Skip to main content
Erschienen in: Optical and Quantum Electronics 8/2015

01.08.2015

Self-frequency shift and nonlinear interaction of equilibrium and pulsating solutions in the presence of linear and nonlinear gain, spectral filtering, and intrapulse Raman scattering

verfasst von: Ivan M. Uzunov, Todor N. Arabadzhev, Zhivko D. Georgiev

Erschienen in: Optical and Quantum Electronics | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work we study numerically the self-frequency shift of the equilibrium and pulsating solutions in the presence of linear and nonlinear gain, spectral filtering, and intrapulse Raman scattering (IRS). It has been established that the stationary value of the central frequency of solutions, which appears as a result of the collective action of these physical effects, is a linearly increasing function of the Raman parameter γ for the solution of Tsoy and Akhmediev (Phys Lett A 343:17–422, 2005), Tsoy et al. (Phys Rev E 73:036621, 2006), and the quadratic function of γ for the parameters used in Uzunov et al. (Phys Rev E 90:042906, 2014). We have found a complete suppression of the self-frequency shift of the equilibrium and pulsating solutions in the presence of linear and nonlinear gain, spectral filtering, and IRS below and at the point of the Poincare–Andronov–Hopf bifurcation (PAHB) (Uzunov et al. in Phys Rev E 90:042906, 2014). We have numerically observed stable pairs and sequences of equidistant equilibrium solutions and pulsating solutions propagating in the presence of linear and nonlinear gain, spectral filtering, and IRS below and at the point of the PAHB. The pairs and equidistant sequences of pulsating solutions at the point of bifurcation require larger initial separation and exist at smaller distances of propagation than the pairs and equidistant sequences of the equilibrium solutions below the point of bifurcation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Afanasiev, V.V., Serkin, V.N., Vysloukh, V.A.: Amplification and compression of femtosecond optical solitons in active fibers. Sov. Lightwave Commun. 2, 35–38 (1992) Afanasiev, V.V., Serkin, V.N., Vysloukh, V.A.: Amplification and compression of femtosecond optical solitons in active fibers. Sov. Lightwave Commun. 2, 35–38 (1992)
Zurück zum Zitat Afanasjev, V.V.: Soliton singularity in the system with nonlinear gain. Opt. Lett. 20, 704–706 (1995)CrossRefADS Afanasjev, V.V.: Soliton singularity in the system with nonlinear gain. Opt. Lett. 20, 704–706 (1995)CrossRefADS
Zurück zum Zitat Afanasjev, V.V., Akhmediev, N.N.: Soliton interaction and bound states in amplified-damped fiber systems. Opt. Lett. 20, 1970–1972 (1995)CrossRefADS Afanasjev, V.V., Akhmediev, N.N.: Soliton interaction and bound states in amplified-damped fiber systems. Opt. Lett. 20, 1970–1972 (1995)CrossRefADS
Zurück zum Zitat Afanasjev, V.V., Akhmediev, N.N.: Soliton interaction in nonequilibrium dynamical systems. Phys. Rev. E 53, 6471–6475 (1996)CrossRefADS Afanasjev, V.V., Akhmediev, N.N.: Soliton interaction in nonequilibrium dynamical systems. Phys. Rev. E 53, 6471–6475 (1996)CrossRefADS
Zurück zum Zitat Agrawal, G.P.: Nonlinear fiber optics, 3rd edn. Academic Press, San Diego (2001) Agrawal, G.P.: Nonlinear fiber optics, 3rd edn. Academic Press, San Diego (2001)
Zurück zum Zitat Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997) Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)
Zurück zum Zitat Akhmediev, N.N., Ankiewicz, A., Soto-Crespo, J.M.: Multisoliton solutions of the complex Ginzburg–Landau equation. Phys. Rev. Lett. 79, 4047–4051 (1997)MATHMathSciNetCrossRefADS Akhmediev, N.N., Ankiewicz, A., Soto-Crespo, J.M.: Multisoliton solutions of the complex Ginzburg–Landau equation. Phys. Rev. Lett. 79, 4047–4051 (1997)MATHMathSciNetCrossRefADS
Zurück zum Zitat Akhmediev, N., Soto-Crespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 056602 (2001)CrossRefADS Akhmediev, N., Soto-Crespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 056602 (2001)CrossRefADS
Zurück zum Zitat Akhmediev, N., Soto-Crespo, J.M., Grelu, P.: Vibrating and shaking soliton pairs in dissipative systems. Phys. Lett. A 364, 413–416 (2007)CrossRefADS Akhmediev, N., Soto-Crespo, J.M., Grelu, P.: Vibrating and shaking soliton pairs in dissipative systems. Phys. Lett. A 364, 413–416 (2007)CrossRefADS
Zurück zum Zitat Bélanger, P.-A., Gagnon, L., Pare, C.: Solitary pulses in an amplified nonlinear dispersive medium. Opt. Lett. 14, 943–945 (1989)CrossRefADS Bélanger, P.-A., Gagnon, L., Pare, C.: Solitary pulses in an amplified nonlinear dispersive medium. Opt. Lett. 14, 943–945 (1989)CrossRefADS
Zurück zum Zitat Blow, K.J., Doran, N.J., Wood, D.: Suppression of the soliton self-frequency shift by bandwidth-limited amplification. J. Opt. Soc. Am. B 5, 1301–1304 (1988)CrossRefADS Blow, K.J., Doran, N.J., Wood, D.: Suppression of the soliton self-frequency shift by bandwidth-limited amplification. J. Opt. Soc. Am. B 5, 1301–1304 (1988)CrossRefADS
Zurück zum Zitat Chang, W., Ankiewicz, A., Akhmediev, N.N., Soto-Crespo, J.M.: Creeping solitons in dissipative systems and their bifurcations. Phys. Rev. E 76, 016607 (2007)MathSciNetCrossRefADS Chang, W., Ankiewicz, A., Akhmediev, N.N., Soto-Crespo, J.M.: Creeping solitons in dissipative systems and their bifurcations. Phys. Rev. E 76, 016607 (2007)MathSciNetCrossRefADS
Zurück zum Zitat Conte, R., Musette, M.: Exact solitons to the complex Ginzburg–Landau equation of non-linear optics. Pure Appl. Opt. 4, 315–320 (1995)CrossRefADS Conte, R., Musette, M.: Exact solitons to the complex Ginzburg–Landau equation of non-linear optics. Pure Appl. Opt. 4, 315–320 (1995)CrossRefADS
Zurück zum Zitat Conte, R., Musette, M.: Solitary waves of nonlinear nonintegrable equations. In: Akhmediev, N., Ankievicz, A. (eds.) Dissipative Solitons. Springer, Berlin (2005) Conte, R., Musette, M.: Solitary waves of nonlinear nonintegrable equations. In: Akhmediev, N., Ankievicz, A. (eds.) Dissipative Solitons. Springer, Berlin (2005)
Zurück zum Zitat Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 854–1112 (1993)CrossRefADS Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 854–1112 (1993)CrossRefADS
Zurück zum Zitat Gerdjikov, V.S., Uzunov, I.M., Evstatiev, E.G., Diankov, G.L.: The nonlinear Schrödinger and N-soliton interaction. Generalization of Karpman–Solov’ev approach. Phys. Rev. E 55, 6039–6060 (1997)MathSciNetCrossRefADS Gerdjikov, V.S., Uzunov, I.M., Evstatiev, E.G., Diankov, G.L.: The nonlinear Schrödinger and N-soliton interaction. Generalization of Karpman–Solov’ev approach. Phys. Rev. E 55, 6039–6060 (1997)MathSciNetCrossRefADS
Zurück zum Zitat Gorshkov, K.A. Ph.D. thesis, Institute of Applied Physics, Gorky, (1981) unpublished Gorshkov, K.A. Ph.D. thesis, Institute of Applied Physics, Gorky, (1981) unpublished
Zurück zum Zitat Gorshkov, K.A., Ostrovsky, L.A.: Interactions of solitons in nonintegrable systems: direct perturbation method and applications. Phys. D 3, 428–438 (1981)MATHCrossRef Gorshkov, K.A., Ostrovsky, L.A.: Interactions of solitons in nonintegrable systems: direct perturbation method and applications. Phys. D 3, 428–438 (1981)MATHCrossRef
Zurück zum Zitat Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Clarendon Press, Oxford (1995)MATH Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Clarendon Press, Oxford (1995)MATH
Zurück zum Zitat Haus, H.A., Fujimoto, J.G., Ippen, E.P.: Structures for additive pulse mode locking. J. Opt. Soc. Am. B 8, 2068–2076 (1991)CrossRefADS Haus, H.A., Fujimoto, J.G., Ippen, E.P.: Structures for additive pulse mode locking. J. Opt. Soc. Am. B 8, 2068–2076 (1991)CrossRefADS
Zurück zum Zitat Heidt, A.: Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers. J. Lightwave Technology 27(18), 3984–3991 (2009)CrossRefADS Heidt, A.: Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers. J. Lightwave Technology 27(18), 3984–3991 (2009)CrossRefADS
Zurück zum Zitat Kärtner, F.X., Au, J.A., Keller, U.: Mode-locking with slow and fast saturable absorbers—what‘s the difference. IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998)CrossRef Kärtner, F.X., Au, J.A., Keller, U.: Mode-locking with slow and fast saturable absorbers—what‘s the difference. IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998)CrossRef
Zurück zum Zitat Kodama, Y., Wabnitz, S.: Reduction and suppression of soliton interactions by bandpass filters. Opt. Lett. 18, 1311–1313 (1993)CrossRefADS Kodama, Y., Wabnitz, S.: Reduction and suppression of soliton interactions by bandpass filters. Opt. Lett. 18, 1311–1313 (1993)CrossRefADS
Zurück zum Zitat Kodama, Y., Romagnoli, M., Wabnitz, S.: Soliton stability and interactions in fibre lasers. Electron. Lett. 28, 1981–1982 (1992)CrossRef Kodama, Y., Romagnoli, M., Wabnitz, S.: Soliton stability and interactions in fibre lasers. Electron. Lett. 28, 1981–1982 (1992)CrossRef
Zurück zum Zitat Latas, S.C.V., Ferreira, M.F.S.: Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain. Opt. Commun. 251, 415–422 (2005)CrossRefADS Latas, S.C.V., Ferreira, M.F.S.: Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain. Opt. Commun. 251, 415–422 (2005)CrossRefADS
Zurück zum Zitat Malomed, B.A.: Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation. Phys. Rev. A 44, 6954–6960 (1991)MathSciNetCrossRefADS Malomed, B.A.: Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation. Phys. Rev. A 44, 6954–6960 (1991)MathSciNetCrossRefADS
Zurück zum Zitat Mancas, S.C., Choudhury, S.R.: A novel variational approach to pulsating soliitons in the cubic–quintic Ginzburg–Landau equation. Theor. Math. Phys. 152(2), 339–355 (2007)MathSciNetCrossRef Mancas, S.C., Choudhury, S.R.: A novel variational approach to pulsating soliitons in the cubic–quintic Ginzburg–Landau equation. Theor. Math. Phys. 152(2), 339–355 (2007)MathSciNetCrossRef
Zurück zum Zitat Mancas, S.C., Choudhury, S.R.: Spatiotemporal structure of pulsating solitons in the cubic–quintic Ginzburg–Landau equation: a novel variational formulation. Chaos Solitons Fractals 40, 91–105 (2009)MATHMathSciNetCrossRefADS Mancas, S.C., Choudhury, S.R.: Spatiotemporal structure of pulsating solitons in the cubic–quintic Ginzburg–Landau equation: a novel variational formulation. Chaos Solitons Fractals 40, 91–105 (2009)MATHMathSciNetCrossRefADS
Zurück zum Zitat Matsumoto, M., Ikeda, H., Uda, T., Hasegawa, A.: Stable soliton transmission in the system with nonlinear gain. J. Lightwave Technol. 13, 658–665 (1995)CrossRefADS Matsumoto, M., Ikeda, H., Uda, T., Hasegawa, A.: Stable soliton transmission in the system with nonlinear gain. J. Lightwave Technol. 13, 658–665 (1995)CrossRefADS
Zurück zum Zitat Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self frequency shift. Opt. Lett. 11, 659–661 (1986)CrossRefADS Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self frequency shift. Opt. Lett. 11, 659–661 (1986)CrossRefADS
Zurück zum Zitat Nakazawa, M., Kurokawa, K., Kubota, H., Yamada, E.: Observation of the trapping of an optical soliton by adiabatic gain narrowing and its shape. Phys. Rev. Lett. 65, 1881–1884 (1990)CrossRefADS Nakazawa, M., Kurokawa, K., Kubota, H., Yamada, E.: Observation of the trapping of an optical soliton by adiabatic gain narrowing and its shape. Phys. Rev. Lett. 65, 1881–1884 (1990)CrossRefADS
Zurück zum Zitat Serkin, V.N.: Colored envelope solitons in optical fibers. Sov. Tech. Phys. Lett. 13, 320–321 (1987) Serkin, V.N.: Colored envelope solitons in optical fibers. Sov. Tech. Phys. Lett. 13, 320–321 (1987)
Zurück zum Zitat Soto-Crespo, J.M., Akhmediev, N., Afanasjev, V.V.: Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation. J. Opt. Soc. Am. B 13, 1439–1449 (1996)CrossRefADS Soto-Crespo, J.M., Akhmediev, N., Afanasjev, V.V.: Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation. J. Opt. Soc. Am. B 13, 1439–1449 (1996)CrossRefADS
Zurück zum Zitat Soto-Crespo, J.M., Akhmediev, N., Afanasjev, V.V., Wabnitz, S.: Pulse solutions of the quintic complex Ginzburg–Landau equation in the case of normal dispersion. Phys. Rev. E 55, 4783–4796 (1997)CrossRefADS Soto-Crespo, J.M., Akhmediev, N., Afanasjev, V.V., Wabnitz, S.: Pulse solutions of the quintic complex Ginzburg–Landau equation in the case of normal dispersion. Phys. Rev. E 55, 4783–4796 (1997)CrossRefADS
Zurück zum Zitat Soto-Crespo, J.M., Akhmediev, N., Ankiewicz, A.: Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 85, 2937–2940 (2000)CrossRefADS Soto-Crespo, J.M., Akhmediev, N., Ankiewicz, A.: Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 85, 2937–2940 (2000)CrossRefADS
Zurück zum Zitat Soto-Crespo, J.M., Grapinet, M., Grelu, P., Akhmediev, N.: Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser. Phys. Rev. E 70, 066612 (2004)CrossRefADS Soto-Crespo, J.M., Grapinet, M., Grelu, P., Akhmediev, N.: Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser. Phys. Rev. E 70, 066612 (2004)CrossRefADS
Zurück zum Zitat Tsoy, E., Akhmediev, N.: Bifurcations from stationary to pulsating solitons in the cubic quintic complex Ginzburg Landau equation. Phys. Lett. A 343, 417–422 (2005)MATHCrossRefADS Tsoy, E., Akhmediev, N.: Bifurcations from stationary to pulsating solitons in the cubic quintic complex Ginzburg Landau equation. Phys. Lett. A 343, 417–422 (2005)MATHCrossRefADS
Zurück zum Zitat Tsoy, E., Ankiewicz, A., Akhmediev, N.: Dynamical models for dissipative localized waves of the complex Ginzburg Landau equation. Phys. Rev. E 73, 036621 (2006)CrossRefADS Tsoy, E., Ankiewicz, A., Akhmediev, N.: Dynamical models for dissipative localized waves of the complex Ginzburg Landau equation. Phys. Rev. E 73, 036621 (2006)CrossRefADS
Zurück zum Zitat Uzunov, I.M.: Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification. Phys. Rev. E 82, 066603 (2010)CrossRefADS Uzunov, I.M.: Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification. Phys. Rev. E 82, 066603 (2010)CrossRefADS
Zurück zum Zitat Uzunov, I.M., Arabadzhiev, T.N.: Suppression of the soliton self-frequency shift by BLA. Phys. Rev. E 84, 026607 (2011)CrossRefADS Uzunov, I.M., Arabadzhiev, T.N.: Suppression of the soliton self-frequency shift by BLA. Phys. Rev. E 84, 026607 (2011)CrossRefADS
Zurück zum Zitat Uzunov, I.M., Arabadzhiev, T.N., Georgiev, Z.D.: Influence of higher-order effects on pulsating solutions, stationary solutions and moving fronts in the presence of linear and nonlinear gain/loss and spectral filtering. Opt. Fiber Technol. doi:10.1016/j.yofte.2015.04.003 (2015) Uzunov, I.M., Arabadzhiev, T.N., Georgiev, Z.D.: Influence of higher-order effects on pulsating solutions, stationary solutions and moving fronts in the presence of linear and nonlinear gain/loss and spectral filtering. Opt. Fiber Technol. doi:10.​1016/​j.​yofte.​2015.​04.​003 (2015)
Zurück zum Zitat Uzunov, I.M., Muschall, R., Gölles, M., Lederer, F., Wabnitz, S.: Effect of nonlinear gain and filtering on soliton interactions. Opt. Commun. 118, 577–580 (1995)CrossRefADS Uzunov, I.M., Muschall, R., Gölles, M., Lederer, F., Wabnitz, S.: Effect of nonlinear gain and filtering on soliton interactions. Opt. Commun. 118, 577–580 (1995)CrossRefADS
Zurück zum Zitat Uzunov, I.M., Gerdjikov, V.S., Gölles, M., Lederer, F.: On the description of N-soliton interaction in optical fibers. Opt. Commun. 125, 237–242 (1996)CrossRefADS Uzunov, I.M., Gerdjikov, V.S., Gölles, M., Lederer, F.: On the description of N-soliton interaction in optical fibers. Opt. Commun. 125, 237–242 (1996)CrossRefADS
Zurück zum Zitat Uzunov, I.M., Georgiev, Z.D., Arabadzhiev, T.N.: Influence of intrapulse Raman scattering on the stationary pulses in the presence of linear and nonlinear gain as well as spectral filtering. Phys. Rev. E 90, 042906 (2014)CrossRefADS Uzunov, I.M., Georgiev, Z.D., Arabadzhiev, T.N.: Influence of intrapulse Raman scattering on the stationary pulses in the presence of linear and nonlinear gain as well as spectral filtering. Phys. Rev. E 90, 042906 (2014)CrossRefADS
Metadaten
Titel
Self-frequency shift and nonlinear interaction of equilibrium and pulsating solutions in the presence of linear and nonlinear gain, spectral filtering, and intrapulse Raman scattering
verfasst von
Ivan M. Uzunov
Todor N. Arabadzhev
Zhivko D. Georgiev
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 8/2015
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-015-0184-4

Weitere Artikel der Ausgabe 8/2015

Optical and Quantum Electronics 8/2015 Zur Ausgabe

Neuer Inhalt