW), pp 373–380. IEEE
79.
Zurück zum Zitat Matsatsinis NF, Lakiotaki K, Delias P (2007) A system based on multiple criteria analysis for scientific paper recommendation. In: Proceedings of the 11th panhellenic conference on informatics, pp 135–149. Citeseer Matsatsinis NF, Lakiotaki K, Delias P (2007) A system based on multiple criteria analysis for scientific paper recommendation. In: Proceedings of the 11th panhellenic conference on informatics, pp 135–149. Citeseer
80.
Zurück zum Zitat Vellino A (2010) A comparison between usage-based and citation-based methods for recommending scholarly research articles. Proc Am Soc Inf Sci Technol 47(1):1–2 Vellino A (2010) A comparison between usage-based and citation-based methods for recommending scholarly research articles. Proc Am Soc Inf Sci Technol 47(1):1–2
81.
Zurück zum Zitat Huang Z, Chung W, Ong T-H, Chen H (2002) A graph-based recommender system for digital library. In: Proceedings of the 2nd ACM/IEEE-CS joint conference on digital libraries, pp 65–73 Huang Z, Chung W, Ong T-H, Chen H (2002) A graph-based recommender system for digital library. In: Proceedings of the 2nd ACM/IEEE-CS joint conference on digital libraries, pp 65–73
82.
Zurück zum Zitat De Nart D, Ferrara F, Tasso C (2013) Personalized access to scientific publications: from recommendation to explanation. In: International conference on user modeling, adaptation, and personalization, pp 296–301. Springer De Nart D, Ferrara F, Tasso C (2013) Personalized access to scientific publications: from recommendation to explanation. In: International conference on user modeling, adaptation, and personalization, pp 296–301. Springer
83.
Zurück zum Zitat Middleton SE, De Roure DC, Shadbolt NR (2001) Capturing knowledge of user preferences: ontologies in recommender systems. In: Proceedings of the 1st international conference on knowledge capture, pp 100–107 Middleton SE, De Roure DC, Shadbolt NR (2001) Capturing knowledge of user preferences: ontologies in recommender systems. In: Proceedings of the 1st international conference on knowledge capture, pp 100–107
84.
Zurück zum Zitat Yukawa T, Kasahara K, Kato T, Kita T (2001) An expert recommendation system using concept-based relevance discernment. In: Proceedings 13th IEEE international conference on tools with artificial intelligence. ICTAI 2001, pp 257–264. IEEE Yukawa T, Kasahara K, Kato T, Kita T (2001) An expert recommendation system using concept-based relevance discernment. In: Proceedings 13th IEEE international conference on tools with artificial intelligence. ICTAI 2001, pp 257–264. IEEE
85.
Zurück zum Zitat Afzal MT, Maurer HA (2011) Expertise recommender system for scientific community. J Univers Comput Sci 17(11):1529–1549 Afzal MT, Maurer HA (2011) Expertise recommender system for scientific community. J Univers Comput Sci 17(11):1529–1549
86.
Zurück zum Zitat Gollapalli SD, Mitra P, Giles CL (2012) Similar researcher search in academic environments. In: Proceedings of the 12th ACM/IEEE-CS joint conference on digital libraries, pp 167–170 Gollapalli SD, Mitra P, Giles CL (2012) Similar researcher search in academic environments. In: Proceedings of the 12th ACM/IEEE-CS joint conference on digital libraries, pp 167–170
87.
Zurück zum Zitat Yang C, Ma J, Liu X, Sun J, Silva T, Hua Z (2014) A weighted topic model enhanced approach for complementary collaborator recommendation. In: 18th Pacific Asia conference on information systems, PACIS 2014. Pacific Asia Conference on Information Systems Yang C, Ma J, Liu X, Sun J, Silva T, Hua Z (2014) A weighted topic model enhanced approach for complementary collaborator recommendation. In: 18th Pacific Asia conference on information systems, PACIS 2014. Pacific Asia Conference on Information Systems
88.
Zurück zum Zitat Kong X, Mao M, Liu J, Xu B, Huang R, Jin Q (2018) Tnerec: topic-aware network embedding for scientific collaborator recommendation. In: 2018 IEEE smartworld, ubiquitous intelligence and computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp 1007–1014. IEEE Kong X, Mao M, Liu J, Xu B, Huang R, Jin Q (2018) Tnerec: topic-aware network embedding for scientific collaborator recommendation. In: 2018 IEEE smartworld, ubiquitous intelligence and computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp 1007–1014. IEEE
89.
Zurück zum Zitat Guerrero-Sosas JD, Chicharro FPR, Serrano-Guerrero J, Menendez-Dominguez V, Castellanos-Bolaños ME (2019) A proposal for a recommender system of scientific relevance. Procedia Comput Sci 162:199–206 Guerrero-Sosas JD, Chicharro FPR, Serrano-Guerrero J, Menendez-Dominguez V, Castellanos-Bolaños ME (2019) A proposal for a recommender system of scientific relevance. Procedia Comput Sci 162:199–206
90.
Zurück zum Zitat Porcel C, López-Herrera AG, Herrera-Viedma E (2009) A recommender system for research resources based on fuzzy linguistic modeling. Expert Syst Appl 36(3):5173–5183 Porcel C, López-Herrera AG, Herrera-Viedma E (2009) A recommender system for research resources based on fuzzy linguistic modeling. Expert Syst Appl 36(3):5173–5183
91.
Zurück zum Zitat Silva ATP (2014) A research analytics framework for expert recommendation in research social networks. Ph.D. thesis, City University of Hong Kong Silva ATP (2014) A research analytics framework for expert recommendation in research social networks. Ph.D. thesis, City University of Hong Kong
92.
Zurück zum Zitat Sun N, Lu Y, Cao Y (2019) Career age-aware scientific collaborator recommendation in scholarly big data. IEEE Access 7:136036–136045 Sun N, Lu Y, Cao Y (2019) Career age-aware scientific collaborator recommendation in scholarly big data. IEEE Access 7:136036–136045
93.
Zurück zum Zitat Xu W, Lu Y, Zhao J, Qian M (2016) Complementarity: a novel collaborator recommendation method for smes. In: 2016 IEEE first international conference on data science in cyberspace (DSC), pp 520–525. IEEE Xu W, Lu Y, Zhao J, Qian M (2016) Complementarity: a novel collaborator recommendation method for smes. In: 2016 IEEE first international conference on data science in cyberspace (DSC), pp 520–525. IEEE
94.
Zurück zum Zitat Vazhkudai SS, Harney J, Gunasekaran R, Stansberry D, Lim S-H, Barron T, Nash A, Ramanathan A (2016) Constellation: a science graph network for scalable data and knowledge discovery in extreme-scale scientific collaborations. In: 2016 IEEE international conference on big data (Big Data), pp 3052–3061. IEEE Vazhkudai SS, Harney J, Gunasekaran R, Stansberry D, Lim S-H, Barron T, Nash A, Ramanathan A (2016) Constellation: a science graph network for scalable data and knowledge discovery in extreme-scale scientific collaborations. In: 2016 IEEE international conference on big data (Big Data), pp 3052–3061. IEEE
95.
Zurück zum Zitat Chen H-H, Treeratpituk P, Mitra P, Giles CL (2013) Csseer: an expert recommendation system based on citeseerx. In: Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries, pp 381–382 Chen H-H, Treeratpituk P, Mitra P, Giles CL (2013) Csseer: an expert recommendation system based on citeseerx. In: Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries, pp 381–382
96.
Zurück zum Zitat Chicaiza J, Piedra N, Lopez-Vargas J, Tovar-Caro E (2018) Discovery of potential collaboration networks from open knowledge sources. In: 2018 IEEE global engineering education conference (EDUCON), pp 1320–1325. IEEE Chicaiza J, Piedra N, Lopez-Vargas J, Tovar-Caro E (2018) Discovery of potential collaboration networks from open knowledge sources. In: 2018 IEEE global engineering education conference (EDUCON), pp 1320–1325. IEEE
97.
Zurück zum Zitat Petry H, Tedesco P, Vieira V, Salgado AC (2008) Icare. A context-sensitive expert recommendation system. In: ECAI’08, pp 53–58 Petry H, Tedesco P, Vieira V, Salgado AC (2008) Icare. A context-sensitive expert recommendation system. In: ECAI’08, pp 53–58
98.
Zurück zum Zitat Hristovski D, Kastrin A, Rindflesch TC (2016) Implementing semantics-based cross-domain collaboration recommendation in biomedicine with a graph database. DBKDA 2016:104 Hristovski D, Kastrin A, Rindflesch TC (2016) Implementing semantics-based cross-domain collaboration recommendation in biomedicine with a graph database. DBKDA 2016:104
99.
Zurück zum Zitat Araki M, Katsurai M, Ohmukai I, Takeda H (2017) Interdisciplinary collaborator recommendation based on research content similarity. IEICE Trans Inf Syst 100(4):785–792 Araki M, Katsurai M, Ohmukai I, Takeda H (2017) Interdisciplinary collaborator recommendation based on research content similarity. IEICE Trans Inf Syst 100(4):785–792
100.
Zurück zum Zitat Kong X, Shi Y, Yu S, Liu J, Xia F (2019) Academic social networks: modeling, analysis, mining and applications. J Netw Comput Appl 132:86–103 Kong X, Shi Y, Yu S, Liu J, Xia F (2019) Academic social networks: modeling, analysis, mining and applications. J Netw Comput Appl 132:86–103
101.
Zurück zum Zitat dos Santos CK, Evsukoff AG, de Lima BS, Ebecken NFF (2009) Potential collaboration discovery using document clustering and community structure detection. In: Proceedings of the 1st ACM international workshop on complex networks meet information and knowledge management, pp 39–46 dos Santos CK, Evsukoff AG, de Lima BS, Ebecken NFF (2009) Potential collaboration discovery using document clustering and community structure detection. In: Proceedings of the 1st ACM international workshop on complex networks meet information and knowledge management, pp 39–46
102.
Zurück zum Zitat Zhou J, Rafi MA (2019) Recommendation of research collaborator based on semantic link network. In: 2019 15th international conference on semantics, knowledge and grids (SKG), pp 16–20. IEEE Zhou J, Rafi MA (2019) Recommendation of research collaborator based on semantic link network. In: 2019 15th international conference on semantics, knowledge and grids (SKG), pp 16–20. IEEE
103.
Zurück zum Zitat Cohen S, Ebel L (2013) Recommending collaborators using keywords. In: Proceedings of the 22nd international conference on World Wide Web, pp 959–962 Cohen S, Ebel L (2013) Recommending collaborators using keywords. In: Proceedings of the 22nd international conference on World Wide Web, pp 959–962
104.
Zurück zum Zitat Hristovski D, Kastrin A, Rindflesch TC (2015) Semantics-based cross-domain collaboration recommendation in the life sciences: preliminary results. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015, pp 805–806 Hristovski D, Kastrin A, Rindflesch TC (2015) Semantics-based cross-domain collaboration recommendation in the life sciences: preliminary results. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015, pp 805–806
105.
Zurück zum Zitat Li S, Abel M-H, Negre E (2019) Using user contextual profile for recommendation in collaborations. In: The international research and innovation forum, pp 199–209. Springer Li S, Abel M-H, Negre E (2019) Using user contextual profile for recommendation in collaborations. In: The international research and innovation forum, pp 199–209. Springer
106.
Zurück zum Zitat Alinani K, Wang G, Alinani A, Narejo DH (2017) Who should be my co-author? recommender system to suggest a list of collaborators. In: 2017 IEEE international symposium on parallel and distributed processing with applications and 2017 IEEE international conference on ubiquitous computing and communications (ISPA/IUCC), pp 1427–1433. IEEE Alinani K, Wang G, Alinani A, Narejo DH (2017) Who should be my co-author? recommender system to suggest a list of collaborators. In: 2017 IEEE international symposium on parallel and distributed processing with applications and 2017 IEEE international conference on ubiquitous computing and communications (ISPA/IUCC), pp 1427–1433. IEEE
107.
Zurück zum Zitat Alinani K, Alinani A, Narejo DH, Wang G (2018) Aggregating author profiles from multiple publisher networks to build a list of potential collaborators. IEEE Access 6:20298–20308 Alinani K, Alinani A, Narejo DH, Wang G (2018) Aggregating author profiles from multiple publisher networks to build a list of potential collaborators. IEEE Access 6:20298–20308
108.
Zurück zum Zitat Benchettara N, Kanawati R, Rouveirol C (2010) A supervised machine learning link prediction approach for academic collaboration recommendation. In: Proceedings of the fourth ACM conference on recommender systems, pp 253–256 Benchettara N, Kanawati R, Rouveirol C (2010) A supervised machine learning link prediction approach for academic collaboration recommendation. In: Proceedings of the fourth ACM conference on recommender systems, pp 253–256
109.
Zurück zum Zitat Li J, Xia F, Wang W, Chen Z, Asabere NY, Jiang H (2014) Acrec: a co-authorship based random walk model for academic collaboration recommendation. In: Proceedings of the 23rd international conference on World Wide Web, pp 1209–1214 Li J, Xia F, Wang W, Chen Z, Asabere NY, Jiang H (2014) Acrec: a co-authorship based random walk model for academic collaboration recommendation. In: Proceedings of the 23rd international conference on World Wide Web, pp 1209–1214
110.
Zurück zum Zitat Koh YS, Dobbie G (2012) Indirect weighted association rules mining for academic network collaboration recommendations. In: Proceedings of the tenth Australasian data mining conference, vol 134, pp 167–173 Koh YS, Dobbie G (2012) Indirect weighted association rules mining for academic network collaboration recommendations. In: Proceedings of the tenth Australasian data mining conference, vol 134, pp 167–173
111.
Zurück zum Zitat Lee DH, Brusilovsky P, Schleyer T (2011) Recommending collaborators using social features and mesh terms. Proc Am Soc Inf Sci Technol 48(1):1–10 Lee DH, Brusilovsky P, Schleyer T (2011) Recommending collaborators using social features and mesh terms. Proc Am Soc Inf Sci Technol 48(1):1–10
112.
Zurück zum Zitat Yang C, Liu T, Liu L, Chen X (2018) A nearest neighbor based personal rank algorithm for collaborator recommendation. In: 2018 15th international conference on service systems and service management (ICSSSM), pp 1–5. IEEE Yang C, Liu T, Liu L, Chen X (2018) A nearest neighbor based personal rank algorithm for collaborator recommendation. In: 2018 15th international conference on service systems and service management (ICSSSM), pp 1–5. IEEE
113.
Zurück zum Zitat Tong H, Faloutsos C, Pan J-Y (2008) Random walk with restart: fast solutions and applications. Knowl Inf Syst 14(3):327–346MATH Tong H, Faloutsos C, Pan J-Y (2008) Random walk with restart: fast solutions and applications. Knowl Inf Syst 14(3):327–346MATH
114.
Zurück zum Zitat Kong X, Jiang H, Yang Z, Xu Z, Xia F, Tolba A (2016) Exploiting publication contents and collaboration networks for collaborator recommendation. PLoS ONE 11(2):0148492 Kong X, Jiang H, Yang Z, Xu Z, Xia F, Tolba A (2016) Exploiting publication contents and collaboration networks for collaborator recommendation. PLoS ONE 11(2):0148492
115.
Zurück zum Zitat Kong X, Jiang H, Bekele TM, Wang W, Xu Z (2017) Random walk-based beneficial collaborators recommendation exploiting dynamic research interests and academic influence. In: Proceedings of the 26th international conference on World Wide Web companion, pp 1371–1377 Kong X, Jiang H, Bekele TM, Wang W, Xu Z (2017) Random walk-based beneficial collaborators recommendation exploiting dynamic research interests and academic influence. In: Proceedings of the 26th international conference on World Wide Web companion, pp 1371–1377
116.
Zurück zum Zitat Xu Z, Yuan Y, Wei H, Wan L (2019) A serendipity-biased deepwalk for collaborators recommendation. PeerJ Comput Sci 5:178 Xu Z, Yuan Y, Wei H, Wan L (2019) A serendipity-biased deepwalk for collaborators recommendation. PeerJ Comput Sci 5:178
117.
Zurück zum Zitat Wang Q, Ma J, Liao X, Du W (2017) A context-aware researcher recommendation system for university-industry collaboration on r &d projects. Decis Support Syst 103:46–57 Wang Q, Ma J, Liao X, Du W (2017) A context-aware researcher recommendation system for university-industry collaboration on r &d projects. Decis Support Syst 103:46–57
118.
Zurück zum Zitat Davoodi E, Afsharchi M, Kianmehr K (2012) A social network-based approach to expert recommendation system. In: International conference on hybrid artificial intelligence systems, pp 91–102. Springer Davoodi E, Afsharchi M, Kianmehr K (2012) A social network-based approach to expert recommendation system. In: International conference on hybrid artificial intelligence systems, pp 91–102. Springer
119.
Zurück zum Zitat Brandao MA, Moro MM (2012) Affiliation influence on recommendation in academic social networks. In: AMW, pp 230–234 Brandao MA, Moro MM (2012) Affiliation influence on recommendation in academic social networks. In: AMW, pp 230–234
120.
Zurück zum Zitat Lopes GR, Moro MM, Wives LK, De Oliveira JPM (2010) Collaboration recommendation on academic social networks. In: International conference on conceptual modeling, pp 190–199. Springer Lopes GR, Moro MM, Wives LK, De Oliveira JPM (2010) Collaboration recommendation on academic social networks. In: International conference on conceptual modeling, pp 190–199. Springer
121.
Zurück zum Zitat Payton DW (2004) Collaborator discovery method and system. Google Patents. US Patent 6,681,247 Payton DW (2004) Collaborator discovery method and system. Google Patents. US Patent 6,681,247
122.
Zurück zum Zitat Huynh T, Takasu A, Masada T, Hoang K (2014) Collaborator recommendation for isolated researchers. In: 2014 28th international conference on advanced information networking and applications workshops, pp 639–644. IEEE Huynh T, Takasu A, Masada T, Hoang K (2014) Collaborator recommendation for isolated researchers. In: 2014 28th international conference on advanced information networking and applications workshops, pp 639–644. IEEE
123.
Zurück zum Zitat Zhou X, Ding L, Li Z, Wan R (2017) Collaborator recommendation in heterogeneous bibliographic networks using random walks. Inf Retr J 20(4):317–337 Zhou X, Ding L, Li Z, Wan R (2017) Collaborator recommendation in heterogeneous bibliographic networks using random walks. Inf Retr J 20(4):317–337
124.
Zurück zum Zitat Chen H-H, Gou L, Zhang X, Giles CL (2011) Collabseer: a search engine for collaboration discovery. In: Proceedings of the 11th annual international ACM/IEEE joint conference on digital libraries, pp 231–240 Chen H-H, Gou L, Zhang X, Giles CL (2011) Collabseer: a search engine for collaboration discovery. In: Proceedings of the 11th annual international ACM/IEEE joint conference on digital libraries, pp 231–240
125.
Zurück zum Zitat Ben Yahia N, Bellamine Ben Saoud N, Ben Ghezala H (2014) Community-based collaboration recommendation to support mixed decision-making support. J Decis Syst 23(3):350–371 Ben Yahia N, Bellamine Ben Saoud N, Ben Ghezala H (2014) Community-based collaboration recommendation to support mixed decision-making support. J Decis Syst 23(3):350–371
126.
Zurück zum Zitat Chen J, Tang Y, Li J, Mao C, Xiao J (2013) Community-based scholar recommendation modeling in academic social network sites. In: International conference on web information systems engineering, pp 325–334. Springer Chen J, Tang Y, Li J, Mao C, Xiao J (2013) Community-based scholar recommendation modeling in academic social network sites. In: International conference on web information systems engineering, pp 325–334. Springer
127.
Zurück zum Zitat Gunawardena CN, Hermans MB, Sanchez D, Richmond C, Bohley M, Tuttle R (2009) A theoretical framework for building online communities of practice with social networking tools. Educ Media Int 46(1):3–16 Gunawardena CN, Hermans MB, Sanchez D, Richmond C, Bohley M, Tuttle R (2009) A theoretical framework for building online communities of practice with social networking tools. Educ Media Int 46(1):3–16
128.
Zurück zum Zitat Zhang Y, Zhang C, Liu X (2017) Dynamic scholarly collaborator recommendation via competitive multi-agent reinforcement learning. In: Proceedings of the eleventh ACM conference on recommender systems, pp 331–335 Zhang Y, Zhang C, Liu X (2017) Dynamic scholarly collaborator recommendation via competitive multi-agent reinforcement learning. In: Proceedings of the eleventh ACM conference on recommender systems, pp 331–335
129.
Zurück zum Zitat Brandão MA, Moro MM, Almeida JM (2014) Experimental evaluation of academic collaboration recommendation using factorial design. J Inf Data Manag 5(1):52–52 Brandão MA, Moro MM, Almeida JM (2014) Experimental evaluation of academic collaboration recommendation using factorial design. J Inf Data Manag 5(1):52–52
130.
Zurück zum Zitat Fazel-Zarandi M, Devlin HJ, Huang Y, Contractor N (2011) Expert recommendation based on social drivers, social network analysis, and semantic data representation. In: Proceedings of the 2nd international workshop on information heterogeneity and fusion in recommender systems, pp 41–48 Fazel-Zarandi M, Devlin HJ, Huang Y, Contractor N (2011) Expert recommendation based on social drivers, social network analysis, and semantic data representation. In: Proceedings of the 2nd international workshop on information heterogeneity and fusion in recommender systems, pp 41–48
131.
Zurück zum Zitat Zhang J, Tang J, Ma C, Tong H, Jing Y, Li J, Luyten W, Moens M-F (2017) Fast and flexible top-k similarity search on large networks. ACM Trans Inf Syst 36(2):1–30 Zhang J, Tang J, Ma C, Tong H, Jing Y, Li J, Luyten W, Moens M-F (2017) Fast and flexible top-k similarity search on large networks. ACM Trans Inf Syst 36(2):1–30
132.
Zurück zum Zitat Sun J, Ma J, Cheng X, Liu Z, Cao X (2013) Finding an expert: a model recommendation system. In: Thirty fourth international conference on information systems, pp 1–10 Sun J, Ma J, Cheng X, Liu Z, Cao X (2013) Finding an expert: a model recommendation system. In: Thirty fourth international conference on information systems, pp 1–10
133.
Zurück zum Zitat Bukowski M, Valdez AC, Ziefle M, Schmitz-Rode T, Farkas R (2017) Hybrid collaboration recommendation from bibliometric data. In: Proceedings of 2nd international workshop on health recommender systems co-located with the 11th ACM conference recommender systems, pp 36–38 Bukowski M, Valdez AC, Ziefle M, Schmitz-Rode T, Farkas R (2017) Hybrid collaboration recommendation from bibliometric data. In: Proceedings of 2nd international workshop on health recommender systems co-located with the 11th ACM conference recommender systems, pp 36–38
134.
Zurück zum Zitat Rebhi W, Yahia NB, Saoud NBB (2016) Hybrid community detection approach in multilayer social network: scientific collaboration recommendation case study. In: 2016 IEEE/ACS 13th international conference of computer systems and applications (AICCSA), pp 1–8 D. IEEE Rebhi W, Yahia NB, Saoud NBB (2016) Hybrid community detection approach in multilayer social network: scientific collaboration recommendation case study. In: 2016 IEEE/ACS 13th international conference of computer systems and applications (AICCSA), pp 1–8 D. IEEE
135.
Zurück zum Zitat Huynh T, Hoang K (2012) Modeling collaborative knowledge of publishing activities for research recommendation. In: International conference on computational collective intelligence, pp 41–50. Springer Huynh T, Hoang K (2012) Modeling collaborative knowledge of publishing activities for research recommendation. In: International conference on computational collective intelligence, pp 41–50. Springer
136.
Zurück zum Zitat Wu S, Sun J, Tang J (2013) Patent partner recommendation in enterprise social networks. In: Proceedings of the sixth ACM international conference on web search and data mining, pp 43–52 Wu S, Sun J, Tang J (2013) Patent partner recommendation in enterprise social networks. In: Proceedings of the sixth ACM international conference on web search and data mining, pp 43–52
137.
Zurück zum Zitat Liang W, Zhou X, Huang S, Hu C, Jin Q (2017) Recommendation for cross-disciplinary collaboration based on potential research field discovery. In: 2017 fifth international conference on advanced cloud and big data (CBD), pp 349–354. IEEE Liang W, Zhou X, Huang S, Hu C, Jin Q (2017) Recommendation for cross-disciplinary collaboration based on potential research field discovery. In: 2017 fifth international conference on advanced cloud and big data (CBD), pp 349–354. IEEE
138.
Zurück zum Zitat Olshannikova E, Olsson T, Huhtamäki J, Yao P (2019) Scholars’ perceptions of relevance in bibliography-based people recommender system. Comput Supp Coop Work 28(3):357–389 Olshannikova E, Olsson T, Huhtamäki J, Yao P (2019) Scholars’ perceptions of relevance in bibliography-based people recommender system. Comput Supp Coop Work 28(3):357–389
139.
Zurück zum Zitat Yang C, Sun J, Ma J, Zhang S, Wang G, Hua Z (2015) Scientific collaborator recommendation in heterogeneous bibliographic networks. In: 2015 48th Hawaii international conference on system sciences, pp 552–561. IEEE Yang C, Sun J, Ma J, Zhang S, Wang G, Hua Z (2015) Scientific collaborator recommendation in heterogeneous bibliographic networks. In: 2015 48th Hawaii international conference on system sciences, pp 552–561. IEEE
140.
Zurück zum Zitat Du G, Liu Y, Yu J (2018) Scientific users’ interest detection and collaborators recommendation. In: 2018 IEEE fourth international conference on big data computing service and applications (BigDataService), pp 72–79. IEEE Du G, Liu Y, Yu J (2018) Scientific users’ interest detection and collaborators recommendation. In: 2018 IEEE fourth international conference on big data computing service and applications (BigDataService), pp 72–79. IEEE
141.
Zurück zum Zitat Guerra J, Quan W, Li K, Ahumada L, Winston F, Desai B (2018) Scosy: a biomedical collaboration recommendation system. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 3987–3990. IEEE Guerra J, Quan W, Li K, Ahumada L, Winston F, Desai B (2018) Scosy: a biomedical collaboration recommendation system. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 3987–3990. IEEE
142.
Zurück zum Zitat Wang W, Liu J, Yang Z, Kong X, Xia F (2019) Sustainable collaborator recommendation based on conference closure. IEEE Trans Comput Soc Syst 6(2):311–322 Wang W, Liu J, Yang Z, Kong X, Xia F (2019) Sustainable collaborator recommendation based on conference closure. IEEE Trans Comput Soc Syst 6(2):311–322
143.
Zurück zum Zitat Datta A, Tan Teck Yong J, Ventresque A (2011) T-recs: team recommendation system through expertise and cohesiveness. In: Proceedings of the 20th international conference companion on World Wide Web, pp 201–204 Datta A, Tan Teck Yong J, Ventresque A (2011) T-recs: team recommendation system through expertise and cohesiveness. In: Proceedings of the 20th international conference companion on World Wide Web, pp 201–204
144.
Zurück zum Zitat Huynh T, Hoang K, Lam D (2013) Trend based vertex similarity for academic collaboration recommendation. In: International conference on computational collective intelligence, pp 11–20. Springer Huynh T, Hoang K, Lam D (2013) Trend based vertex similarity for academic collaboration recommendation. In: International conference on computational collective intelligence, pp 11–20. Springer
145.
Zurück zum Zitat Al-Ballaa H, Al-Dossari H, Chikh A (2019) Using an exponential random graph model to recommend academic collaborators. Information 10(6):220 Al-Ballaa H, Al-Dossari H, Chikh A (2019) Using an exponential random graph model to recommend academic collaborators. Information 10(6):220
146.
Zurück zum Zitat Medvet E, Bartoli A, Piccinin G (2014) Publication venue recommendation based on paper abstract. In: 2014 IEEE 26th international conference on tools with artificial intelligence, pp 1004–1010. IEEE Medvet E, Bartoli A, Piccinin G (2014) Publication venue recommendation based on paper abstract. In: 2014 IEEE 26th international conference on tools with artificial intelligence, pp 1004–1010. IEEE
149.
Zurück zum Zitat García GM, Nunes BP, Lopes GR, Casanova MA, Paes Leme LAP (2017) Techniques for comparing and recommending conferences. J Braz Comput Soc 23(1):1–14 García GM, Nunes BP, Lopes GR, Casanova MA, Paes Leme LAP (2017) Techniques for comparing and recommending conferences. J Braz Comput Soc 23(1):1–14
150.
Zurück zum Zitat Luong H, Huynh T, Gauch S, Do L, Hoang K (2012) Publication venue recommendation using author network’s publication history. In: Intelligent information and database systems, pp 426–435 Luong H, Huynh T, Gauch S, Do L, Hoang K (2012) Publication venue recommendation using author network’s publication history. In: Intelligent information and database systems, pp 426–435
151.
Zurück zum Zitat Zawali A, Boukhris I (2018) A group recommender system for academic venue personalization. In: International conference on intelligent systems design and applications, pp 597–606. Springer Zawali A, Boukhris I (2018) A group recommender system for academic venue personalization. In: International conference on intelligent systems design and applications, pp 597–606. Springer
152.
Zurück zum Zitat Beierle F, Tan J, Grunert K (2016) Analyzing social relations for recommending academic conferences. In: Proceedings of the 8th ACM international workshop on hot topics in planet-scale mObile computing and online social neTworking, pp 37–42 Beierle F, Tan J, Grunert K (2016) Analyzing social relations for recommending academic conferences. In: Proceedings of the 8th ACM international workshop on hot topics in planet-scale mObile computing and online social neTworking, pp 37–42
153.
Zurück zum Zitat Alshareef AM, Alhamid MF, Saddik AE (2019) Academic venue recommendations based on similarity learning of an extended nearby citation network. IEEE Access 7:38813–38825 Alshareef AM, Alhamid MF, Saddik AE (2019) Academic venue recommendations based on similarity learning of an extended nearby citation network. IEEE Access 7:38813–38825
154.
Zurück zum Zitat Hiep L, Huynj T, Guach S, Hoang K (2012) Exploiting social networks for publication venue recommendations. In: International conference on knowledge discovery and information retrieval, pp 239–245. SciTePress, Spain Hiep L, Huynj T, Guach S, Hoang K (2012) Exploiting social networks for publication venue recommendations. In: International conference on knowledge discovery and information retrieval, pp 239–245. SciTePress, Spain
155.
Zurück zum Zitat Küçüktunç O, Saule E, Kaya K, Çatalyürek UV (2013) Theadvisor: A webservice for academic recommendation. In: Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries. JCDL ’13, pp 433–434. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2467696.2467752 Küçüktunç O, Saule E, Kaya K, Çatalyürek UV (2013) Theadvisor: A webservice for academic recommendation. In: Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries. JCDL ’13, pp 433–434. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​2467696.​2467752
156.
Zurück zum Zitat Chen Z, Xia F, Jiang H, Liu H, Zhang J (2015) Aver: Random walk based academic venue recommendation. In: Proceedings of the 24th international conference on World Wide Web. WWW ’15 companion, pp 579–584. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2740908.2741738 Chen Z, Xia F, Jiang H, Liu H, Zhang J (2015) Aver: Random walk based academic venue recommendation. In: Proceedings of the 24th international conference on World Wide Web. WWW ’15 companion, pp 579–584. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​2740908.​2741738
158.
Zurück zum Zitat Mhirsi N, Boukhris I (2018) Exploring location and ranking for academic venue recommendation. In: International conference on intelligent systems design and applications, pp 83–91 Mhirsi N, Boukhris I (2018) Exploring location and ranking for academic venue recommendation. In: International conference on intelligent systems design and applications, pp 83–91
159.
Zurück zum Zitat Pham MC, Cao Y, Klamma R (2010) Clustering technique for collaborative filtering and the application to venue recommendation Pham MC, Cao Y, Klamma R (2010) Clustering technique for collaborative filtering and the application to venue recommendation
160.
Zurück zum Zitat Yu S, Liu J, Yang Z, Chen Z, Jiang H, Tolba A, Xia F (2018) Pave: personalized academic venue recommendation exploiting co-publication networks. J Netw Comput Appl 104:38–47 Yu S, Liu J, Yang Z, Chen Z, Jiang H, Tolba A, Xia F (2018) Pave: personalized academic venue recommendation exploiting co-publication networks. J Netw Comput Appl 104:38–47
162.
Zurück zum Zitat Pham MC, Cao Y, Klamma R, Jarke M (2011) A clustering approach for collaborative filtering recommendation using social network analysis. J Univ Comput Sci 17(4):583–604 Pham MC, Cao Y, Klamma R, Jarke M (2011) A clustering approach for collaborative filtering recommendation using social network analysis. J Univ Comput Sci 17(4):583–604
163.
Zurück zum Zitat Pradhan T, Pal S (2020) Cnaver: a content and network-based academic venue recommender system. Knowl-Based Syst 189:105092 Pradhan T, Pal S (2020) Cnaver: a content and network-based academic venue recommender system. Knowl-Based Syst 189:105092
164.
Zurück zum Zitat Boukhris I, Ayachi R (2014) A novel personalized academic venue hybrid recommender. In: 2014 IEEE 15th international symposium on computational intelligence and informatics (CINTI), pp 465–470. IEEE Boukhris I, Ayachi R (2014) A novel personalized academic venue hybrid recommender. In: 2014 IEEE 15th international symposium on computational intelligence and informatics (CINTI), pp 465–470. IEEE
165.
Zurück zum Zitat Yang Z, Davison BD (2012) Venue recommendation: submitting your paper with style. In: 2012 11th international conference on machine learning and applications, pp 681–686. IEEE Yang Z, Davison BD (2012) Venue recommendation: submitting your paper with style. In: 2012 11th international conference on machine learning and applications, pp 681–686. IEEE
166.
Zurück zum Zitat Iana A, Jung S, Naeser P, Birukou A, Hertling S, Paulheim H (2019) Building a conference recommender system based on scigraph and wikicfp. In: Semantic Systems. The power of AI and knowledge graphs, vol 11702, pp 117–123. Springer Iana A, Jung S, Naeser P, Birukou A, Hertling S, Paulheim H (2019) Building a conference recommender system based on scigraph and wikicfp. In: Semantic Systems. The power of AI and knowledge graphs, vol 11702, pp 117–123. Springer
167.
Zurück zum Zitat Hoang DT, Hwang D, Tran VC, Nguyen VD, Nguyen NT (2016) Academic event recommendation based on research similarity and exploring interaction between authors. In: 2016 IEEE international conference on systems, man, and cybernetics (SMC), pp 004411–004416. IEEE Hoang DT, Hwang D, Tran VC, Nguyen VD, Nguyen NT (2016) Academic event recommendation based on research similarity and exploring interaction between authors. In: 2016 IEEE international conference on systems, man, and cybernetics (SMC), pp 004411–004416. IEEE
168.
Zurück zum Zitat Hoang DT, Tran VC, Nguyen VD, Nguyen NT, Hwang D (2017) Improving academic event recommendation using research similarity and interaction strength between authors. Cybern Syst 48(3):210–230 Hoang DT, Tran VC, Nguyen VD, Nguyen NT, Hwang D (2017) Improving academic event recommendation using research similarity and interaction strength between authors. Cybern Syst 48(3):210–230
169.
Zurück zum Zitat Errami M, Wren JD, Hicks JM, Garner HR (2007) etblast: a web server to identify expert reviewers, appropriate journals and similar publications. Nucleic Acids Res 35(2):12–15 Errami M, Wren JD, Hicks JM, Garner HR (2007) etblast: a web server to identify expert reviewers, appropriate journals and similar publications. Nucleic Acids Res 35(2):12–15
170.
Zurück zum Zitat Schuemie MJ, Kors JA (2008) Jane: suggesting journals, finding experts. Bioinformatics 24(5):727–728 Schuemie MJ, Kors JA (2008) Jane: suggesting journals, finding experts. Bioinformatics 24(5):727–728
172.
Zurück zum Zitat Kang N, Doornenbal MA, Schijvenaars RJ (2015) Elsevier journal finder: recommending journals for your paper. In: Proceedings of the 9th ACM conference on recommender systems, pp 261–264 Kang N, Doornenbal MA, Schijvenaars RJ (2015) Elsevier journal finder: recommending journals for your paper. In: Proceedings of the 9th ACM conference on recommender systems, pp 261–264
178.
Zurück zum Zitat Hettich S, Pazzani MJ (2006) Mining for proposal reviewers: lessons learned at the national science foundation. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 862–871 Hettich S, Pazzani MJ (2006) Mining for proposal reviewers: lessons learned at the national science foundation. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 862–871
179.
Zurück zum Zitat Yang K-H, Kuo T-L, Lee H-M, Ho J-M (2009) A reviewer recommendation system based on collaborative intelligence. In: 2009 IEEE/WIC/ACM international joint conference on web intelligence and intelligent agent technology, vol 1, pp 564–567. IEEE Yang K-H, Kuo T-L, Lee H-M, Ho J-M (2009) A reviewer recommendation system based on collaborative intelligence. In: 2009 IEEE/WIC/ACM international joint conference on web intelligence and intelligent agent technology, vol 1, pp 564–567. IEEE
180.
Zurück zum Zitat Ferilli S, Di Mauro N, Basile TMA, Esposito F, Biba M (2006) Automatic topics identification for reviewer assignment. In: International conference on industrial, engineering and other applications of applied intelligent systems, pp 721–730. Springer Ferilli S, Di Mauro N, Basile TMA, Esposito F, Biba M (2006) Automatic topics identification for reviewer assignment. In: International conference on industrial, engineering and other applications of applied intelligent systems, pp 721–730. Springer
181.
Zurück zum Zitat Serdyukov P, Rode H, Hiemstra D (2008) Modeling expert finding as an absorbing random walk. In: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval, pp 797–798 Serdyukov P, Rode H, Hiemstra D (2008) Modeling expert finding as an absorbing random walk. In: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval, pp 797–798
182.
Zurück zum Zitat Yunhong X, Xianli Z (2016) A lda model based text-mining method to recommend reviewer for proposal of research project selection. In: 2016 13th international conference on service systems and service management (ICSSSM), pp 1–5. IEEE Yunhong X, Xianli Z (2016) A lda model based text-mining method to recommend reviewer for proposal of research project selection. In: 2016 13th international conference on service systems and service management (ICSSSM), pp 1–5. IEEE
183.
Zurück zum Zitat Peng H, Hu H, Wang K, Wang X (2017) Time-aware and topic-based reviewer assignment. In: International conference on database systems for advanced applications, pp 145–157. Springer Peng H, Hu H, Wang K, Wang X (2017) Time-aware and topic-based reviewer assignment. In: International conference on database systems for advanced applications, pp 145–157. Springer
184.
Zurück zum Zitat Medakene AN, Bouanane K, Eddoud MA (2019) A new approach for computing the matching degree in the paper-to-reviewer assignment problem. In: 2019 international conference on theoretical and applicative aspects of computer science (ICTAACS), vol 1, pp 1–8. IEEE Medakene AN, Bouanane K, Eddoud MA (2019) A new approach for computing the matching degree in the paper-to-reviewer assignment problem. In: 2019 international conference on theoretical and applicative aspects of computer science (ICTAACS), vol 1, pp 1–8. IEEE
185.
Zurück zum Zitat Rosen-Zvi M, Griffiths T, Steyvers M, Smyth P (2012) The author-topic model for authors and documents. arXiv preprint arXiv:1207.4169 Rosen-Zvi M, Griffiths T, Steyvers M, Smyth P (2012) The author-topic model for authors and documents. arXiv preprint arXiv:​1207.​4169
186.
Zurück zum Zitat Jin J, Geng Q, Mou H, Chen C (2019) Author-subject-topic model for reviewer recommendation. J Inf Sci 45(4):554–570 Jin J, Geng Q, Mou H, Chen C (2019) Author-subject-topic model for reviewer recommendation. J Inf Sci 45(4):554–570
187.
Zurück zum Zitat Alkazemi BY (2018) Prato: an automated taxonomy-based reviewer-proposal assignment system. Interdiscip J Inf Knowl Manag 13:383–396 Alkazemi BY (2018) Prato: an automated taxonomy-based reviewer-proposal assignment system. Interdiscip J Inf Knowl Manag 13:383–396
188.
Zurück zum Zitat Cagliero L, Garza P, Pasini A, Baralis EM (2018) Additional reviewer assignment by means of weighted association rules. IEEE Trans Emerg Top Comput 2:558 Cagliero L, Garza P, Pasini A, Baralis EM (2018) Additional reviewer assignment by means of weighted association rules. IEEE Trans Emerg Top Comput 2:558
189.
Zurück zum Zitat Ishag MIM, Park KH, Lee JY, Ryu KH (2019) A pattern-based academic reviewer recommendation combining author-paper and diversity metrics. IEEE Access 7:16460–16475 Ishag MIM, Park KH, Lee JY, Ryu KH (2019) A pattern-based academic reviewer recommendation combining author-paper and diversity metrics. IEEE Access 7:16460–16475
190.
Zurück zum Zitat Zhao S, Zhang D, Duan Z, Chen J, Zhang Y-P, Tang J (2018) A novel classification method for paper-reviewer recommendation. Scientometrics 115(3):1293–1313 Zhao S, Zhang D, Duan Z, Chen J, Zhang Y-P, Tang J (2018) A novel classification method for paper-reviewer recommendation. Scientometrics 115(3):1293–1313
191.
Zurück zum Zitat Anjum O, Gong H, Bhat S, Hwu W-M, Xiong J (2019) Pare: A paper-reviewer matching approach using a common topic space. arXiv preprint arXiv:1909.11258 Anjum O, Gong H, Bhat S, Hwu W-M, Xiong J (2019) Pare: A paper-reviewer matching approach using a common topic space. arXiv preprint arXiv:​1909.​11258
192.
Zurück zum Zitat Zhang, D., Zhao, S., Duan, Z., Chen, J., Zhang, Y., Tang, J.: A multi-label classification method using a hierarchical and transparent representation for paper-reviewer recommendation. arXiv preprint arXiv:1912.08976 (2019) Zhang, D., Zhao, S., Duan, Z., Chen, J., Zhang, Y., Tang, J.: A multi-label classification method using a hierarchical and transparent representation for paper-reviewer recommendation. arXiv preprint arXiv:​1912.​08976 (2019)
193.
Zurück zum Zitat Li X, Watanabe T (2013) Automatic paper-to-reviewer assignment, based on the matching degree of the reviewers. Procedia Comput Sci 22:633–642 Li X, Watanabe T (2013) Automatic paper-to-reviewer assignment, based on the matching degree of the reviewers. Procedia Comput Sci 22:633–642
194.
Zurück zum Zitat Xu Y, Du Y (2013) A three-layer network model for reviewer recommendation. In: 2013 sixth international conference on business intelligence and financial engineering, pp 552–556. IEEE Xu Y, Du Y (2013) A three-layer network model for reviewer recommendation. In: 2013 sixth international conference on business intelligence and financial engineering, pp 552–556. IEEE
195.
Zurück zum Zitat Maleszka M, Maleszka B, Król D, Hernes M, Martins DML, Homann L, Vossen G (2020) A modular diversity based reviewer recommendation system. In: Asian conference on intelligent information and database systems, pp 550–561. Springer Maleszka M, Maleszka B, Król D, Hernes M, Martins DML, Homann L, Vossen G (2020) A modular diversity based reviewer recommendation system. In: Asian conference on intelligent information and database systems, pp 550–561. Springer
196.
Zurück zum Zitat Sun Y-H, Ma J, Fan Z-P, Wang J (2007) A hybrid knowledge and model approach for reviewer assignment. In: 2007 40th annual Hawaii international conference on system sciences (HICSS’07), pp 47–47. IEEE Sun Y-H, Ma J, Fan Z-P, Wang J (2007) A hybrid knowledge and model approach for reviewer assignment. In: 2007 40th annual Hawaii international conference on system sciences (HICSS’07), pp 47–47. IEEE
197.
Zurück zum Zitat Kolasa T, Krol D (2011) A survey of algorithms for paper-reviewer assignment problem. IETE Tech Rev 28(2):123–134 Kolasa T, Krol D (2011) A survey of algorithms for paper-reviewer assignment problem. IETE Tech Rev 28(2):123–134
198.
Zurück zum Zitat Chen RC, Shang PH, Chen MC (2012) A two-stage approach for project reviewer assignment problem. In: Advanced materials research, vol 452, pp 369–373. Trans Tech Publ Chen RC, Shang PH, Chen MC (2012) A two-stage approach for project reviewer assignment problem. In: Advanced materials research, vol 452, pp 369–373. Trans Tech Publ
199.
Zurück zum Zitat Daş GS, Göçken T (2014) A fuzzy approach for the reviewer assignment problem. Comput Ind Eng 72:50–57 Daş GS, Göçken T (2014) A fuzzy approach for the reviewer assignment problem. Comput Ind Eng 72:50–57
200.
Zurück zum Zitat Tayal DK, Saxena P, Sharma A, Khanna G, Gupta S (2014) New method for solving reviewer assignment problem using type-2 fuzzy sets and fuzzy functions. Appl Intell 40(1):54–73 Tayal DK, Saxena P, Sharma A, Khanna G, Gupta S (2014) New method for solving reviewer assignment problem using type-2 fuzzy sets and fuzzy functions. Appl Intell 40(1):54–73
201.
Zurück zum Zitat Wang F, Zhou S, Shi N (2013) Group-to-group reviewer assignment problem. Comput Oper Res 40(5):1351–1362MathSciNetMATH Wang F, Zhou S, Shi N (2013) Group-to-group reviewer assignment problem. Comput Oper Res 40(5):1351–1362MathSciNetMATH
202.
Zurück zum Zitat Long C, Wong RC-W, Peng Y, Ye L (2013) On good and fair paper-reviewer assignment. In: 2013 IEEE 13th international conference on data mining, pp 1145–1150. IEEE Long C, Wong RC-W, Peng Y, Ye L (2013) On good and fair paper-reviewer assignment. In: 2013 IEEE 13th international conference on data mining, pp 1145–1150. IEEE
203.
Zurück zum Zitat Kou NM, U LH, Mamoulis N, Gong Z (2015) Weighted coverage based reviewer assignment. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, pp 2031–2046 Kou NM, U LH, Mamoulis N, Gong Z (2015) Weighted coverage based reviewer assignment. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, pp 2031–2046
204.
Zurück zum Zitat Kou NM, U LH, Mamoulis N, Li Y, Li Y, Gong Z, (2015) A topic-based reviewer assignment system. Proc VLDB Endow 8(12):1852–1855 Kou NM, U LH, Mamoulis N, Li Y, Li Y, Gong Z, (2015) A topic-based reviewer assignment system. Proc VLDB Endow 8(12):1852–1855
205.
Zurück zum Zitat Stelmakh I, Shah NB, Singh A (2018) Peerreview4all: Fair and accurate reviewer assignment in peer review. arXiv preprint arXiv:1806.06237 Stelmakh I, Shah NB, Singh A (2018) Peerreview4all: Fair and accurate reviewer assignment in peer review. arXiv preprint arXiv:​1806.​06237
206.
Zurück zum Zitat Yeşilçimen A, Yıldırım EA (2019) An alternative polynomial-sized formulation and an optimization based heuristic for the reviewer assignment problem. Eur J Oper Res 276(2):436–450MathSciNetMATH Yeşilçimen A, Yıldırım EA (2019) An alternative polynomial-sized formulation and an optimization based heuristic for the reviewer assignment problem. Eur J Oper Res 276(2):436–450MathSciNetMATH
207.
Zurück zum Zitat Conry D, Koren Y, Ramakrishnan N (2009) Recommender systems for the conference paper assignment problem. In: Proceedings of the third ACM conference on recommender systems, pp 357–360 Conry D, Koren Y, Ramakrishnan N (2009) Recommender systems for the conference paper assignment problem. In: Proceedings of the third ACM conference on recommender systems, pp 357–360
208.
Zurück zum Zitat Tang W, Tang J, Lei T, Tan C, Gao B, Li T (2012) On optimization of expertise matching with various constraints. Neurocomputing 76(1):71–83 Tang W, Tang J, Lei T, Tan C, Gao B, Li T (2012) On optimization of expertise matching with various constraints. Neurocomputing 76(1):71–83
209.
Zurück zum Zitat Charlin L, Zemel R (2013) The toronto paper matching system: an automated paper-reviewer assignment system Charlin L, Zemel R (2013) The toronto paper matching system: an automated paper-reviewer assignment system
210.
Zurück zum Zitat Liu X, Suel T, Memon N (2014) A robust model for paper reviewer assignment. In: Proceedings of the 8th ACM conference on recommender systems, pp 25–32 Liu X, Suel T, Memon N (2014) A robust model for paper reviewer assignment. In: Proceedings of the 8th ACM conference on recommender systems, pp 25–32
211.
Zurück zum Zitat Liu O, Wang J, Ma J, Sun Y (2016) An intelligent decision support approach for reviewer assignment in r &d project selection. Comput Ind 76:1–10 Liu O, Wang J, Ma J, Sun Y (2016) An intelligent decision support approach for reviewer assignment in r &d project selection. Comput Ind 76:1–10
212.
Zurück zum Zitat Ogunleye O, Ifebanjo T, Abiodun T, Adebiyi A (2017) Proposed framework for a paper-reviewer assignment system using word2vec. In: 4th Covenant University conference on E-Governance in Nigeria (CUCEN2016) Ogunleye O, Ifebanjo T, Abiodun T, Adebiyi A (2017) Proposed framework for a paper-reviewer assignment system using word2vec. In: 4th Covenant University conference on E-Governance in Nigeria (CUCEN2016)
213.
Zurück zum Zitat Jin J, Geng Q, Zhao Q, Zhang L (2017) Integrating the trend of research interest for reviewer assignment. In: Proceedings of the 26th international conference on World Wide Web Companion, pp 1233–1241 Jin J, Geng Q, Zhao Q, Zhang L (2017) Integrating the trend of research interest for reviewer assignment. In: Proceedings of the 26th international conference on World Wide Web Companion, pp 1233–1241
214.
Zurück zum Zitat Roberts K, Gururaj AE, Chen X, Pournejati S, Hersh WR, Demner-Fushman D, Ohno-Machado L, Cohen T, Xu H (2017) Information retrieval for biomedical datasets: the 2016 biocaddie dataset retrieval challenge. Database 2017:1–9 Roberts K, Gururaj AE, Chen X, Pournejati S, Hersh WR, Demner-Fushman D, Ohno-Machado L, Cohen T, Xu H (2017) Information retrieval for biomedical datasets: the 2016 biocaddie dataset retrieval challenge. Database 2017:1–9
215.
Zurück zum Zitat Chen X, Gururaj AE, Ozyurt B, Liu R, Soysal E, Cohen T, Tiryaki F, Li Y, Zong N, Jiang M (2018) Datamed-an open source discovery index for finding biomedical datasets. J Am Med Inform Assoc 25(3):300–308 Chen X, Gururaj AE, Ozyurt B, Liu R, Soysal E, Cohen T, Tiryaki F, Li Y, Zong N, Jiang M (2018) Datamed-an open source discovery index for finding biomedical datasets. J Am Med Inform Assoc 25(3):300–308
216.
Zurück zum Zitat Jansen BJ, Booth DL, Spink A (2007) Determining the user intent of web search engine queries. In: Proceedings of the 16th international conference on World Wide Web, pp 1149–1150. ACM Jansen BJ, Booth DL, Spink A (2007) Determining the user intent of web search engine queries. In: Proceedings of the 16th international conference on World Wide Web, pp 1149–1150. ACM
217.
Zurück zum Zitat Nunes BP, Dietze S, Casanova MA, Kawase R, Fetahu B, Nejdl W (2013) Combining a co-occurrence-based and a semantic measure for entity linking. In: Extended semantic web conference, pp 548–562. Springer Nunes BP, Dietze S, Casanova MA, Kawase R, Fetahu B, Nejdl W (2013) Combining a co-occurrence-based and a semantic measure for entity linking. In: Extended semantic web conference, pp 548–562. Springer
218.
Zurück zum Zitat Ellefi MB, Bellahsene Z, Dietze S, Todorov K (2016) Dataset recommendation for data linking: an intensional approach. In: European semantic Web conference, pp 36–51. Springer Ellefi MB, Bellahsene Z, Dietze S, Todorov K (2016) Dataset recommendation for data linking: an intensional approach. In: European semantic Web conference, pp 36–51. Springer
219.
Zurück zum Zitat Srivastava KS (2018) Predicting and recommending relevant datasets in complex environments. Google Patents. US Patent App. 15/721,122 Srivastava KS (2018) Predicting and recommending relevant datasets in complex environments. Google Patents. US Patent App. 15/721,122
220.
Zurück zum Zitat Patra BG, Roberts K, Wu H (2020) A content-based dataset recommendation system for researchers-a case study on gene expression omnibus (geo) repository. Database 2020:1–14 Patra BG, Roberts K, Wu H (2020) A content-based dataset recommendation system for researchers-a case study on gene expression omnibus (geo) repository. Database 2020:1–14
221.
Zurück zum Zitat Patra BG, Soltanalizadeh B, Deng N, Wu L, Maroufy V, Wu C, Zheng WJ, Roberts K, Wu H, Yaseen A (2020) An informatics research platform to make public gene expression time-course datasets reusable for more scientific discoveries. Database 2020:1–15 Patra BG, Soltanalizadeh B, Deng N, Wu L, Maroufy V, Wu C, Zheng WJ, Roberts K, Wu H, Yaseen A (2020) An informatics research platform to make public gene expression time-course datasets reusable for more scientific discoveries. Database 2020:1–15
222.
Zurück zum Zitat Zhu J, Patra BG, Yaseen A (2021) Recommender system of scholarly papers using public datasets. In: AMIA summits on translational science proceedings, pp 672–679. American Medical Informatics Association Zhu J, Patra BG, Yaseen A (2021) Recommender system of scholarly papers using public datasets. In: AMIA summits on translational science proceedings, pp 672–679. American Medical Informatics Association
223.
Zurück zum Zitat Zhu J, Patra BG, Wu H, Yaseen A (2023) A novel nih research grant recommender using bert. PLoS ONE 18(1):0278636 Zhu J, Patra BG, Wu H, Yaseen A (2023) A novel nih research grant recommender using bert. PLoS ONE 18(1):0278636
224.
Zurück zum Zitat Kamada S, Ichimura T, Watanabe T (2015) Recommendation system of grants-in-aid for researchers by using jsps keyword. In: 2015 IEEE 8th international workshop on computational intelligence and applications (IWCIA), pp143–148. IEEE Kamada S, Ichimura T, Watanabe T (2015) Recommendation system of grants-in-aid for researchers by using jsps keyword. In: 2015 IEEE 8th international workshop on computational intelligence and applications (IWCIA), pp143–148. IEEE
225.
Zurück zum Zitat Kamada S, Ichimura T, Watanabe T (2016) A recommendation system of grants to acquire external funds. In: 2016 IEEE 9th international workshop on computational intelligence and applications (IWCIA), pp 125–130. IEEE Kamada S, Ichimura T, Watanabe T (2016) A recommendation system of grants to acquire external funds. In: 2016 IEEE 9th international workshop on computational intelligence and applications (IWCIA), pp 125–130. IEEE
Metadaten
Titel
Scholarly recommendation systems: a literature survey
verfasst von
Zitong Zhang
Braja Gopal Patra
Ashraf Yaseen
Jie Zhu
Rachit Sabharwal
Kirk Roberts
Tru Cao
Hulin Wu
Publikationsdatum
04.06.2023
Verlag
Springer London
Erschienen in
Knowledge and Information Systems / Ausgabe 11/2023
Print ISSN: 0219-1377
Elektronische ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-023-01901-x

Weitere Artikel der Ausgabe 11/2023

Knowledge and Information Systems 11/2023 Zur Ausgabe