Skip to main content

2011 | OriginalPaper | Buchkapitel

Segmentation of Skeletal Muscle Fibres for Applications in Computational Skeletal Muscle Mechanics

verfasst von : O. Röhrle, H. Köstler, M. Loch

Erschienen in: Computational Biomechanics for Medicine

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a semi-automatic method to segment single muscle fibres from skeletal muscle cross-section images. As a pre-processing step we apply different filters depending on the type of the manually selected image region to obtain an edge image. Then we detect circles within the image by a circular Hough transform as initial rough approximation to the muscle fibre slices. This approximation is improved by active contours, where the circles are deformed to fit to the specific shape of the muscle fibres. The implementation of the segmentation method was done in Matlab. We show qualitative and quantitative results for different image regions and also outline a straight-forward method to combine several slices to obtain a 3D piece of a muscle fibre, which forms the input to an electro-mechanical skeletal muscle model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hodgkin, A. L., Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117 (4), 500–44. Hodgkin, A. L., Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117 (4), 500–44.
2.
Zurück zum Zitat Shorten, P., O’Callaghan, P., Davidson, J., Soboleva, T., 2007. A mathematical model of fatigue in skeletal muscle force contraction. J Muscle Res. Cell Motil. 28 (6), 293–313. Shorten, P., O’Callaghan, P., Davidson, J., Soboleva, T., 2007. A mathematical model of fatigue in skeletal muscle force contraction. J Muscle Res. Cell Motil. 28 (6), 293–313.
3.
Zurück zum Zitat Ding, J., Wexler, A. S., Binder-Macleod, S. A., 2000. Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J of Appl. Physiol. 88 (3), 917–925. Ding, J., Wexler, A. S., Binder-Macleod, S. A., 2000. Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J of Appl. Physiol. 88 (3), 917–925.
4.
Zurück zum Zitat Zajac, F. E., 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17 (4), 359–411. Zajac, F. E., 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17 (4), 359–411.
5.
Zurück zum Zitat Johansson, T., Meier, P., Blickhan, R., 2000. A finite-element model for the mechanical analysis of skeletal muscles. J Theor Biol 206 (1), 131–49.CrossRef Johansson, T., Meier, P., Blickhan, R., 2000. A finite-element model for the mechanical analysis of skeletal muscles. J Theor Biol 206 (1), 131–49.CrossRef
6.
Zurück zum Zitat Oomens, C. W. J., Maenhout, M., van Oijen, C. H., Drost, M. R., Baaijens, F. P., 2003. Finite element modelling of contracting skeletal muscle. Philos. Trans. R. Soc. London, Ser. B, 358 (1437), 1453–1460. Oomens, C. W. J., Maenhout, M., van Oijen, C. H., Drost, M. R., Baaijens, F. P., 2003. Finite element modelling of contracting skeletal muscle. Philos. Trans. R. Soc. London, Ser. B, 358 (1437), 1453–1460.
7.
Zurück zum Zitat Blemker, S. S., Pinsky, P. M., Delp, S. L., 2005. A 3d model of muscle reveals the causes of nonuniform strains in the biceps brachii, J. Biomech. 38 (4), 657–665.CrossRef Blemker, S. S., Pinsky, P. M., Delp, S. L., 2005. A 3d model of muscle reveals the causes of nonuniform strains in the biceps brachii, J. Biomech. 38 (4), 657–665.CrossRef
8.
Zurück zum Zitat Böl, M., Reese, S., 2007. A new approach for the simulation of skeletal muscles using the tool of statistical mechanics. Materialwiss. Werkstofftech. 38 (12), 955–964.CrossRef Böl, M., Reese, S., 2007. A new approach for the simulation of skeletal muscles using the tool of statistical mechanics. Materialwiss. Werkstofftech. 38 (12), 955–964.CrossRef
9.
Zurück zum Zitat Röhrle, O., Davidson, J., Pullan, A., 2008. Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle. SIAM J. Sci. Comput. 30 (6), 2882–2904.MathSciNetMATHCrossRef Röhrle, O., Davidson, J., Pullan, A., 2008. Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle. SIAM J. Sci. Comput. 30 (6), 2882–2904.MathSciNetMATHCrossRef
10.
Zurück zum Zitat Röhrle, O., 2010. Simulating the electro-mechanical behavior of skeletal muscles. IEEE CiSE, DOI 10.1109/MCSE.2010.30. Röhrle, O., 2010. Simulating the electro-mechanical behavior of skeletal muscles. IEEE CiSE, DOI 10.1109/MCSE.2010.30.
11.
Zurück zum Zitat Sands, G.B., Gerneke, D.A., Hooks, D.A., Green, C.R., Smaill, B.H., LeGrice, I.J., 2005. Automated imaging of extended tissue volumes using confocal microscopy. Microsc Res Tech 67 (5), 227–39.CrossRef Sands, G.B., Gerneke, D.A., Hooks, D.A., Green, C.R., Smaill, B.H., LeGrice, I.J., 2005. Automated imaging of extended tissue volumes using confocal microscopy. Microsc Res Tech 67 (5), 227–39.CrossRef
12.
Zurück zum Zitat Jähne, B., 2005. Digitale Bildverarbeitung, Springer-Verlag. Jähne, B., 2005. Digitale Bildverarbeitung, Springer-Verlag.
13.
Zurück zum Zitat Ballard, D.H., 1981. Generalizing the Hough transform to detect arbitrary shapes, Pattern Recognit., 13, 111–122.MATHCrossRef Ballard, D.H., 1981. Generalizing the Hough transform to detect arbitrary shapes, Pattern Recognit., 13, 111–122.MATHCrossRef
14.
Zurück zum Zitat Kass M., Witkin, A., Terzopoulos, D., 1988. Snakes-active contour models, Int. J. Comput. Vision 1, pp. 321–331.CrossRef Kass M., Witkin, A., Terzopoulos, D., 1988. Snakes-active contour models, Int. J. Comput. Vision 1, pp. 321–331.CrossRef
15.
Zurück zum Zitat Osher, S., Fedkiw, R.P., 2002. Level set methods and dynamic implicit surfaces, Springer Verlag. Osher, S., Fedkiw, R.P., 2002. Level set methods and dynamic implicit surfaces, Springer Verlag.
16.
Zurück zum Zitat Osher, S., Paragios, N., 2003. Geometric level set methods in imaging, vision and graphics, Springer Verlag. Osher, S., Paragios, N., 2003. Geometric level set methods in imaging, vision and graphics, Springer Verlag.
17.
Zurück zum Zitat Li, B., Acton, S.T., 2007. Active Contour External Force Using Vector Field Convolution For Image Segmentation, IEEE Trans. Image Process. 16 (6), 2096–2106.MathSciNetCrossRef Li, B., Acton, S.T., 2007. Active Contour External Force Using Vector Field Convolution For Image Segmentation, IEEE Trans. Image Process. 16 (6), 2096–2106.MathSciNetCrossRef
18.
Zurück zum Zitat Maas, H., Baan, G. C., Huijing, P. A., 2001. Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J Biomech 34 (7), 927–940.CrossRef Maas, H., Baan, G. C., Huijing, P. A., 2001. Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J Biomech 34 (7), 927–940.CrossRef
19.
Zurück zum Zitat Bloch, R., Gonzalez-Serratos, H., 2003. Lateral force transmission across costameres in skeletal muscle. Exercise Sport Sci R 31 (2), 73–78.CrossRef Bloch, R., Gonzalez-Serratos, H., 2003. Lateral force transmission across costameres in skeletal muscle. Exercise Sport Sci R 31 (2), 73–78.CrossRef
Metadaten
Titel
Segmentation of Skeletal Muscle Fibres for Applications in Computational Skeletal Muscle Mechanics
verfasst von
O. Röhrle
H. Köstler
M. Loch
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-9619-0_12

Neuer Inhalt