Skip to main content
Erschienen in: Journal of Materials Science 20/2017

17.07.2017 | Metals

Selective laser melting of H13: microstructure and residual stress

verfasst von: J. J. Yan, D. L. Zheng, H. X. Li, X. Jia, J. F. Sun, Y. L. Li, M. Qian, M. Yan

Erschienen in: Journal of Materials Science | Ausgabe 20/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this research, samples of the H13 steel, a commonly used hot work tool steel in the die/mould manufacturing industry, were additively manufactured using selective laser melting (SLM). Their as-built microstructures were characterised in detail using transmission electron microscopy (TEM) and compared with that of the conventionally manufactured H13 (as-supplied). SLM resulted in the formation of martensite and also its partial decomposition into fine α-Fe and Fe3C precipitates along with retained austenite. TEM analyses further revealed that the lattice of the resulting α-Fe phase is slightly distorted due to enhanced Cr, Mo and V contents. Substantially high residual stresses in the range of 940–1420 MPa were detected in the as-built H13 samples compared with its yield strength of ~1650 MPa. In addition, it was identified that the high residual stress existed from just about two additive layers (100 µm) above the substrate along the build direction. The high residual stresses were mainly attributed to the martensitic transformation that occurred during SLM. The research findings of this study suggest that the substantially high residual stresses can be easily problematic in the AM of intricate H13 dies or moulds by SLM.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASM International Handbook Committee (1990) Properties and selection: irons, steels, and high performance alloys. In: Metals handbook, vol 1, 10th edn. ASM International Handbook Committee (1990) Properties and selection: irons, steels, and high performance alloys. In: Metals handbook, vol 1, 10th edn.
2.
Zurück zum Zitat Morgan RH, Papworth AJ, Sutcliffe C, Fox P, O’Nell W (2002) High density net shape components by direct laser re-melting of single-phase powders. J Mater Sci 37:3093–3100. doi:10.1023/A:1016185606642 CrossRef Morgan RH, Papworth AJ, Sutcliffe C, Fox P, O’Nell W (2002) High density net shape components by direct laser re-melting of single-phase powders. J Mater Sci 37:3093–3100. doi:10.​1023/​A:​1016185606642 CrossRef
3.
Zurück zum Zitat Everhart Wes, Sawyer Eric, Neidt Tod, Dinardo Joe, Brown Ben (2016) The effect of surface finish on tensile behavior of additively manufactured tensile bars. J Mater Sci 51:3836–3845. doi:10.1007/s10853-015-9702-9 CrossRef Everhart Wes, Sawyer Eric, Neidt Tod, Dinardo Joe, Brown Ben (2016) The effect of surface finish on tensile behavior of additively manufactured tensile bars. J Mater Sci 51:3836–3845. doi:10.​1007/​s10853-015-9702-9 CrossRef
4.
Zurück zum Zitat Sander J, Hufenbach J, Bleckmann M, Giebeler L, Wendrock H, Oswald S, Gemming T, Eckert J, Kuhn U (2017) Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties. J Mater Sci 52:4944–4956. doi:10.1007/s10853-016-0731-9 CrossRef Sander J, Hufenbach J, Bleckmann M, Giebeler L, Wendrock H, Oswald S, Gemming T, Eckert J, Kuhn U (2017) Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties. J Mater Sci 52:4944–4956. doi:10.​1007/​s10853-016-0731-9 CrossRef
5.
Zurück zum Zitat Altan T, Lilly BW, Kruth JP, König W, Tönshoff HK, van Luttervelt CA, Khairy AB (1993) Advanced techniques for die and mold manufacturing. CIRP Ann Manuf Technol 42:707–716CrossRef Altan T, Lilly BW, Kruth JP, König W, Tönshoff HK, van Luttervelt CA, Khairy AB (1993) Advanced techniques for die and mold manufacturing. CIRP Ann Manuf Technol 42:707–716CrossRef
6.
Zurück zum Zitat Altan T, Lilly B, Yen YC, Altan T (2001) Manufacturing of dies and molds. CIRP Ann Manuf Technol 50:404–422CrossRef Altan T, Lilly B, Yen YC, Altan T (2001) Manufacturing of dies and molds. CIRP Ann Manuf Technol 50:404–422CrossRef
7.
Zurück zum Zitat Yan YN, Li SJ, Zhang RJ, Lin F, Wu RD, Lu QP, Xiong Z, Wang XH (2009) Rapid prototyping and manufacturing technology: Principle, representative technics, applications, and development trends. Tsinghua Sci Technol 14:1–12CrossRef Yan YN, Li SJ, Zhang RJ, Lin F, Wu RD, Lu QP, Xiong Z, Wang XH (2009) Rapid prototyping and manufacturing technology: Principle, representative technics, applications, and development trends. Tsinghua Sci Technol 14:1–12CrossRef
8.
Zurück zum Zitat Sander J, Hufenbach J, Giebeler L, Wendrock H, Kühn U, Eckert J (2016) Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater Des 89:335–341CrossRef Sander J, Hufenbach J, Giebeler L, Wendrock H, Kühn U, Eckert J (2016) Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater Des 89:335–341CrossRef
9.
Zurück zum Zitat Xue L (2010) Laser consolidation: a rapid manufacturing process for making net-shape functional components. In: Lawrence JR, Pou J, Low DKY, Toyserkani E (Eds) Advances in laser materials processing, 1st edn. pp 492–534 Xue L (2010) Laser consolidation: a rapid manufacturing process for making net-shape functional components. In: Lawrence JR, Pou J, Low DKY, Toyserkani E (Eds) Advances in laser materials processing, 1st edn. pp 492–534
10.
Zurück zum Zitat Yap CY, Chua CK, Dong ZL (2016) An effective analytical model of selective laser melting. Virtual Phys Prototyp 11:21–26CrossRef Yap CY, Chua CK, Dong ZL (2016) An effective analytical model of selective laser melting. Virtual Phys Prototyp 11:21–26CrossRef
11.
Zurück zum Zitat Chen JY, Xue LJ, Wang SH (2011) Experimental studies on process-induced morphological characteristics of macro- and microstructures in laser consolidated alloys. J Mater Sci 46:5859–5875. doi:10.1007/s10853-011-5543-3 CrossRef Chen JY, Xue LJ, Wang SH (2011) Experimental studies on process-induced morphological characteristics of macro- and microstructures in laser consolidated alloys. J Mater Sci 46:5859–5875. doi:10.​1007/​s10853-011-5543-3 CrossRef
12.
Zurück zum Zitat Yan M, Xu W, Gargusch MS, Tang HP, Brandt M, Qian M (2014) A review of the effect of oxygen on room-temperature ductility of titanium and titanium alloys. Powder Metall 57:251–257CrossRef Yan M, Xu W, Gargusch MS, Tang HP, Brandt M, Qian M (2014) A review of the effect of oxygen on room-temperature ductility of titanium and titanium alloys. Powder Metall 57:251–257CrossRef
13.
Zurück zum Zitat Brooks H, Brigden K (2016) Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling. Addit Manuf 11:16–22CrossRef Brooks H, Brigden K (2016) Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling. Addit Manuf 11:16–22CrossRef
14.
Zurück zum Zitat Lu YJ, Wu SQ, Gan YL, Huang TT, Yang CG, Lin JJ, Lin JX (2015) Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol 75:197–206CrossRef Lu YJ, Wu SQ, Gan YL, Huang TT, Yang CG, Lin JJ, Lin JX (2015) Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol 75:197–206CrossRef
15.
Zurück zum Zitat Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of H13 tool steel for 3-D components. J Miner Met Mater Soc 49:55–60CrossRef Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of H13 tool steel for 3-D components. J Miner Met Mater Soc 49:55–60CrossRef
16.
Zurück zum Zitat Ahn DG (2011) Applications of laser assisted metal rapid tooling process to manufacture of molding and forming tools—state of the art. Int J Precis Eng Manuf 12:925–938CrossRef Ahn DG (2011) Applications of laser assisted metal rapid tooling process to manufacture of molding and forming tools—state of the art. Int J Precis Eng Manuf 12:925–938CrossRef
17.
Zurück zum Zitat Maziasz PJ, Payzant EA, Schlienger ME, McHugh KM (1998) Residual stresses and microstructure of H13 steel formed by combining two different direct fabrication methods. Scr Mater 39:1471–1476CrossRef Maziasz PJ, Payzant EA, Schlienger ME, McHugh KM (1998) Residual stresses and microstructure of H13 steel formed by combining two different direct fabrication methods. Scr Mater 39:1471–1476CrossRef
18.
Zurück zum Zitat Mazur Maciej, Leary Martin, McMillan Matthew, Elambasseril Joe, Brandt Milan (2016) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22(3):504–518CrossRef Mazur Maciej, Leary Martin, McMillan Matthew, Elambasseril Joe, Brandt Milan (2016) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22(3):504–518CrossRef
19.
Zurück zum Zitat Sander J, Hufenbach J, Giebeler L, Wendrock H, Kühn U, Eckert J (2016) Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater Des 89:335–341CrossRef Sander J, Hufenbach J, Giebeler L, Wendrock H, Kühn U, Eckert J (2016) Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater Des 89:335–341CrossRef
20.
Zurück zum Zitat Safka J, Ackermann M, Volesk L (2016) Structural properties of H13 tool steel parts produced with use of selective laser melting technology. In: Journal of physics: conference series, vol 709. Article id: 012004 Safka J, Ackermann M, Volesk L (2016) Structural properties of H13 tool steel parts produced with use of selective laser melting technology. In: Journal of physics: conference series, vol 709. Article id: 012004
21.
Zurück zum Zitat AlMangour Bandar, Grzesiak Dariusz, Yang Jenn-Ming (2017) Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment. J Mater Process Technol 244:344–353CrossRef AlMangour Bandar, Grzesiak Dariusz, Yang Jenn-Ming (2017) Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment. J Mater Process Technol 244:344–353CrossRef
22.
Zurück zum Zitat AlMangour Bandar, Grzesiak Dariusz, Yang Jenn-Ming (2016) Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater Des 96:150–161CrossRef AlMangour Bandar, Grzesiak Dariusz, Yang Jenn-Ming (2016) Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater Des 96:150–161CrossRef
23.
Zurück zum Zitat AlMangour Bandar, Frankline Yu, Yang Jenn-Ming, Grzesiak Dariusz (2017) Selective laser melting of TiC/H13 steel bulk-form nanocomposites with variations in processing parameters. MRS Commun 7:1–6CrossRef AlMangour Bandar, Frankline Yu, Yang Jenn-Ming, Grzesiak Dariusz (2017) Selective laser melting of TiC/H13 steel bulk-form nanocomposites with variations in processing parameters. MRS Commun 7:1–6CrossRef
24.
Zurück zum Zitat Bremen S, Meiners W, Diatlov A (2012) Selective laser melting. Laser Tech J 9:33–38CrossRef Bremen S, Meiners W, Diatlov A (2012) Selective laser melting. Laser Tech J 9:33–38CrossRef
25.
Zurück zum Zitat Kumar S (2014) Selective laser sintering/melting. Compr Mater Process Mater Sci Mater Eng 10:93–134 Kumar S (2014) Selective laser sintering/melting. Compr Mater Process Mater Sci Mater Eng 10:93–134
26.
Zurück zum Zitat Li YL, Gu DD (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867CrossRef Li YL, Gu DD (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867CrossRef
27.
Zurück zum Zitat Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265CrossRef Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265CrossRef
28.
Zurück zum Zitat Gu DD, He BB (2016) Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti–Ni shape memory alloy. Comput Mater Sci 117:221–232CrossRef Gu DD, He BB (2016) Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti–Ni shape memory alloy. Comput Mater Sci 117:221–232CrossRef
29.
Zurück zum Zitat Griffith ML, Schlienger ME, Harwell LD, Oliver MS, Baldwin MD, Ensz MT, Essien M, Brooks J, Robino CV, Smugeresky JE, Hofmeister WH, Wert MJ, Nelson DV (1999) Understanding thermal behavior in the LENS process. Mater Des 20:107–113CrossRef Griffith ML, Schlienger ME, Harwell LD, Oliver MS, Baldwin MD, Ensz MT, Essien M, Brooks J, Robino CV, Smugeresky JE, Hofmeister WH, Wert MJ, Nelson DV (1999) Understanding thermal behavior in the LENS process. Mater Des 20:107–113CrossRef
30.
Zurück zum Zitat Li C, Fu CH, Guo YB, Fang FZ (2016) A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol 229:703–712CrossRef Li C, Fu CH, Guo YB, Fang FZ (2016) A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol 229:703–712CrossRef
31.
Zurück zum Zitat Lin YJ, McHugh KM, Zhou YZ, Lavernia EJ (2006) Microstructure and hardness of spray-formed chromium-containing steel tooling. Scr Mater 55:581–584CrossRef Lin YJ, McHugh KM, Zhou YZ, Lavernia EJ (2006) Microstructure and hardness of spray-formed chromium-containing steel tooling. Scr Mater 55:581–584CrossRef
32.
Zurück zum Zitat Zaeh MF, Branner G (2009) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4:35–45CrossRef Zaeh MF, Branner G (2009) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4:35–45CrossRef
33.
Zurück zum Zitat Yadroitsev I, Yadroitsava I (2015) Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys Prototyp 10:67–76CrossRef Yadroitsev I, Yadroitsava I (2015) Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys Prototyp 10:67–76CrossRef
34.
Zurück zum Zitat Jiang WH, Kovacevic R (2007) Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance. J Mater Process Technol 186:331–338CrossRef Jiang WH, Kovacevic R (2007) Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance. J Mater Process Technol 186:331–338CrossRef
35.
Zurück zum Zitat Qiu C, Ravi GA, Dance C, Ranson A, Dilworth S, Attallah MM (2015) Fabrication of large Ti-6Al-4V structures by direct laser deposition. J Alloys Compd 629:351–361CrossRef Qiu C, Ravi GA, Dance C, Ranson A, Dilworth S, Attallah MM (2015) Fabrication of large Ti-6Al-4V structures by direct laser deposition. J Alloys Compd 629:351–361CrossRef
36.
Zurück zum Zitat Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int J Fatigue 48:300–307CrossRef Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int J Fatigue 48:300–307CrossRef
37.
Zurück zum Zitat Lee C, Park H, Yoo J, Lee C, Woo W, Park S (2015) Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr. Appl Surf Sci 345:286–294CrossRef Lee C, Park H, Yoo J, Lee C, Woo W, Park S (2015) Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr. Appl Surf Sci 345:286–294CrossRef
38.
Zurück zum Zitat Prevey PS (1986) X-ray diffraction residual stress techniques. In: ASM handbook, vol 10, 9th edn. pp 380–392 Prevey PS (1986) X-ray diffraction residual stress techniques. In: ASM handbook, vol 10, 9th edn. pp 380–392
39.
Zurück zum Zitat Kang M, Park G, Jung JG, Kim BH, Lee YK (2015) The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel. J Alloys Compd 627:359–366CrossRef Kang M, Park G, Jung JG, Kim BH, Lee YK (2015) The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel. J Alloys Compd 627:359–366CrossRef
40.
Zurück zum Zitat Cottam R, Wang J, Luzin V (2014) Characterization of microstructure and residual stress in a 3D H13 tool steel component produced by additive manufacturing. J Mater Res 29:1978–1986CrossRef Cottam R, Wang J, Luzin V (2014) Characterization of microstructure and residual stress in a 3D H13 tool steel component produced by additive manufacturing. J Mater Res 29:1978–1986CrossRef
42.
Zurück zum Zitat Qian M, Xu W, Brant M, Tang HP (2016) Additive manufacturing and post-processing of Ti–6Al–4V for superior mechanical properties. MRS Bull 41:775–783CrossRef Qian M, Xu W, Brant M, Tang HP (2016) Additive manufacturing and post-processing of Ti–6Al–4V for superior mechanical properties. MRS Bull 41:775–783CrossRef
43.
Zurück zum Zitat Hao SX, Liu ZC (2005) A study on continuous cooling transformation (CCT) curves of hot work die steel H13. Spec Steel 26:23–24 Hao SX, Liu ZC (2005) A study on continuous cooling transformation (CCT) curves of hot work die steel H13. Spec Steel 26:23–24
44.
Zurück zum Zitat Murakawa H, Béreš M, Davies CM, Rashed S, Vega A, Tsunori M, Nikbin KM, Dye D (2010) Effect of low transformation temperature weld filler metal on welding residual stress. Sci Technol Weld Join 15:393–399CrossRef Murakawa H, Béreš M, Davies CM, Rashed S, Vega A, Tsunori M, Nikbin KM, Dye D (2010) Effect of low transformation temperature weld filler metal on welding residual stress. Sci Technol Weld Join 15:393–399CrossRef
45.
Zurück zum Zitat Francis JA, Stone HJ, Kundu S, Bhadeshia HKDH, Rogge RB, Withers PJ, Karlsson L (2009) The effects of filler metal transformation temperature on residual stresses in a high strength steel weld. J Press Vessel Technol 131:041401CrossRef Francis JA, Stone HJ, Kundu S, Bhadeshia HKDH, Rogge RB, Withers PJ, Karlsson L (2009) The effects of filler metal transformation temperature on residual stresses in a high strength steel weld. J Press Vessel Technol 131:041401CrossRef
Metadaten
Titel
Selective laser melting of H13: microstructure and residual stress
verfasst von
J. J. Yan
D. L. Zheng
H. X. Li
X. Jia
J. F. Sun
Y. L. Li
M. Qian
M. Yan
Publikationsdatum
17.07.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1380-3

Weitere Artikel der Ausgabe 20/2017

Journal of Materials Science 20/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.