Skip to main content

2016 | OriginalPaper | Buchkapitel

Second Order Implicit Schemes for Scalar Conservation Laws

verfasst von : Lisa Wagner, Jens Lang, Oliver Kolb

Erschienen in: Numerical Mathematics and Advanced Applications ENUMATH 2015

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The today’s demands for simulation and optimization tools for water supply networks are permanently increasing. Practical computations of large water supply networks show that rather small time steps are needed to get sufficiently good approximation results – a typical disadvantage of low order methods. Having this application in mind we use higher order time discretizations to overcome this problem. Such discretizations can be achieved using so-called strong stability preserving Runge-Kutta methods which are especially designed for hyperbolic problems. We aim at approximating entropy solutions and are interested in weak solutions and variational formulations. Therefore our intention is to compare different space discretizations mostly based on variational formulations, and combine them with a second-order two-stage SDIRK method. In this paper, we will report on first numerical results considering scalar hyperbolic conservation laws.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.E. Buckley, M.C. Leverett, Mechanism of fluid displacements in sands. Trans. AIME 146, 107–116 (1942)CrossRef S.E. Buckley, M.C. Leverett, Mechanism of fluid displacements in sands. Trans. AIME 146, 107–116 (1942)CrossRef
2.
Zurück zum Zitat J.C. Butcher, Numerical Methods for Ordinary Differential Equations (John Wiley & Sons, England, 2003)CrossRefMATH J.C. Butcher, Numerical Methods for Ordinary Differential Equations (John Wiley & Sons, England, 2003)CrossRefMATH
3.
Zurück zum Zitat B. Cockburn, An introduction to the discontinuous Galerkin method for convection-dominated problems, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics (Springer, Berlin/Heidelberg, 1997), pp. 151–268 B. Cockburn, An introduction to the discontinuous Galerkin method for convection-dominated problems, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics (Springer, Berlin/Heidelberg, 1997), pp. 151–268
4.
Zurück zum Zitat D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications, vol. 69 (Springer, Heidelberg, 2012) D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications, vol. 69 (Springer, Heidelberg, 2012)
5.
Zurück zum Zitat L.C. Evans, Partial Differential Equations (American Mathematical Society, Rhode Island, 2010)CrossRefMATH L.C. Evans, Partial Differential Equations (American Mathematical Society, Rhode Island, 2010)CrossRefMATH
6.
Zurück zum Zitat L. Ferracina, M.N. Spijker, Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)MathSciNetCrossRefMATH L. Ferracina, M.N. Spijker, Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)MathSciNetCrossRefMATH
8.
Zurück zum Zitat S. Gottlieb, C.W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefMATH S. Gottlieb, C.W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefMATH
9.
Zurück zum Zitat S. Gottlieb, D. Ketcheson, C.W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations (World Scientific, Singapore, 2011)CrossRefMATH S. Gottlieb, D. Ketcheson, C.W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations (World Scientific, Singapore, 2011)CrossRefMATH
10.
Zurück zum Zitat W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33 (Springer, Heidelberg, 2003) W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33 (Springer, Heidelberg, 2003)
11.
Zurück zum Zitat O. Kolb, J. Lang, Mathematical Optimization of Water Networks, Simulation and Continuous Optimization (Birkhäuser/Springer Basel AG, Basel, 2012)MATH O. Kolb, J. Lang, Mathematical Optimization of Water Networks, Simulation and Continuous Optimization (Birkhäuser/Springer Basel AG, Basel, 2012)MATH
12.
Zurück zum Zitat O. Kolb, J. Lang, P. Bales, An implict box scheme for subsonic compressible flow with dissipative source term. Numer. Algorithms 53, 293–307 (2010)MathSciNetCrossRefMATH O. Kolb, J. Lang, P. Bales, An implict box scheme for subsonic compressible flow with dissipative source term. Numer. Algorithms 53, 293–307 (2010)MathSciNetCrossRefMATH
13.
Zurück zum Zitat E.J. Kubatko, B.A. Yeager, D.I. Ketcheson, Optimal strong-stability-preserving Runge-Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60, 313–344 (2014)MathSciNetCrossRefMATH E.J. Kubatko, B.A. Yeager, D.I. Ketcheson, Optimal strong-stability-preserving Runge-Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60, 313–344 (2014)MathSciNetCrossRefMATH
14.
Zurück zum Zitat R.J. LeVeque, Numerical Methods for Conservation Laws. Lectures in Mathematics ETH Zürich (Birkhäuser Verlag, Basel/Boston/Berlin, 1990) R.J. LeVeque, Numerical Methods for Conservation Laws. Lectures in Mathematics ETH Zürich (Birkhäuser Verlag, Basel/Boston/Berlin, 1990)
15.
Zurück zum Zitat H. Martin, R. Pohl, Technische Hydromechanik 4 (Huss-Medien-GmbH, Berlin, 2000) H. Martin, R. Pohl, Technische Hydromechanik 4 (Huss-Medien-GmbH, Berlin, 2000)
16.
Zurück zum Zitat B. van Leer, Towards the ultimate conservation difference scheme. J. Comput. Phys. 32, 1–136 (1974)MATH B. van Leer, Towards the ultimate conservation difference scheme. J. Comput. Phys. 32, 1–136 (1974)MATH
Metadaten
Titel
Second Order Implicit Schemes for Scalar Conservation Laws
verfasst von
Lisa Wagner
Jens Lang
Oliver Kolb
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-39929-4_4