Skip to main content
Erschienen in: Energy Efficiency 2/2016

01.04.2016 | Original Article

Selection of the best ARMAX model for forecasting energy demand: case study of the residential and commercial sectors in Iran

verfasst von: Hamed Shakouri G., Aliyeh Kazemi

Erschienen in: Energy Efficiency | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main purpose of the present study is to develop a simple yet proper top-down model for forecasting the energy demand of the residential and commercial sectors in Iran. This model can be used as a tool of scenario analysis to predict the emerging energy demand in future. The proposed model would be systematically developed and selected based on various quantified exogenous variables. For this purpose, a certain model out of a collection of 41,472 parallel models with different inputs and dynamics is chosen as the most appropriate model. According to the logical conjunctive relationships between the variables, the structure of all competing models is established to log-linear. Different possible combinations of various measures for the exogenous variables generate parallel models. Then, an automated fuzzy decision-making (FDM) process determines the best model. Finally, defining several scenarios, the energy demand of the residential and commercial sectors in Iran for the period of 2013 to 2021 is forecasted. The results showed that despite of de-subsidization, which is included by a dummy variable, the energy demand will grow by an average rate of about 3 % annually.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Since 1980 till present, the average 10-year share of industrial sector from total value added of the country has been increased by almost 10 % each decade.
 
2
Kwiatkowski–Phillips–Schmidt–Shin test
 
Literatur
Zurück zum Zitat Aras, H., & Aras, N. (2004). Forecasting residential natural gas demand. Energy Sources, 26, 463–472.CrossRef Aras, H., & Aras, N. (2004). Forecasting residential natural gas demand. Energy Sources, 26, 463–472.CrossRef
Zurück zum Zitat Bilgili, M., Sahin, B., Yasar, A., & Simsek, E. (2012). Electric energy demands of Turkey in residential and industrial sectors. Renewable and Sustainable Energy Reviews, 16, 404–414.CrossRef Bilgili, M., Sahin, B., Yasar, A., & Simsek, E. (2012). Electric energy demands of Turkey in residential and industrial sectors. Renewable and Sustainable Energy Reviews, 16, 404–414.CrossRef
Zurück zum Zitat Canyurt, O. E., Ozturk, K. H., Hepbasli, A., & Utlu, Z. (2005). Estimating the Turkish residential–commercial energy output based on genetic algorithm (GA) approaches. Energy Policy, 33(8), 1011–1019.CrossRef Canyurt, O. E., Ozturk, K. H., Hepbasli, A., & Utlu, Z. (2005). Estimating the Turkish residential–commercial energy output based on genetic algorithm (GA) approaches. Energy Policy, 33(8), 1011–1019.CrossRef
Zurück zum Zitat Catalina, T., Virgone, J., & Blanco, E. (2008). Development and validation of regression models to predict monthly heating demand for residential buildings. Energy and Buildings, 40(10), 1825–1832.CrossRef Catalina, T., Virgone, J., & Blanco, E. (2008). Development and validation of regression models to predict monthly heating demand for residential buildings. Energy and Buildings, 40(10), 1825–1832.CrossRef
Zurück zum Zitat Catalina, T., Iordache, V., & Caracaleanu, B. (2013). Multiple regression model for fast prediction of the heating energy demand. Energy and Buildings, 57, 302–312.CrossRef Catalina, T., Iordache, V., & Caracaleanu, B. (2013). Multiple regression model for fast prediction of the heating energy demand. Energy and Buildings, 57, 302–312.CrossRef
Zurück zum Zitat Cuddihy, J., Kennedy, C., & Byer, P. (2005). Energy use in Canada: environmental impacts and opportunities in relationship to infrastructure systems. Canadian Journal of Civil Engineering, 32(1), 1–15. doi:10.1139/l04-100.CrossRef Cuddihy, J., Kennedy, C., & Byer, P. (2005). Energy use in Canada: environmental impacts and opportunities in relationship to infrastructure systems. Canadian Journal of Civil Engineering, 32(1), 1–15. doi:10.​1139/​l04-100.CrossRef
Zurück zum Zitat Dilaver, Z., & Hunt, L. C. (2011). Modelling and forecasting Turkish residential electricity demand. Energy Policy, 39, 3117–3127.CrossRef Dilaver, Z., & Hunt, L. C. (2011). Modelling and forecasting Turkish residential electricity demand. Energy Policy, 39, 3117–3127.CrossRef
Zurück zum Zitat Donatos, G. S., & Mergos, G. J. (1991). Residential demand for electricity: the case of Greece. Energy Economics, 41–47. Donatos, G. S., & Mergos, G. J. (1991). Residential demand for electricity: the case of Greece. Energy Economics, 41–47.
Zurück zum Zitat Energy Balance Sheet 2011 (2012). Energy Planning Department, Deputy of Electricity and Energy Affairs, Ministry of Energy, Islamic Republic of Iran. Energy Balance Sheet 2011 (2012). Energy Planning Department, Deputy of Electricity and Energy Affairs, Ministry of Energy, Islamic Republic of Iran.
Zurück zum Zitat Forouzanfar, M., Doustmohammadi, A., Menhaj, M. B., Hasanzadeh, S., & Shakouri G., H. (2010). Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran. Applied Energy, 87, 268–274.CrossRef Forouzanfar, M., Doustmohammadi, A., Menhaj, M. B., Hasanzadeh, S., & Shakouri G., H. (2010). Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran. Applied Energy, 87, 268–274.CrossRef
Zurück zum Zitat Grasa, A. A. (1989). Econometric model selection: A new approach. Norwell: Kluwer.CrossRef Grasa, A. A. (1989). Econometric model selection: A new approach. Norwell: Kluwer.CrossRef
Zurück zum Zitat Halicioglu, F. (2007). Residential electricity demand dynamics in Turkey. Energy Economics, 29, 199–210.CrossRef Halicioglu, F. (2007). Residential electricity demand dynamics in Turkey. Energy Economics, 29, 199–210.CrossRef
Zurück zum Zitat Hsing, Y. (1994). Estimation of residential demand for electricity with the cross-sectionally correlated and time-wise autoregressive model. Resource and Energy Economics, 16, 255–263.CrossRef Hsing, Y. (1994). Estimation of residential demand for electricity with the cross-sectionally correlated and time-wise autoregressive model. Resource and Energy Economics, 16, 255–263.CrossRef
Zurück zum Zitat Hydrocarbon Balance 2010, (2011). Institute for International Energy Studies (IIES), Ministry of Petroleum, Islamic Republic of Iran. Hydrocarbon Balance 2010, (2011). Institute for International Energy Studies (IIES), Ministry of Petroleum, Islamic Republic of Iran.
Zurück zum Zitat Jung, T. Y. (1993). Ordered logit model for residential electricity demand in Korea. Energy Economics, 205–209. Jung, T. Y. (1993). Ordered logit model for residential electricity demand in Korea. Energy Economics, 205–209.
Zurück zum Zitat Kavgica, M., Mavrogiannia, A., Mumovica, D., Summerfieldb, A., Stevanovicc, Z., & Djurovic-Petrovicd, M. (2010). A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment, 45(7), 1683–1697.CrossRef Kavgica, M., Mavrogiannia, A., Mumovica, D., Summerfieldb, A., Stevanovicc, Z., & Djurovic-Petrovicd, M. (2010). A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment, 45(7), 1683–1697.CrossRef
Zurück zum Zitat Kazemi, A., Shakouri G., H., Menhaj, M. B., Mehregan, M. R., Neshat, N. (2010). A multi-level artificial neural network for residential and commercial energy demand forecast: Iran case study. International Conference on Management Technology and Applications, 24–28. Kazemi, A., Shakouri G., H., Menhaj, M. B., Mehregan, M. R., Neshat, N. (2010). A multi-level artificial neural network for residential and commercial energy demand forecast: Iran case study. International Conference on Management Technology and Applications, 24–28.
Zurück zum Zitat Kheirkhah, A., Azadeh, A., Saberi, M., Azaron, A., & Shakouri, H. (2013). Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis. Computers & Industrial Engineering, 64(1), 425–441.CrossRef Kheirkhah, A., Azadeh, A., Saberi, M., Azaron, A., & Shakouri, H. (2013). Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis. Computers & Industrial Engineering, 64(1), 425–441.CrossRef
Zurück zum Zitat Kialashaki, A., & Reisel, J. R. (2013). Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks. Applied Energy, 108, 271–280.CrossRef Kialashaki, A., & Reisel, J. R. (2013). Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks. Applied Energy, 108, 271–280.CrossRef
Zurück zum Zitat Lam, J. C. (1998). Climatic and economic influences on residential electricity consumption. Energy Conversion and Management, 39(7), 623–629.CrossRef Lam, J. C. (1998). Climatic and economic influences on residential electricity consumption. Energy Conversion and Management, 39(7), 623–629.CrossRef
Zurück zum Zitat Ljung, L. (1987). System identification: Theory for the user. Prentic Hall. Ljung, L. (1987). System identification: Theory for the user. Prentic Hall.
Zurück zum Zitat Moradi, M. A., Shakouri G., H., Aboutaleb, A. M. (2013). Developing the electricity demand model for Iran’s residential sector; based on LEAP, 28th International Power Systems Conference, Tehran, Iran. Moradi, M. A., Shakouri G., H., Aboutaleb, A. M. (2013). Developing the electricity demand model for Iran’s residential sector; based on LEAP, 28th International Power Systems Conference, Tehran, Iran.
Zurück zum Zitat Nakajima, T., & Hamori, S. (2010). Change in consumer sensitivity to electricity prices in response to retail deregulation: A panel empirical analysis of the residential demand for electricity in the United States. Energy Policy, 38, 2470–2476.CrossRef Nakajima, T., & Hamori, S. (2010). Change in consumer sensitivity to electricity prices in response to retail deregulation: A panel empirical analysis of the residential demand for electricity in the United States. Energy Policy, 38, 2470–2476.CrossRef
Zurück zum Zitat Narayan, P. K., Smyth, R., & Prasad, A. (2007). Electricity consumption in G7 countries: a panel cointegration analysis of residential demand elasticities. Energy Policy, 35, 4485–4494.CrossRef Narayan, P. K., Smyth, R., & Prasad, A. (2007). Electricity consumption in G7 countries: a panel cointegration analysis of residential demand elasticities. Energy Policy, 35, 4485–4494.CrossRef
Zurück zum Zitat Overcash, M., & Bawaneh, K. (2013). Estimating nonprocess energy from building energy consumption. Energy Efficiency, 6, 21–33.CrossRef Overcash, M., & Bawaneh, K. (2013). Estimating nonprocess energy from building energy consumption. Energy Efficiency, 6, 21–33.CrossRef
Zurück zum Zitat Ozturk, H. K., Canyurt, O. E., Hepbasli, A., & Utlu, Z. (2004). Residential–commercial energy input estimation based on genetic algorithm (GA) approached: an application of Turkey. Energy and Buildings, 36, 175–183.CrossRef Ozturk, H. K., Canyurt, O. E., Hepbasli, A., & Utlu, Z. (2004). Residential–commercial energy input estimation based on genetic algorithm (GA) approached: an application of Turkey. Energy and Buildings, 36, 175–183.CrossRef
Zurück zum Zitat Pourazarm, E., & Cooray, A. (2013). Estimating and forecasting residential electricity demand in Iran. Economic Modelling, 35, 546–558.CrossRef Pourazarm, E., & Cooray, A. (2013). Estimating and forecasting residential electricity demand in Iran. Economic Modelling, 35, 546–558.CrossRef
Zurück zum Zitat Poyer, D. A., & Williams, M. (1993). Residential energy demand: additional empirical evidence by minority household type. Energy Economics, 93–100. Poyer, D. A., & Williams, M. (1993). Residential energy demand: additional empirical evidence by minority household type. Energy Economics, 93–100.
Zurück zum Zitat Rapanos, V. T., & Polemis, M. L. (2006). The structure of residential energy demand in Greece. Energy Policy, 34, 3137–3143.CrossRef Rapanos, V. T., & Polemis, M. L. (2006). The structure of residential energy demand in Greece. Energy Policy, 34, 3137–3143.CrossRef
Zurück zum Zitat Rodger, J. A. (2014). A fuzzy nearest neighbor neural network statistical model for predicting, demand for natural gas and energy cost savings in public buildings. Expert Systems with Applications, 41, 1813–1829.CrossRef Rodger, J. A. (2014). A fuzzy nearest neighbor neural network statistical model for predicting, demand for natural gas and energy cost savings in public buildings. Expert Systems with Applications, 41, 1813–1829.CrossRef
Zurück zum Zitat Ruijven, B., Vries, B., Vuuren, D. P., & Sluijs, J. P. (2010). A global model for residential energy use: uncertainty in calibration to regional data. Energy, 35, 269–282.CrossRef Ruijven, B., Vries, B., Vuuren, D. P., & Sluijs, J. P. (2010). A global model for residential energy use: uncertainty in calibration to regional data. Energy, 35, 269–282.CrossRef
Zurück zum Zitat Saad, S. (2009). Electricity demand for South Korean residential sector. Energy Policy, 37, 5469–5474.CrossRef Saad, S. (2009). Electricity demand for South Korean residential sector. Energy Policy, 37, 5469–5474.CrossRef
Zurück zum Zitat Shahmoradi, A., & Shakouri G., H. (2010). Investigation on the impact of an energy desubsidization shock on the general price index via a nonlinear inflation model: case of Iran. Iranian Economic Review, 15(27), 33–51. Shahmoradi, A., & Shakouri G., H. (2010). Investigation on the impact of an energy desubsidization shock on the general price index via a nonlinear inflation model: case of Iran. Iranian Economic Review, 15(27), 33–51.
Zurück zum Zitat Shakouri G., H., & Menhaj, M. B. (2008). A systematic fuzzy decision-making process to choose the best model among a set of competing models. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans , 38(5), 1118–1128.CrossRef Shakouri G., H., & Menhaj, M. B. (2008). A systematic fuzzy decision-making process to choose the best model among a set of competing models. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans , 38(5), 1118–1128.CrossRef
Zurück zum Zitat Shakouri G., H., Rastad, M., & Nazarzadeh, J. (2006). A hybrid nonlinear model for the annual maximum simultaneous electric power demand. IEEE Transactions on Power Systems, 21(3), 1069–1078.CrossRef Shakouri G., H., Rastad, M., & Nazarzadeh, J. (2006). A hybrid nonlinear model for the annual maximum simultaneous electric power demand. IEEE Transactions on Power Systems, 21(3), 1069–1078.CrossRef
Zurück zum Zitat Shakouri G., H. (2000). Modeling and identification of Iranian macroeconomic dynamic system (systems approach), Ph.D. Dissertation, Amirkabir University of Technology. Shakouri G., H. (2000). Modeling and identification of Iranian macroeconomic dynamic system (systems approach), Ph.D. Dissertation, Amirkabir University of Technology.
Zurück zum Zitat Soldo, B., Potocnik, P., Simunovic, G. Saric, T., Govekar, E. (2013). Improving the residential natural gas consumption forecasting models by using solar radiation. Energy and Buildings, In Press, Accepted Manuscript, Available online 20 Nov 2013. Soldo, B., Potocnik, P., Simunovic, G. Saric, T., Govekar, E. (2013). Improving the residential natural gas consumption forecasting models by using solar radiation. Energy and Buildings, In Press, Accepted Manuscript, Available online 20 Nov 2013.
Zurück zum Zitat Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renewable and Sustainable Energy Reviews, 13, 1819–1835.CrossRef Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renewable and Sustainable Energy Reviews, 13, 1819–1835.CrossRef
Zurück zum Zitat Taspınar, F., Celebi, N., & Tutkun, N. (2013). Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods. Energy and Buildings, 56, 23–31.CrossRef Taspınar, F., Celebi, N., & Tutkun, N. (2013). Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods. Energy and Buildings, 56, 23–31.CrossRef
Zurück zum Zitat Yoo, S. H., Zhu, K., Lee, J. S., & Kwak, S. J. (2007). Estimation of residential electricity demand function in Seoul by correction for sample selection bias. Energy Policy, 35, 5702–5707.CrossRef Yoo, S. H., Zhu, K., Lee, J. S., & Kwak, S. J. (2007). Estimation of residential electricity demand function in Seoul by correction for sample selection bias. Energy Policy, 35, 5702–5707.CrossRef
Zurück zum Zitat Yu, S., Zhu, K., & Zhang, X. (2012a). Energy demand projection of China using a path-coefficient analysis and PSO-GA approach. Energy Conversion and Management, 53(1), 142–153.CrossRef Yu, S., Zhu, K., & Zhang, X. (2012a). Energy demand projection of China using a path-coefficient analysis and PSO-GA approach. Energy Conversion and Management, 53(1), 142–153.CrossRef
Zurück zum Zitat Yu, S., Wei, Y. M., & Wang, K. (2012b). Prediction of China’s coal production—environmental pollution based on a hybrid genetic algorithm-system dynamics model. Energy Policy, 42, 521–529.CrossRef Yu, S., Wei, Y. M., & Wang, K. (2012b). Prediction of China’s coal production—environmental pollution based on a hybrid genetic algorithm-system dynamics model. Energy Policy, 42, 521–529.CrossRef
Zurück zum Zitat Zhang, Q. (2004). Residential energy consumption in China and its comparison with Japan, Canada, and USA. Energy and Buildings, 36, 1217–1225.CrossRef Zhang, Q. (2004). Residential energy consumption in China and its comparison with Japan, Canada, and USA. Energy and Buildings, 36, 1217–1225.CrossRef
Zurück zum Zitat Zhaoa, X., Lia, N., & Ma, C. (2012). Residential energy consumption in urban China: a decomposition analysis. Energy Policy, 41, 644–653.CrossRef Zhaoa, X., Lia, N., & Ma, C. (2012). Residential energy consumption in urban China: a decomposition analysis. Energy Policy, 41, 644–653.CrossRef
Zurück zum Zitat Ziramba, E. (2008). The demand for residential electricity in South Africa. Energy Policy, 36, 3460–3466.CrossRef Ziramba, E. (2008). The demand for residential electricity in South Africa. Energy Policy, 36, 3460–3466.CrossRef
Metadaten
Titel
Selection of the best ARMAX model for forecasting energy demand: case study of the residential and commercial sectors in Iran
verfasst von
Hamed Shakouri G.
Aliyeh Kazemi
Publikationsdatum
01.04.2016
Verlag
Springer Netherlands
Erschienen in
Energy Efficiency / Ausgabe 2/2016
Print ISSN: 1570-646X
Elektronische ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-015-9368-9

Weitere Artikel der Ausgabe 2/2016

Energy Efficiency 2/2016 Zur Ausgabe