Skip to main content

2020 | OriginalPaper | Buchkapitel

Self-healing Substrates: Fabrication, Properties and Applications

verfasst von : Nikiwe Mhlanga, Keletso Mphahlele

Erschienen in: Self-standing Substrates

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Drawing inspiration from living organisms, inorganic self-healing substrates are the smart materials to revolutionize our world in the next decades. These smart substrates inherit the ability to detect damage and autonomously or non-autonomously heal and restore to its pristine state. The consequence of self-healing offers new route towards sustainable, safer and long lasting materials for multifunctional applications, such as: medicine, energy, construction, food packaging, water treatment and textiles. This chapter explores the preparation of the self-healing substrates from inorganic substrates such as polymers, ceramics and metals; including their healing chemistries and envisioned applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tan, Y.J., Wu, J., Li, H., Tee, B.C.: Self-healing electronic materials for a smart and sustainable future. ACS Appl. Mater. Interfaces 10(18), 15331–15345 (2018)CrossRef Tan, Y.J., Wu, J., Li, H., Tee, B.C.: Self-healing electronic materials for a smart and sustainable future. ACS Appl. Mater. Interfaces 10(18), 15331–15345 (2018)CrossRef
2.
Zurück zum Zitat Yang, Y., Ding, X., Urban, M.W.: Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49, 34–59 (2015)CrossRef Yang, Y., Ding, X., Urban, M.W.: Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49, 34–59 (2015)CrossRef
3.
Zurück zum Zitat Joseph, J.P., Singh, A., Pal, A.: Molecular design approaches to self-healing materials from polymer and its nanocomposites. In: Smart Polymer Nanocomposites, pp. 181–218. Springer (2017) Joseph, J.P., Singh, A., Pal, A.: Molecular design approaches to self-healing materials from polymer and its nanocomposites. In: Smart Polymer Nanocomposites, pp. 181–218. Springer (2017)
4.
Zurück zum Zitat Zhang, F., Ju, P., Pan, M., Zhang, D., Huang, Y., Li, G., Li, X.: Self-healing mechanisms in smart protective coatings: a review. Corros. Sci. (2018) Zhang, F., Ju, P., Pan, M., Zhang, D., Huang, Y., Li, G., Li, X.: Self-healing mechanisms in smart protective coatings: a review. Corros. Sci. (2018)
5.
Zurück zum Zitat Ataei, S., Khorasani, S.N., Neisiany, R.E.: Biofriendly vegetable oil healing agents used for developing self-healing coatings: a review. Prog. Org. Coat. 129, 77–95 (2019)CrossRef Ataei, S., Khorasani, S.N., Neisiany, R.E.: Biofriendly vegetable oil healing agents used for developing self-healing coatings: a review. Prog. Org. Coat. 129, 77–95 (2019)CrossRef
6.
Zurück zum Zitat Alaneme, K., Bodunrin, M.: Self-healing using metallic material systems–a review. Appl. Mater. Today 6, 9–15 (2017)CrossRef Alaneme, K., Bodunrin, M.: Self-healing using metallic material systems–a review. Appl. Mater. Today 6, 9–15 (2017)CrossRef
7.
Zurück zum Zitat Blazej Grabowski, C.C.T.: Self-healing metals. In: Advances in Polymer Science. Springer Nature (2015) Blazej Grabowski, C.C.T.: Self-healing metals. In: Advances in Polymer Science. Springer Nature (2015)
8.
Zurück zum Zitat Lucas, S.S., Von Tapavicza, M., Schmidt, A.M., Bertling, J., Nellesen, A.: Study of quantification methods in self-healing ceramics, polymers and concrete: a route towards standardization. J. Intell. Mater. Syst. Struct. 27(19), 2577–2598 (2016)CrossRef Lucas, S.S., Von Tapavicza, M., Schmidt, A.M., Bertling, J., Nellesen, A.: Study of quantification methods in self-healing ceramics, polymers and concrete: a route towards standardization. J. Intell. Mater. Syst. Struct. 27(19), 2577–2598 (2016)CrossRef
9.
Zurück zum Zitat Guadagno, L., Naddeo, C., Raimondo, M., Barra, G., Vertuccio, L., Sorrentino, A., Binder, W.H., Kadlec, M.: Development of self-healing multifunctional materials. Compos. Part B: Eng. 128, 30–38 (2017)CrossRef Guadagno, L., Naddeo, C., Raimondo, M., Barra, G., Vertuccio, L., Sorrentino, A., Binder, W.H., Kadlec, M.: Development of self-healing multifunctional materials. Compos. Part B: Eng. 128, 30–38 (2017)CrossRef
10.
Zurück zum Zitat Wu, D.Y., Meure, S., Solomon, D.: Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33(5), 479–522 (2008)CrossRef Wu, D.Y., Meure, S., Solomon, D.: Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33(5), 479–522 (2008)CrossRef
11.
Zurück zum Zitat Aïssa, B., Therriault, D., Haddad, E., Jamroz, W.: Self-healing materials systems: overview of major approaches and recent developed technologies. Adv. Mater. Sci. Eng. 2012 (2012)CrossRef Aïssa, B., Therriault, D., Haddad, E., Jamroz, W.: Self-healing materials systems: overview of major approaches and recent developed technologies. Adv. Mater. Sci. Eng. 2012 (2012)CrossRef
12.
Zurück zum Zitat Sun, D., Sun, G., Zhu, X., Guarin, A., Li, B., Dai, Z., Ling, J.: A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Adv. Colloid Interface Sci. (2018) Sun, D., Sun, G., Zhu, X., Guarin, A., Li, B., Dai, Z., Ling, J.: A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Adv. Colloid Interface Sci. (2018)
13.
Zurück zum Zitat Billiet, S., Hillewaere, X.K., Teixeira, R.F., Du Prez, F.E.: Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Commun. 34(4), 290–309 (2013)CrossRef Billiet, S., Hillewaere, X.K., Teixeira, R.F., Du Prez, F.E.: Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Commun. 34(4), 290–309 (2013)CrossRef
14.
Zurück zum Zitat Yang, Y., Kushima, A., Han, W., Xin, H., Li, J.: Liquid-like, self-healing aluminum oxide during deformation at room temperature. Nano Lett. 18(4), 2492–2497 (2018)CrossRef Yang, Y., Kushima, A., Han, W., Xin, H., Li, J.: Liquid-like, self-healing aluminum oxide during deformation at room temperature. Nano Lett. 18(4), 2492–2497 (2018)CrossRef
15.
Zurück zum Zitat García, S., Fischer, H., Van Der Zwaag, S.: A critical appraisal of the potential of self healing polymeric coatings. Prog. Org. Coat. 72(3), 211–221 (2011)CrossRef García, S., Fischer, H., Van Der Zwaag, S.: A critical appraisal of the potential of self healing polymeric coatings. Prog. Org. Coat. 72(3), 211–221 (2011)CrossRef
16.
Zurück zum Zitat Dry, C.: Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 35(3), 263–269 (1996)CrossRef Dry, C.: Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 35(3), 263–269 (1996)CrossRef
17.
Zurück zum Zitat Dry, C.M., Sottos, N.R.: Passive smart self-repair in polymer matrix composite materials. In: Smart Structures and Materials 1993: Smart Materials. International Society for Optics and Photonics (1993) Dry, C.M., Sottos, N.R.: Passive smart self-repair in polymer matrix composite materials. In: Smart Structures and Materials 1993: Smart Materials. International Society for Optics and Photonics (1993)
18.
Zurück zum Zitat Murphy, E.B., Wudl, F.: The world of smart healable materials. Prog. Polym. Sci. 35(1–2), 223–251 (2010)CrossRef Murphy, E.B., Wudl, F.: The world of smart healable materials. Prog. Polym. Sci. 35(1–2), 223–251 (2010)CrossRef
19.
Zurück zum Zitat Zhu, D.Y., Rong, M.Z., Zhang, M.Q.: Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog. Polym. Sci. 49, 175–220 (2015)CrossRef Zhu, D.Y., Rong, M.Z., Zhang, M.Q.: Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog. Polym. Sci. 49, 175–220 (2015)CrossRef
20.
Zurück zum Zitat Chowdhury, R.A., Hosur, M.V., Nuruddin, M., Tcherbi-Narteh, A., Kumar, A., Boddu, V., Jeelani, S.: Self-healing epoxy composites: preparation, characterization and healing performance. J. Mater. Res. Technol. 4(1), 33–43 (2015)CrossRef Chowdhury, R.A., Hosur, M.V., Nuruddin, M., Tcherbi-Narteh, A., Kumar, A., Boddu, V., Jeelani, S.: Self-healing epoxy composites: preparation, characterization and healing performance. J. Mater. Res. Technol. 4(1), 33–43 (2015)CrossRef
21.
Zurück zum Zitat Pratama, P.A., Sharifi, M., Peterson, A.M., Palmese, G.R.: Room temperature self-healing thermoset based on the Diels-Alder reaction. ACS Appl. Mater. Interfaces 5(23), 12425–12431 (2013)CrossRef Pratama, P.A., Sharifi, M., Peterson, A.M., Palmese, G.R.: Room temperature self-healing thermoset based on the Diels-Alder reaction. ACS Appl. Mater. Interfaces 5(23), 12425–12431 (2013)CrossRef
22.
Zurück zum Zitat Jin, H., Mangun, C.L., Stradley, D.S., Moore, J.S., Sottos, N.R., White, S.R.: Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer 53(2), 581–587 (2012)CrossRef Jin, H., Mangun, C.L., Stradley, D.S., Moore, J.S., Sottos, N.R., White, S.R.: Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer 53(2), 581–587 (2012)CrossRef
23.
Zurück zum Zitat Wilson, G.O., Andersson, H.M., White, S.R., Sottos, N.R., Moore, J.S., Braun, P.V.: Self‐healing polymers. In: Encyclopedia of Polymer Science and Technology (2002) Wilson, G.O., Andersson, H.M., White, S.R., Sottos, N.R., Moore, J.S., Braun, P.V.: Self‐healing polymers. In: Encyclopedia of Polymer Science and Technology (2002)
24.
Zurück zum Zitat Mauldin, T.C., Kessler, M.: Self-healing polymers and composites. Int. Mater. Rev. 55(6), 317–346 (2010)CrossRef Mauldin, T.C., Kessler, M.: Self-healing polymers and composites. Int. Mater. Rev. 55(6), 317–346 (2010)CrossRef
25.
Zurück zum Zitat Chen, X., Wudl, F., Mal, A.K., Shen, H., Nutt, S.R.: New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6), 1802–1807 (2003)CrossRef Chen, X., Wudl, F., Mal, A.K., Shen, H., Nutt, S.R.: New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6), 1802–1807 (2003)CrossRef
26.
Zurück zum Zitat Xiang, Z., Zhang, L., Yuan, T., Li, Y., Sun, J.: Healability demonstrates enhanced shape-recovery of graphene-oxide-reinforced shape-memory polymeric films. ACS Appl. Mater. Interfaces 10(3), 2897–2906 (2018)CrossRef Xiang, Z., Zhang, L., Yuan, T., Li, Y., Sun, J.: Healability demonstrates enhanced shape-recovery of graphene-oxide-reinforced shape-memory polymeric films. ACS Appl. Mater. Interfaces 10(3), 2897–2906 (2018)CrossRef
27.
Zurück zum Zitat Feng, X., Fan, J., Li, A., Li, G.: Multi-reusable thermoset with anomalous flame triggered shape memory effect. ACS Appl. Mater. Interfaces (2019) Feng, X., Fan, J., Li, A., Li, G.: Multi-reusable thermoset with anomalous flame triggered shape memory effect. ACS Appl. Mater. Interfaces (2019)
28.
Zurück zum Zitat Madhan, M., Prabhakaran, G.: Self-healing ability of structural ceramics–a review. In: International Conference on Intelligent Robotics, Automation, and Manufacturing. Springer (2012) Madhan, M., Prabhakaran, G.: Self-healing ability of structural ceramics–a review. In: International Conference on Intelligent Robotics, Automation, and Manufacturing. Springer (2012)
29.
Zurück zum Zitat Osada, T., Kamoda, K., Mitome, M., Hara, T., Abe, T., Tamagawa, Y., Nakao, W., Ohmura, T.: A novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator. Sci. Rep. 7(1), 17853 (2017)CrossRef Osada, T., Kamoda, K., Mitome, M., Hara, T., Abe, T., Tamagawa, Y., Nakao, W., Ohmura, T.: A novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator. Sci. Rep. 7(1), 17853 (2017)CrossRef
30.
Zurück zum Zitat Rajak, P., Kalia, R.K., Nakano, A., Vashishta, P.: Faceting, grain growth, and crack healing in alumina. ACS Nano 12(9), 9005–9010 (2018)CrossRef Rajak, P., Kalia, R.K., Nakano, A., Vashishta, P.: Faceting, grain growth, and crack healing in alumina. ACS Nano 12(9), 9005–9010 (2018)CrossRef
31.
Zurück zum Zitat Manuel, M.V.: Principles of self-healing in metals and alloys: an introduction. In: Self-healing Materials: Fundamentals, Design Strategies, and Applications. Wiley-VCH, Chichester (2009) Manuel, M.V.: Principles of self-healing in metals and alloys: an introduction. In: Self-healing Materials: Fundamentals, Design Strategies, and Applications. Wiley-VCH, Chichester (2009)
32.
Zurück zum Zitat Srivastava, V., Gupta, M.: Approach to self healing in metal matrix composites: a review. Mater. Today: Proc. 5(9), 19703–19713 (2018) Srivastava, V., Gupta, M.: Approach to self healing in metal matrix composites: a review. Mater. Today: Proc. 5(9), 19703–19713 (2018)
33.
Zurück zum Zitat Li, V.C., Yang, E.-H.: Self healing in concrete materials. In: Self Healing Materials, pp. 161–193. Springer (2007) Li, V.C., Yang, E.-H.: Self healing in concrete materials. In: Self Healing Materials, pp. 161–193. Springer (2007)
34.
Zurück zum Zitat Pelletier, M.M., Brown, R., Shukla, A., Bose, A.: Self-healing concrete with a microencapsulated healing agent. Cem. Concr. Res. (2011) Pelletier, M.M., Brown, R., Shukla, A., Bose, A.: Self-healing concrete with a microencapsulated healing agent. Cem. Concr. Res. (2011)
35.
Zurück zum Zitat Jonkers, H.M.: Bacteria-based self-healing concrete. Heron 56(1/2) (2011) Jonkers, H.M.: Bacteria-based self-healing concrete. Heron 56(1/2) (2011)
36.
Zurück zum Zitat Wiktor, V., Jonkers, H.M.: Assessment of the crack healing capacity in bacteria-based self-healing concrete. In: Proceedings of 3rd International Conference on Self Healing Materials, Bath, UK (2011) Wiktor, V., Jonkers, H.M.: Assessment of the crack healing capacity in bacteria-based self-healing concrete. In: Proceedings of 3rd International Conference on Self Healing Materials, Bath, UK (2011)
37.
Zurück zum Zitat Reynolds, D., Browning, J., Darwin, D.: Lightweight aggregates as an internal curing agent for low-cracking high-performance concrete. University of Kansas Center for Research, Inc. (2009) Reynolds, D., Browning, J., Darwin, D.: Lightweight aggregates as an internal curing agent for low-cracking high-performance concrete. University of Kansas Center for Research, Inc. (2009)
38.
Zurück zum Zitat Souradeep, G., Kua, H.W.: Encapsulation technology and techniques in self-healing concrete. J. Mater. Civ. Eng. 28(12), 04016165 (2016)CrossRef Souradeep, G., Kua, H.W.: Encapsulation technology and techniques in self-healing concrete. J. Mater. Civ. Eng. 28(12), 04016165 (2016)CrossRef
39.
Zurück zum Zitat Alghamri, R., Kanellopoulos, A., Al-Tabbaa, A.: Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Constr. Build. Mater. 124, 910–921 (2016)CrossRef Alghamri, R., Kanellopoulos, A., Al-Tabbaa, A.: Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Constr. Build. Mater. 124, 910–921 (2016)CrossRef
40.
Zurück zum Zitat Wang, J., Van Tittelboom, K., De Belie, N., Verstraete, W.: Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr. Build. Mater. 26(1), 532–540 (2012)CrossRef Wang, J., Van Tittelboom, K., De Belie, N., Verstraete, W.: Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr. Build. Mater. 26(1), 532–540 (2012)CrossRef
41.
Zurück zum Zitat Jialan, Y., Chenpeng, Y., Chengfei, Z., Baoqing, H.: Preparation process of epoxy resin microcapsules for self-healing coatings. Prog. Org. Coat. 132, 440–444 (2019)CrossRef Jialan, Y., Chenpeng, Y., Chengfei, Z., Baoqing, H.: Preparation process of epoxy resin microcapsules for self-healing coatings. Prog. Org. Coat. 132, 440–444 (2019)CrossRef
42.
Zurück zum Zitat Calabrò, V.: Engineering aspects of membrane bioreactors. In: Handbook of Membrane Reactors, pp. 3–53. Elsevier (2013) Calabrò, V.: Engineering aspects of membrane bioreactors. In: Handbook of Membrane Reactors, pp. 3–53. Elsevier (2013)
43.
Zurück zum Zitat Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S., Schubert, U.S.: Self-healing materials. Adv. Mater. 22(47), 5424–5430 (2010)CrossRef Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S., Schubert, U.S.: Self-healing materials. Adv. Mater. 22(47), 5424–5430 (2010)CrossRef
44.
Zurück zum Zitat Li, J., Feng, Q., Cui, J., Yuan, Q., Qiu, H., Gao, S., Yang, J.: Self-assembled graphene oxide microcapsules in Pickering emulsions for self-healing waterborne polyurethane coatings. Compos. Sci. Technol. 151, 282–290 (2017)CrossRef Li, J., Feng, Q., Cui, J., Yuan, Q., Qiu, H., Gao, S., Yang, J.: Self-assembled graphene oxide microcapsules in Pickering emulsions for self-healing waterborne polyurethane coatings. Compos. Sci. Technol. 151, 282–290 (2017)CrossRef
45.
Zurück zum Zitat Döhler, D., Michael, P., Binder, W.H.: CuAAC-based click chemistry in self-healing polymers. Acc. Chem. Res. 50(10), 2610–2620 (2017)CrossRef Döhler, D., Michael, P., Binder, W.H.: CuAAC-based click chemistry in self-healing polymers. Acc. Chem. Res. 50(10), 2610–2620 (2017)CrossRef
46.
Zurück zum Zitat Zhang, D., Miao, M., Niu, H., Wei, Z.: Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8(5), 4571–4579 (2014)CrossRef Zhang, D., Miao, M., Niu, H., Wei, Z.: Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8(5), 4571–4579 (2014)CrossRef
47.
Zurück zum Zitat Hu, R., Zhao, J., Wang, Y., Li, Z., Zheng, J.: A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation, characterization and applications. Chem. Eng. J. 360, 334–341 (2019)CrossRef Hu, R., Zhao, J., Wang, Y., Li, Z., Zheng, J.: A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation, characterization and applications. Chem. Eng. J. 360, 334–341 (2019)CrossRef
48.
Zurück zum Zitat Vangari, M., Pryor, T., Jiang, L.: Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139(2), 72–79 (2012)CrossRef Vangari, M., Pryor, T., Jiang, L.: Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139(2), 72–79 (2012)CrossRef
49.
Zurück zum Zitat Maitra, A., Paria, S., Karan, S.K.,Bera, R., Bera, A., Das, A.K., Si, S.K., Halder, L., De, A., Khatua, B.B.: Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation. ACS Appl. Mater. Interfaces (2019) Maitra, A., Paria, S., Karan, S.K.,Bera, R., Bera, A., Das, A.K., Si, S.K., Halder, L., De, A., Khatua, B.B.: Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation. ACS Appl. Mater. Interfaces (2019)
50.
Zurück zum Zitat Hu, M., Wang, J., Liu, J., Wang, P., Feng, Y., Wang, H., Nie, N., Wang, Y., Huang, Y.: A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability. Energy Storage Mater. (2018) Hu, M., Wang, J., Liu, J., Wang, P., Feng, Y., Wang, H., Nie, N., Wang, Y., Huang, Y.: A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability. Energy Storage Mater. (2018)
51.
Zurück zum Zitat Nakahata, M., Takashima, Y., Harada, A.: Highly flexible, tough, and self-healing supramolecular polymeric materials using host–guest interaction. Macromol. Rapid Commun. 37(1), 86–92 (2016)CrossRef Nakahata, M., Takashima, Y., Harada, A.: Highly flexible, tough, and self-healing supramolecular polymeric materials using host–guest interaction. Macromol. Rapid Commun. 37(1), 86–92 (2016)CrossRef
52.
Zurück zum Zitat Wu, X., Wang, J., Huang, J., Yang, S.: Robust, stretchable and self-healable supramolecular elastomers synergistically crosslinked by hydrogen bonds and coordination bonds. ACS Appl. Mater. Interfaces (2019) Wu, X., Wang, J., Huang, J., Yang, S.: Robust, stretchable and self-healable supramolecular elastomers synergistically crosslinked by hydrogen bonds and coordination bonds. ACS Appl. Mater. Interfaces (2019)
53.
Zurück zum Zitat Mlalila, N., Kadam, D.M., Swai, H., Hilonga, A.: Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. J. Food Sci. Technol. 53(9), 3395–3407 (2016)CrossRef Mlalila, N., Kadam, D.M., Swai, H., Hilonga, A.: Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. J. Food Sci. Technol. 53(9), 3395–3407 (2016)CrossRef
54.
Zurück zum Zitat Hu, B., Chen, L., Lan, S., Ren, P., Wu, S., Liu, X., Shi, X., Li, H., Du, Y., Ding, F.: Layer-by-layer assembly of polysaccharide films with self-healing and antifogging properties for food packaging applications. ACS Appl. Nano Mater. 1(7), 3733–3740 (2018)CrossRef Hu, B., Chen, L., Lan, S., Ren, P., Wu, S., Liu, X., Shi, X., Li, H., Du, Y., Ding, F.: Layer-by-layer assembly of polysaccharide films with self-healing and antifogging properties for food packaging applications. ACS Appl. Nano Mater. 1(7), 3733–3740 (2018)CrossRef
55.
Zurück zum Zitat Xuan, H., Dai, W., Zhu, Y., Ren, J., Zhang, J., Ge, L.: Self-Healing, antibacterial and sensing nanoparticle coating and its excellent optical applications. Sens. Actuators B: Chem. 257, 1110–1117 (2018)CrossRef Xuan, H., Dai, W., Zhu, Y., Ren, J., Zhang, J., Ge, L.: Self-Healing, antibacterial and sensing nanoparticle coating and its excellent optical applications. Sens. Actuators B: Chem. 257, 1110–1117 (2018)CrossRef
56.
Zurück zum Zitat Gaddes, D., Jung, H., Pena-Francesch, A., Dion, G., Tadigadapa, S., Dressick, W.J., Demirel, M.C.: Self-healing textile: enzyme encapsulated layer-by-layer structural proteins. ACS Appl. Mater. Interfaces 8(31), 20371–20378 (2016)CrossRef Gaddes, D., Jung, H., Pena-Francesch, A., Dion, G., Tadigadapa, S., Dressick, W.J., Demirel, M.C.: Self-healing textile: enzyme encapsulated layer-by-layer structural proteins. ACS Appl. Mater. Interfaces 8(31), 20371–20378 (2016)CrossRef
57.
Zurück zum Zitat Chen, S., Li, X., Li, Y., Sun, J.: Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9(4), 4070–4076 (2015)CrossRef Chen, S., Li, X., Li, Y., Sun, J.: Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9(4), 4070–4076 (2015)CrossRef
58.
Zurück zum Zitat Liu, Y., Liu, Y., Hu, H., Liu, Z., Pei, X., Yu, B., Yan, P., Zhou, F.: Mechanically induced self-healing superhydrophobicity. J. Phys. Chem. C 119(13), 7109–7114 (2015)CrossRef Liu, Y., Liu, Y., Hu, H., Liu, Z., Pei, X., Yu, B., Yan, P., Zhou, F.: Mechanically induced self-healing superhydrophobicity. J. Phys. Chem. C 119(13), 7109–7114 (2015)CrossRef
59.
Zurück zum Zitat Li, Y., Wang, X., Fu, Y.-N., Wei, Y., Zhao, L., Tao, L.: Self-adapting hydrogel to improve the therapeutic effect in wound-healing. ACS Appl. Mater. Interfaces 10(31), 26046–26055 (2018)CrossRef Li, Y., Wang, X., Fu, Y.-N., Wei, Y., Zhao, L., Tao, L.: Self-adapting hydrogel to improve the therapeutic effect in wound-healing. ACS Appl. Mater. Interfaces 10(31), 26046–26055 (2018)CrossRef
60.
Zurück zum Zitat Qiao, H., Qi, P., Zhang, X., Wang, L., Tan, Y., Luan, Z., Xia, Y., Li, Y.-H., Sui, K.: Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive and self-healing ionic sensors. ACS Appl. Mater. Interfaces (2019) Qiao, H., Qi, P., Zhang, X., Wang, L., Tan, Y., Luan, Z., Xia, Y., Li, Y.-H., Sui, K.: Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive and self-healing ionic sensors. ACS Appl. Mater. Interfaces (2019)
61.
Zurück zum Zitat Deng, Z., Hu, T., Lei, Q., He, J., Ma, P.X., Guo, B.: Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness and 3D printability for human motion sensing. ACS Appl. Mater. Interfaces (2019) Deng, Z., Hu, T., Lei, Q., He, J., Ma, P.X., Guo, B.: Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness and 3D printability for human motion sensing. ACS Appl. Mater. Interfaces (2019)
62.
Zurück zum Zitat Chen, T., Chen, Y., Rehman, H.U., Chen, Z., Yang, Z., Wang, M., Li, H., Liu, H.: Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl. Mater. Interfaces 10(39), 33523–33531 (2018)CrossRef Chen, T., Chen, Y., Rehman, H.U., Chen, Z., Yang, Z., Wang, M., Li, H., Liu, H.: Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl. Mater. Interfaces 10(39), 33523–33531 (2018)CrossRef
63.
Zurück zum Zitat Wu, J., Xie, X., Zhou, H., Tay, F.R., Weir, M.D., Melo, M.A.S., Oates, T.W., Zhang, N., Zhang, Q., Xu, H.H.: Development of a new class of self-healing and therapeutic dental resins. Polym. Degrad. Stab. (2019) Wu, J., Xie, X., Zhou, H., Tay, F.R., Weir, M.D., Melo, M.A.S., Oates, T.W., Zhang, N., Zhang, Q., Xu, H.H.: Development of a new class of self-healing and therapeutic dental resins. Polym. Degrad. Stab. (2019)
64.
Zurück zum Zitat Liu, C., Zhao, H., Hou, P., Qian, B., Wang, X., Guo, C., Wang, L.: Efficient graphene/cyclodextrin-based nanocontainer: synthesis and host-guest inclusion for self-healing anticorrosion application. ACS Appl. Mater. Interfaces 10(42), 36229–36239 (2018)CrossRef Liu, C., Zhao, H., Hou, P., Qian, B., Wang, X., Guo, C., Wang, L.: Efficient graphene/cyclodextrin-based nanocontainer: synthesis and host-guest inclusion for self-healing anticorrosion application. ACS Appl. Mater. Interfaces 10(42), 36229–36239 (2018)CrossRef
65.
Zurück zum Zitat Weishaar, A., Carpenter, M., Loucks, R., Sakulich, A., Peterson, A.M.: Evaluation of self-healing epoxy coatings for steel reinforcement. Constr. Build. Mater. 191, 125–135 (2018)CrossRef Weishaar, A., Carpenter, M., Loucks, R., Sakulich, A., Peterson, A.M.: Evaluation of self-healing epoxy coatings for steel reinforcement. Constr. Build. Mater. 191, 125–135 (2018)CrossRef
66.
Zurück zum Zitat Chen, Y., Xia, C., Shepard, Z., Smith, N., Rice, N., Peterson, A.M., Sakulich, A.: Self-healing coatings for steel-reinforced concrete. ACS Sustain. Chem. Eng. 5(5), 3955–3962 (2017)CrossRef Chen, Y., Xia, C., Shepard, Z., Smith, N., Rice, N., Peterson, A.M., Sakulich, A.: Self-healing coatings for steel-reinforced concrete. ACS Sustain. Chem. Eng. 5(5), 3955–3962 (2017)CrossRef
67.
Zurück zum Zitat Golim, O., Prastomo, N., Izzudin, H., Hastuty, S., Sundawa, R., Sugiarti, E., Thosin, K.: Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating. J. Phys. Conf. Ser. (2018) (IOP Publishing) Golim, O., Prastomo, N., Izzudin, H., Hastuty, S., Sundawa, R., Sugiarti, E., Thosin, K.: Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating. J. Phys. Conf. Ser. (2018) (IOP Publishing)
68.
Zurück zum Zitat Jamshidnejad, Z., Afshar, A., RazmjooKhollari, M.A.: Synthesis of self-healing smart epoxy and polyurethane coating by encapsulation of olive leaf extract as corrosion inhibitor. Int. J. Electrochem. Sci. 13, 12278–12293 (2018)CrossRef Jamshidnejad, Z., Afshar, A., RazmjooKhollari, M.A.: Synthesis of self-healing smart epoxy and polyurethane coating by encapsulation of olive leaf extract as corrosion inhibitor. Int. J. Electrochem. Sci. 13, 12278–12293 (2018)CrossRef
69.
Zurück zum Zitat Nqombolo, A., Mpupa, A., Moutloali, R.M., Nomngongo, P.N.: Wastewater treatment using membrane technology. In: Wastewater and Water Quality. IntechOpen (2018) Nqombolo, A., Mpupa, A., Moutloali, R.M., Nomngongo, P.N.: Wastewater treatment using membrane technology. In: Wastewater and Water Quality. IntechOpen (2018)
70.
Zurück zum Zitat Getachew, B.A., Kim, S.-R., Kim, J.-H.: Self-healing hydrogel pore-filled water filtration membranes. Environ. Sci. Technol. 51(2), 905–913 (2017)CrossRef Getachew, B.A., Kim, S.-R., Kim, J.-H.: Self-healing hydrogel pore-filled water filtration membranes. Environ. Sci. Technol. 51(2), 905–913 (2017)CrossRef
71.
Zurück zum Zitat Kim, S.-R., Getachew, B.A., Kim, J.-H.: Toward microvascular network-embedded self-healing membranes. J. Membr. Sci. 531, 94–102 (2017)CrossRef Kim, S.-R., Getachew, B.A., Kim, J.-H.: Toward microvascular network-embedded self-healing membranes. J. Membr. Sci. 531, 94–102 (2017)CrossRef
72.
Zurück zum Zitat Zhang, H., Lamnawar, K., Maazouz, A.: Rheological modeling of the diffusion process and the interphase of symmetrical bilayers based on PVDF and PMMA with varying molecular weights. Rheol. Acta 51(8), 691–711 (2012)CrossRef Zhang, H., Lamnawar, K., Maazouz, A.: Rheological modeling of the diffusion process and the interphase of symmetrical bilayers based on PVDF and PMMA with varying molecular weights. Rheol. Acta 51(8), 691–711 (2012)CrossRef
Metadaten
Titel
Self-healing Substrates: Fabrication, Properties and Applications
verfasst von
Nikiwe Mhlanga
Keletso Mphahlele
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-29522-6_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.