Skip to main content

2021 | OriginalPaper | Buchkapitel

Science and Technology Relatedness: The Case of DNA Nanoscience and DNA Nanotechnology

verfasst von : Hanh Luong La, Rudi Bekkers

Erschienen in: Innovation, Catch-up and Sustainable Development

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The relatedness between knowledge components within the science domain is widely discussed in the economic, innovation, and management literature. The same is true for the technology domain. Yet, the relatedness between knowledge components across these knowledge domains has received considerably less attention. This chapter aims to introduce the concept of knowledge relatedness between science and technology (S&T), which have been disentangled as two distinct corpora. We approach S&T relatedness from two perspectives: content relatedness (with four indicators: similarity, complementarity, commonality, difference) and temporal relatedness. We then test our ideas with novel empirical material from the field of DNA nanoscience and DNA nanotechnology. We find that the relatedness between S&T scores relatively low, which may explain the relative lack of commercial activity in this field. In light of their indirect complementarity, we recommend that funding “bridging areas” could lead to simultaneous progress in S&T.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
See the discussion on neo-classical and evolutionary theories in Nelson and Winter (1974) and concerns raised by Dosi (1982), Suenaga (2015), and others about uncertainties related to S&T that may cause new technological paradigms.
 
2
We later refer to these as PPPs.
 
3
We later refer to it as NPL.
 
4
The main path approach is a network analysis tool introduced in the late 1980s to investigate networks of scientific publications, and later to study patent networks (see Verspagen, 2007; Bekkers & Martinelli, 2012). The top main path is considered as representing the most important developments in citation networks.
 
5
In a similar vein, Heinisch et al. (2016) used co-location as a proxy for direct knowledge interaction.
 
6
Both directly and indirectly.
 
7
Note that while we use the term “academic publications,” such publications can also be authored by people working for firms. Likewise, university staff can also apply for patents.
 
8
They are “term groups,” which consist of synonyms, abbreviations…which have the same meaning.
 
9
We used two levels of analysis: domain level, and term level.
 
10
This may due to the fact there is no fixed perfect definition for a new field.
 
11
Precision can be estimated by taking a random sample of the set, and manually investigating whether all the records indeed belong to the sought field. Recall can be estimated by independently creating a set of records that are known to belong to the sought set (e.g., by asking an independent expert in the field, or selecting the relevant patents or publications of key contributors) and then testing whether these records are present in the set.
 
12
We found that, in our context, four was the number of concepts allowing us to reach the best balance between recall and precision. With three concepts, the level of precision reduced significantly. With five concepts, the concepts started to lose their initial independence, and the level of recall dropped.
 
13
Information sources include materials and notes taken at technical conferences on DNA-Nano, communication with experts by email and Skype, and publications and news items in the field of DNA-Nano.
 
14
Sungi Kim, PhD candidate at Seoul National University, validated the queries for collecting publications. Jürgen Schmied, CEO of Gattaquant, a company working in the field of DNA Nanotechnology, validated the queries for collecting patents.
 
15
We improved recall by checking whether the authors and inventors whom we know are present in our search results. If not, we included more keywords from their publications/patents. We improved precision by sampling 20 records each time and checking if any record is irrelevant. Then we identified the keywords that distinguish DNA-Nano from other fields in that record, and put them in the exclusion terms.
 
16
And even those with high term frequency-inverse document frequency (tf*idf).
 
17
For instance, “this study,” “this invention.”
 
18
We ended up with 109 cross-domain term groups, which have been harmonized from 400 technical terms extracted with highest scores by the automatic Term Recognition algorithm.
 
19
We used Higuchi Koichi’s KH coder text-mining software (Version 3a12d).
 
20
A sub-domain unit of analysis.
 
21
We used Stephan Evert’s R package “corpora” for this specific Chi-square test.
 
22
We explained how we selected 109 term groups in Sect. 3.2. For the actual analysis of S&T relatedness, we called them “terms” for convenience.
 
23
This first step resulted in 538 pairs in Science and 391 pairs in Technology.
 
24
This second step resulted in 133 pairs of direct complementarity and 10,525 pairs of indirect complementarity.
 
25
In earlier ages, however, the temporal relatedness between S&T could happen in 2000 years (Johns, 2020).
 
26
These robustness checks are available upon demand from the authors.
 
27
This does not happen with knowledge areas that are neither similar nor complementary.
 
28
We did so at the third workshop on Functional DNA Nanotechnology (6–8 June 2018, Rome, Italy).
 
29
We explained the concepts of direct and indirect complementarity, and gave them the list of 133 pairs of terms. Some experts reacted right away, others responded later by email.
 
30
For reasons indicated in Sect. 4.2, we did not measure indirect complementarity over the different subperiods.
 
31
It is worthwhile noting that some records where the concept “nanotechnology” is implicit, should be included in our datasets. Certain inventors choose not to mention nano-related terms explicitly or discuss only DNA or oligonucleotides. That might be the reason why a considerable number of patents belonging to DNA Nanotechnology is not classified under IPC-code B82 (Nanotechnology). From a conceptual point of view, DNA and nano are quite different. However, from a practical point of view, when discussing DNA or nucleotides, we should imply that the research is conducted at the nanoscale, since the dimension of a DNA strand is approximately 2.5 nm. Therefore, “DNA” and “*nucleotid*” are included in two concept areas (Nanotechnology and DNA) to avoid missing certain records that do not mention nano-related terms. Although DNA and Nanotechnology are closely related concepts, we have not grouped them because this leads to considerably more noise in the datasets selected. Thus, DNA-related terms must appear in the set under any conditions, while the presence of nano-related terms remains an option.
 
32
It is harder practically to achieve precision in retrieving patents rather than retrieving publications. Therefore, we decided to adjust terminologies in this DNA concept group into more specific terms, which include DNA.
 
Literatur
Zurück zum Zitat Arora, S. K., Porter, A. L., Youtie, J., & Shapira, P. (2013). Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics, 95, 351–370.CrossRef Arora, S. K., Porter, A. L., Youtie, J., & Shapira, P. (2013). Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics, 95, 351–370.CrossRef
Zurück zum Zitat Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. Free Press. Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. Free Press.
Zurück zum Zitat Bekkers, R., & Martinelli, A. (2012). Knowledge positions in high-tech markets: Trajectories, standards, strategies and true innovators. Technological Forecasting and Social Change, 79, 1192–1216.CrossRef Bekkers, R., & Martinelli, A. (2012). Knowledge positions in high-tech markets: Trajectories, standards, strategies and true innovators. Technological Forecasting and Social Change, 79, 1192–1216.CrossRef
Zurück zum Zitat Benson, C. L., & Magee, C. L. (2013). A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field. Scientometrics, 96, 69–82.CrossRef Benson, C. L., & Magee, C. L. (2013). A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field. Scientometrics, 96, 69–82.CrossRef
Zurück zum Zitat Benson, C. L., & Magee, C. L. (2015). Technology structural implications from the extension of a patent search method. Scientometrics, 102, 1965–1985.CrossRef Benson, C. L., & Magee, C. L. (2015). Technology structural implications from the extension of a patent search method. Scientometrics, 102, 1965–1985.CrossRef
Zurück zum Zitat Boschma, R., Heimeriks, G., & Balland, P. (2014). Scientific knowledge dynamics and relatedness in biotech cities. Research Policy, 43, 107–114.CrossRef Boschma, R., Heimeriks, G., & Balland, P. (2014). Scientific knowledge dynamics and relatedness in biotech cities. Research Policy, 43, 107–114.CrossRef
Zurück zum Zitat Boyack, K. W., & Klavans, R. (2008). Measuring science–technology interaction using rare inventor–author names. Journal of Informetrics, 2, 173–182.CrossRef Boyack, K. W., & Klavans, R. (2008). Measuring science–technology interaction using rare inventor–author names. Journal of Informetrics, 2, 173–182.CrossRef
Zurück zum Zitat Breschi, S., & Catalini, C. (2010). Tracing the links between S&T: An exploratory analysis of scientists and inventors networks. Research Policy, 39, 14–26.CrossRef Breschi, S., & Catalini, C. (2010). Tracing the links between S&T: An exploratory analysis of scientists and inventors networks. Research Policy, 39, 14–26.CrossRef
Zurück zum Zitat Chang, Y. W., Yang, H. W., & Huang, M. W. (2017). Interaction between S&T in the field of fuel cells based on patent paper analysis. Electronic Library, 35, 152–166.CrossRef Chang, Y. W., Yang, H. W., & Huang, M. W. (2017). Interaction between S&T in the field of fuel cells based on patent paper analysis. Electronic Library, 35, 152–166.CrossRef
Zurück zum Zitat Daim, T., Monalisa, M., Dash, P., & Brown, N. (2007). Time lag assessment between research funding and output in emerging technologies. Foresight, 9(4), 33–44.CrossRef Daim, T., Monalisa, M., Dash, P., & Brown, N. (2007). Time lag assessment between research funding and output in emerging technologies. Foresight, 9(4), 33–44.CrossRef
Zurück zum Zitat Dosi, G. (1982). Technological paradigms and technological trajectories. Research Policy, 22, 102–103.CrossRef Dosi, G. (1982). Technological paradigms and technological trajectories. Research Policy, 22, 102–103.CrossRef
Zurück zum Zitat Douglas, K. (2016). DNA nanoscience: From prebiotic origins to emerging nanotechnology. CRC Press.CrossRef Douglas, K. (2016). DNA nanoscience: From prebiotic origins to emerging nanotechnology. CRC Press.CrossRef
Zurück zum Zitat Drexler, K. E. (2013). Radical abundance: How a revolution in nanotechnology will change civilization. Public Affairs. Drexler, K. E. (2013). Radical abundance: How a revolution in nanotechnology will change civilization. Public Affairs.
Zurück zum Zitat Dunn, K. E. (2020). The business of DNA nanotechnology: Commercialization of origami and other technologies. Molecules, 25, 377.CrossRef Dunn, K. E. (2020). The business of DNA nanotechnology: Commercialization of origami and other technologies. Molecules, 25, 377.CrossRef
Zurück zum Zitat Finardi, U. (2011). Time relations between scientific production and patenting of knowledge: The case of nanotechnologies. Scientometrics, 89, 37–50.CrossRef Finardi, U. (2011). Time relations between scientific production and patenting of knowledge: The case of nanotechnologies. Scientometrics, 89, 37–50.CrossRef
Zurück zum Zitat Heinisch, D., Nomaler, Ö., Buenstorf, G., Frenken, K., & Lintsen, H. (2016). Same place, same knowledge–same people? The geography of non-patent citations in Dutch polymer patents. Economics of Innovation and New Technology, 25, 553–572.CrossRef Heinisch, D., Nomaler, Ö., Buenstorf, G., Frenken, K., & Lintsen, H. (2016). Same place, same knowledge–same people? The geography of non-patent citations in Dutch polymer patents. Economics of Innovation and New Technology, 25, 553–572.CrossRef
Zurück zum Zitat Huang, Y., Schuehle, J., Porter, A. L., & Youtie, J. (2015). A systematic method to create search strategies for emerging technologies based on the Web of Science: Illustrated for ‘Big Data’. Scientometrics, 105, 2005–2022.CrossRef Huang, Y., Schuehle, J., Porter, A. L., & Youtie, J. (2015). A systematic method to create search strategies for emerging technologies based on the Web of Science: Illustrated for ‘Big Data’. Scientometrics, 105, 2005–2022.CrossRef
Zurück zum Zitat Johns, C. M. (2020). The industrial revolution-lost in antiquity-found in the renaissance. Pumbo.nl. Johns, C. M. (2020). The industrial revolution-lost in antiquity-found in the renaissance. Pumbo.nl.
Zurück zum Zitat Kilgarriff, A. (2001). Comparing corpora. International Journal of Corpus Linguistics, 6, 97–133.CrossRef Kilgarriff, A. (2001). Comparing corpora. International Journal of Corpus Linguistics, 6, 97–133.CrossRef
Zurück zum Zitat Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). University of Chicago Press. Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). University of Chicago Press.
Zurück zum Zitat La, H. L., & Bekkers R. N. A. (2018, June 11–13). The relation between scientific and technological knowledge in emerging fields: Evidence from DNA nanoscience and DNA nanotechnology. Paper presented at DRUID18 conference, Copenhagen, Denmark. La, H. L., & Bekkers R. N. A. (2018, June 11–13). The relation between scientific and technological knowledge in emerging fields: Evidence from DNA nanoscience and DNA nanotechnology. Paper presented at DRUID18 conference, Copenhagen, Denmark.
Zurück zum Zitat Layton, E. T. (1974). Technology as knowledge. Technology and Culture, 15, 31–41.CrossRef Layton, E. T. (1974). Technology as knowledge. Technology and Culture, 15, 31–41.CrossRef
Zurück zum Zitat Makri, M., Hitt, M. A., & Lane, P. J. (2010). Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions. Strategic Management Journal, 31, 602–628. Makri, M., Hitt, M. A., & Lane, P. J. (2010). Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions. Strategic Management Journal, 31, 602–628.
Zurück zum Zitat Meyer, M. (2000). Does science push technology? Patents citing scientific literature. Research Policy, 29, 409–434.CrossRef Meyer, M. (2000). Does science push technology? Patents citing scientific literature. Research Policy, 29, 409–434.CrossRef
Zurück zum Zitat Mina, A., Ramlogan, R., Tampubolon, G., & Metcalfe, J. S. (2007). Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research Policy, 36, 789–806.CrossRef Mina, A., Ramlogan, R., Tampubolon, G., & Metcalfe, J. S. (2007). Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research Policy, 36, 789–806.CrossRef
Zurück zum Zitat Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31, 1389–1403.CrossRef Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31, 1389–1403.CrossRef
Zurück zum Zitat Nakagawa, H. (2000). Automatic term recognition based on statistics of compound nouns. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication, 6, 195–210.CrossRef Nakagawa, H. (2000). Automatic term recognition based on statistics of compound nouns. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication, 6, 195–210.CrossRef
Zurück zum Zitat Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between U.S. technology and public science. Research Policy, 26, 317–330.CrossRef Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between U.S. technology and public science. Research Policy, 26, 317–330.CrossRef
Zurück zum Zitat Nelson, R. R., & Winter, S. G. (1974). Neoclassical vs. evolutionary theories of economic growth: Critique and prospectus. Economic Journal, 84, 886–905.CrossRef Nelson, R. R., & Winter, S. G. (1974). Neoclassical vs. evolutionary theories of economic growth: Critique and prospectus. Economic Journal, 84, 886–905.CrossRef
Zurück zum Zitat Nomaler, O., & Verspagen, B. (2008). Knowledge flows, patent citations and the impact of science on technology. Economic Systems Research, 20(4), 339–366.CrossRef Nomaler, O., & Verspagen, B. (2008). Knowledge flows, patent citations and the impact of science on technology. Economic Systems Research, 20(4), 339–366.CrossRef
Zurück zum Zitat Nordmann, A. (2008). Philosophy of NanoTechnoScience. In G. Schmid, H. Krug, R. Waser, V. Vogel, H. Fuchs, M. Grätzel, K. Kalyanasundaram, & L. Chi (Eds.), Nanotechnology, Vol. 1: Principles and fundamentals (pp. 217–244). Wiley. Nordmann, A. (2008). Philosophy of NanoTechnoScience. In G. Schmid, H. Krug, R. Waser, V. Vogel, H. Fuchs, M. Grätzel, K. Kalyanasundaram, & L. Chi (Eds.), Nanotechnology, Vol. 1: Principles and fundamentals (pp. 217–244). Wiley.
Zurück zum Zitat Patra, D. (2011). Nanotechnoscience, nanotechnology, or nanotechnoscience: Perceptions of Indian nanoresearchers. Public Understanding of Science, 22, 590–605.CrossRef Patra, D. (2011). Nanotechnoscience, nanotechnology, or nanotechnoscience: Perceptions of Indian nanoresearchers. Public Understanding of Science, 22, 590–605.CrossRef
Zurück zum Zitat Pavitt, K. (1987). The objectives of technology policy. Science and Public Policy, 14, 182–188. Pavitt, K. (1987). The objectives of technology policy. Science and Public Policy, 14, 182–188.
Zurück zum Zitat Pinheiro, A. V., Han, D., Shih, W. M., & Yan, H. (2011). Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology, 6, 763–772.CrossRef Pinheiro, A. V., Han, D., Shih, W. M., & Yan, H. (2011). Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology, 6, 763–772.CrossRef
Zurück zum Zitat Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10, 715–728.CrossRef Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10, 715–728.CrossRef
Zurück zum Zitat Price, D. S. D. J. (1965). Is technology historically independent of science? A study in statistical historiography. Technology and Culture, 6, 553–568.CrossRef Price, D. S. D. J. (1965). Is technology historically independent of science? A study in statistical historiography. Technology and Culture, 6, 553–568.CrossRef
Zurück zum Zitat Rayson, P., & Garside, R. (2000). Comparing corpora using frequency profiling. In: Proceedings of the workshop on comparing corpora (vol. 9, pp. 1–6). Association for Computational Linguistics. Rayson, P., & Garside, R. (2000). Comparing corpora using frequency profiling. In: Proceedings of the workshop on comparing corpora (vol. 9, pp. 1–6). Association for Computational Linguistics.
Zurück zum Zitat Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.CrossRef Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.CrossRef
Zurück zum Zitat Suenaga, K. (2015). The emergence of technological paradigms: The evolutionary process of S&T in economic development. In A. Pyka & J. Foster (Eds.), The evolution of economic and innovation systems. Economic complexity and evolution (pp. 211–227). Springer. Suenaga, K. (2015). The emergence of technological paradigms: The evolutionary process of S&T in economic development. In A. Pyka & J. Foster (Eds.), The evolution of economic and innovation systems. Economic complexity and evolution (pp. 211–227). Springer.
Zurück zum Zitat Tripodi, G., Chiaromonte, F., & Lillo, F. (2020). Knowledge and social relatedness shape research portfolio diversification. Scientific Reports, 10(1) Nature. Tripodi, G., Chiaromonte, F., & Lillo, F. (2020). Knowledge and social relatedness shape research portfolio diversification. Scientific Reports, 10(1) Nature.
Zurück zum Zitat Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54, 399–420.CrossRef Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54, 399–420.CrossRef
Zurück zum Zitat Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(1), 93–115.CrossRef Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(1), 93–115.CrossRef
Zurück zum Zitat Wang, L., & Li, Z. (2018). Knowledge transfer from science to technology—the case of nano medical device technologies. Frontiers in Research Metrics and Analytics, 3, 11.CrossRef Wang, L., & Li, Z. (2018). Knowledge transfer from science to technology—the case of nano medical device technologies. Frontiers in Research Metrics and Analytics, 3, 11.CrossRef
Zurück zum Zitat Zhao, Q., & Guan, J. (2013). Love dynamics between S&T: Some evidences in nanoscience and nanotechnology. Scientometrics, 94, 113–132.CrossRef Zhao, Q., & Guan, J. (2013). Love dynamics between S&T: Some evidences in nanoscience and nanotechnology. Scientometrics, 94, 113–132.CrossRef
Metadaten
Titel
Science and Technology Relatedness: The Case of DNA Nanoscience and DNA Nanotechnology
verfasst von
Hanh Luong La
Rudi Bekkers
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-84931-3_3

Premium Partner