Skip to main content

2019 | OriginalPaper | Buchkapitel

Secret-Sharing Schemes for General and Uniform Access Structures

verfasst von : Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, Naty Peter

Erschienen in: Advances in Cryptology – EUROCRYPT 2019

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A secret-sharing scheme allows some authorized sets of parties to reconstruct a secret; the collection of authorized sets is called the access structure. For over 30 years, it was known that any (monotone) collection of authorized sets can be realized by a secret-sharing scheme whose shares are of size \(2^{n-o(n)}\) and until recently no better scheme was known. In a recent breakthrough, Liu and Vaikuntanathan (STOC 2018) have reduced the share size to \(O(2^{0.994n})\). Our first contribution is improving the exponent of secret sharing down to 0.892. For the special case of linear secret-sharing schemes, we get an exponent of 0.942 (compared to 0.999 of Liu and Vaikuntanathan).
Motivated by the construction of Liu and Vaikuntanathan, we study secret-sharing schemes for uniform access structures. An access structure is k-uniform if all sets of size larger than k are authorized, all sets of size smaller than k are unauthorized, and each set of size k can be either authorized or unauthorized. The construction of Liu and Vaikuntanathan starts from protocols for conditional disclosure of secrets, constructs secret-sharing schemes for uniform access structures from them, and combines these schemes in order to obtain secret-sharing schemes for general access structures. Our second contribution in this paper is constructions of secret-sharing schemes for uniform access structures. We achieve the following results:
  • A secret-sharing scheme for k-uniform access structures for large secrets in which the share size is \(O(k^2)\) times the size of the secret.
  • A linear secret-sharing scheme for k-uniform access structures for a binary secret in which the share size is \(\tilde{O}(2^{h(k/n)n/2})\) (where h is the binary entropy function). By counting arguments, this construction is optimal (up to polynomial factors).
  • A secret-sharing scheme for k-uniform access structures for a binary secret in which the share size is \(2^{\tilde{O}(\sqrt{k \log n})}\).
Our third contribution is a construction of ad-hoc PSM protocols, i.e., PSM protocols in which only a subset of the parties will compute a function on their inputs. This result is based on ideas we used in the construction of secret-sharing schemes for k-uniform access structures for a binary secret.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Formally, such a statement implicitly refers to an infinite sequence of (collections of) access structures that is parameterized by the number of participants n.
 
2
The notation \(\mathbf {M}\) stands for “middle”.
 
3
The notation \(\mathbf {X}\) stands for eXternal slices.
 
Literatur
4.
Zurück zum Zitat Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes for general and uniform access structures. Technical report 2019/231, IACR Cryptology ePrint Archive (2019) Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes for general and uniform access structures. Technical report 2019/231, IACR Cryptology ePrint Archive (2019)
6.
Zurück zum Zitat Applebaum, B., Vasudevan, P.: Placing conditional disclosure of secrets in the communication complexity universe. In: 10th Innovations in Theoretical Computer Science Conference, ITCS. LIPIcs, vol. 124, pp. 4:1–4:14 (2019) Applebaum, B., Vasudevan, P.: Placing conditional disclosure of secrets in the communication complexity universe. In: 10th Innovations in Theoretical Computer Science Conference, ITCS. LIPIcs, vol. 124, pp. 4:1–4:14 (2019)
8.
Zurück zum Zitat Beimel, A., Chor, B.: Universally ideal secret-sharing schemes. IEEE Trans. Inf. Theory 40(3), 786–794 (1994)MathSciNetCrossRef Beimel, A., Chor, B.: Universally ideal secret-sharing schemes. IEEE Trans. Inf. Theory 40(3), 786–794 (1994)MathSciNetCrossRef
15.
Zurück zum Zitat Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 1–10 (1988) Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 1–10 (1988)
18.
Zurück zum Zitat Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS National Computer Conference, vol. 48, pp. 313–317 (1979) Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS National Computer Conference, vol. 48, pp. 313–317 (1979)
19.
Zurück zum Zitat Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 11–19 (1988) Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 11–19 (1988)
20.
23.
Zurück zum Zitat Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math. Hungar. 32(3–4), 429–437 (1996)MathSciNetMATH Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math. Hungar. 32(3–4), 429–437 (1996)MathSciNetMATH
25.
Zurück zum Zitat Erdös, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press, Cambridge (1974)MATH Erdös, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press, Cambridge (1974)MATH
26.
Zurück zum Zitat Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th STOC 1994, pp. 554–563 (1994) Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th STOC 1994, pp. 554–563 (1994)
28.
Zurück zum Zitat Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)MathSciNetCrossRef Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)MathSciNetCrossRef
29.
Zurück zum Zitat Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98 (2006) Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98 (2006)
30.
Zurück zum Zitat Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: 5th Israel Symposium on Theory of Computing and Systems, pp. 174–183 (1997) Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: 5th Israel Symposium on Theory of Computing and Systems, pp. 174–183 (1997)
32.
Zurück zum Zitat Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Globecom 1987, pp. 99–102 (1987). Journal Version: Multiple assignment scheme for sharing secret. J. Cryptol. 6(1), 15–20 (1993) Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Globecom 1987, pp. 99–102 (1987). Journal Version: Multiple assignment scheme for sharing secret. J. Cryptol. 6(1), 15–20 (1993)
33.
Zurück zum Zitat Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Complexity Theory, pp. 102–111 (1993) Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Complexity Theory, pp. 102–111 (1993)
34.
Zurück zum Zitat Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In: 50th STOC 2018, pp. 699–708 (2018) Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In: 50th STOC 2018, pp. 699–708 (2018)
37.
Zurück zum Zitat Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. In: 3rd ACM Conference on Computer and Communications Security, pp. 157–167 (1996) Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. In: 3rd ACM Conference on Computer and Communications Security, pp. 157–167 (1996)
40.
Zurück zum Zitat Stinson, D.R.: Decomposition construction for secret sharing schemes. IEEE Trans. Inf. Theory 40(1), 118–125 (1994)MathSciNetCrossRef Stinson, D.R.: Decomposition construction for secret sharing schemes. IEEE Trans. Inf. Theory 40(1), 118–125 (1994)MathSciNetCrossRef
41.
Zurück zum Zitat Sun, H., Shieh, S.: Secret sharing in graph-based prohibited structures. In: INFOCOM 1997, pp. 718–724 (1997) Sun, H., Shieh, S.: Secret sharing in graph-based prohibited structures. In: INFOCOM 1997, pp. 718–724 (1997)
42.
Metadaten
Titel
Secret-Sharing Schemes for General and Uniform Access Structures
verfasst von
Benny Applebaum
Amos Beimel
Oriol Farràs
Oded Nir
Naty Peter
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-17659-4_15

Premium Partner